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The effect of additional kinematic constraints on eigenfrequencies of non conservative systems present-
ing a non symmetric stiffness matrix is investigated with the use of the second order work criterion. It is
shown that there are always additional constraints that may soften structural systems, from both buck-
ling and vibration points of view. The steps for building such constraints are given, consequences on sta-
bility are discussed and several illustrating examples are presented.
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1. Introduction

As early as 1980, Tarnai discovered a softening effect induced by
kinematic constraint in elastic systems. This softening effect was
characterized by a decrease of the critical load of divergence insta-
bility in conservative systems with equilibrium positions depend-
ing on the loading parameters (see for example Tarnai, 1980;
Tarnai, 2004). Hence, it was shown to be out of the scope of the
usual stability analysis of constrained systems based on Rayleigh’s
well known theory. In the present paper we show that this surpris-
ing phenomenon can be observed in non conservative systems too
even if the associated equilibrium positions do not depend on the
loading parameters. Recently, Challamel et al. (2010) demon-
strated the possible softening effect of additional constraints in
the buckling problem of non conservative systems. Here we per-
form a similar investigation of the spectrum (within the meaning
of the set of eigenfrequencies) of the system and we generalize
the approach of Challamel et al. (2010) to the vibration analysis.
Although the usual framework of investigations involving spectral
analysis, vibrations, buckling, divergence or flutter is linear elastic-
ity as, e.g., in Bolotin (1963), the presented approach remains valid
in a more general setting, including, e.g., the incrementally piece-
wise linear evolution. We mean for example the elasto-plasticity
ll rights reserved.

rbet).
if this evolution takes place in a tensorial zone of a purely consti-
tutive problem or external dry friction forces as it was elegantly
investigated in Bigoni’s recent paper Bigoni and Noselli (2011). In
order to be valid, the dynamic evolution has only to be described
by an equation similar to Eq. (1) of the present paper.

The effect of constraints on systems the dynamics of which is
governed by a symmetric stiffness matrix is actually well known
since Rayleigh’s and Courant’s Minimax theorems: the range of
the real spectrum is reduced by a kinematic constraint and the
lowest eigenfrequency is then always increasing. We show that
the effect of a constraint on systems with the dynamics, governed
by any (i.e. nonsymmetric) stiffness matrix may not be a priori
forecast. According to the chosen constraint, the lowest eigenfre-
quency can either increase or decrease. The paper obviously fo-
cuses on the decreasing effect, which we call a stiffness softening
effect. Section 1 concerns generalities of the spectral analysis of
constrained systems investigated with the use of Lagrange multi-
pliers. After performing necessary calculations in Section 3.1, Sec-
tion 3.2 presents the main result: as long as the second order
work criterion is valid, there always exists a constraint (and it
may be chosen in the kernel of the corresponding operator) that
leads to a decrease of the lowest eigenfrequency of the system.
Consequences on both divergence and flutter instabilities are
investigated (Sections 3.3, 3.4) and several examples (Section 4)
using Ziegler’s 2 degree of freedom column as a mechanical model
illustrate the results.
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2. Statement of the problem

As it is already mentioned in the introduction, in the following
we will only assume that after having started with different possi-
ble non linear settings, convenient assumptions and approxima-
tions lead to a dynamic evolution governed by the following
equation of motion of the free system Rfree:

M€X þ KðpÞX ¼ 0 ð1Þ

where KðpÞ is generally a non-symmetric matrix. For circulatory
systems like in Bolotin (1963), in Hermann and Bungay (1964) or
more recently in Bigoni and Noselli (2011), we often may write
KðpÞ ¼ Kint � pKext and the internal elastic stiffness matrix Kint is
symmetric and positive definite. Clearly, the non-conservativeness
comes from the external loading, meaning that Kext is generally a
non-symmetric matrix. In the present general approach, the depen-
dency p # KðpÞ is without any importance. M is a symmetric posi-
tive definite matrix, p denotes the loading parameter, and X is the
perturbation of dimension n. The buckling/vibrations equation of
this free system Rfree is obtained for the divergence-type systems as:

f ðp; sÞ ¼ detðKðpÞ � s2MÞ ¼ 0 ð2Þ

We assume that for p ¼ 0, the stiffness matrix Kð0Þ of the free sys-
tem is symmetric positive definite (it obviously holds for circulatory
systems because Kð0Þ then reduces to a pure elastic stiffness ma-
trix). Let xfree;kðpÞ be the 2n roots of the polynomial Eq. (2). If they
are real, the positive ones are the natural frequencies of the free sys-
tem. Since for p ¼ 0 (eventually counted with their multiplicity)
xfree;kð0Þ 2 R for all k ¼ 1; . . . ;n because of the above assumption
about Kð0Þ, then, by continuity, there is an interval ½0;pmax½, such
that xfree;kðpÞ 2 R for all k ¼ 1; . . . ;n. For the rest of the paper, we as-
sume that p 2 ½0;pmax½ and the natural frequencies are ordered:
xfree;1ðpÞ 6 . . . 6 xfree;nðpÞ.

We will investigate the spectral properties of such a dynamical
system in the presence of an additional kinematic constraint, given
by the (linear) holonomic constraint (a is a column vector):

aT � X ¼ 0 ð3Þ

The Lagrange multiplier k can be introduced for the constrained
system as:

M€X þ KðpÞX þ ka ¼ 0 ð4Þ

Leading a similar mathematical approach as in Lerbet et al. (2012)
for example, the buckling/vibrations equation of the constrained
system RconsðaÞ is obtained for the divergence-type systems as:

hðp; s;aÞ ¼ det
KðpÞ � s2M a

aT 0

 !
¼ 0 ð5Þ

In this paper, we investigate the eventual relationship between the
eigenfrequencies xcons;kðp;aÞ of RconsðaÞ and the frequencies
xfree;kðpÞ of Rfree. More precisely, we will compare the lowest eigen-
frequencies xcons;1ðp;aÞ and xfree;1ðpÞ. It should be reminded that for
conservative systems, xcons;1ðp;aÞP xfree;1ðpÞ for any constraint
(defined by) a. We claim in this paper that for the nonconservative
systems with the dynamics governed by Eq. (1), there is at least one
peculiar constraint a such that xcons;1ðp;aÞ < xfree;1ðpÞ as long as the
symmetric part of KsðpÞ is positive definite (second order work cri-
terion), and we present this constraint. We stress however that this
dynamic softening effect does not mean that such a constraint leads
to divergence-instability of the constraint system. On the contrary,
it has been already proved in papers like Challamel et al. (2010) and
Lerbet et al. (2012) that, as long as the symmetric part of KsðpÞ is po-
sitive definite (second order work criterion), no kinematic con-
straints may induce divergence instabilities. These points are
discussed in Sections 3.3 and 3.4.
3. The results

3.1. Preliminary calculations

Let a be an n-column vector. Let us choose s R f�xfree;kðpÞ;
k ¼ 1 . . . ;ng such that Fðp; sÞ ¼ KðpÞ � s2M is not singular. Similar
calculations as in Challamel et al. (2010) but for the matrix
Fðp; sÞ ¼ KðpÞ � s2M give then successively:

Fðp;sÞ a
aT 0

� �
Fðp;sÞ�1 �Fðp;sÞ�1a

0 1

 !
¼

In 0
aT Fðp;sÞ�1 �aT Fðp;sÞ�1a

� �

Calculating the determinant of each side of the previous relation
leads to:

hðp; s;aÞ
f ðp; sÞ ¼ �aT Fðp; sÞ�1a ð6Þ

Put b ¼ Fðp; sÞ�1a. (6) reads:

hðp; s;aÞ ¼ �f ðp; sÞbT Fðp; sÞb

which leads, for all s;p such that f ðp; sÞ – 0 (i.e.
s R f�xfree;kðpÞ; k ¼ 1 . . . ; ng) to:

hðp; s;aÞ ¼ �f ðp; sÞbT Fsðp; sÞÞb ð7Þ

with b ¼ Fðp; sÞ�1a because obviously bT Fðp; sÞÞb ¼ bT Fsðp; sÞÞb for
Fsðp; sÞ ¼ KsðpÞ � s2M where Ks is the symmetric part of K.

Let R� be the associated conservative system with stiffness ma-
trix KsðpÞ and mass matrix M and let fx�;kðpÞ; k ¼ 1 . . . ;ng be its
spectrum which is included in R for all p. These are the roots of
the characteristic polynomial of R� defined as:

gðp; sÞ ¼ detðKsðpÞ � s2MÞ ¼ detðFsðp; sÞÞ ¼ 0 ð8Þ

This spectrum can also be calculated from the generalized Ray-
leigh’s quotient RsðXÞ related to the symmetric part Ks of K defined
by:

RsðXÞ ¼ XT KsðpÞX
XT MX

and the smallest positive root x�;1ðpÞ of (8) is for example given by:

x2
�;1ðpÞ ¼ inf

X2Rn

XT KsðpÞX
XT MX

For the rest of the paper, psw denotes the critical load according to
the second order work criterion: this is the smallest positive root
of the equation detðKsðpÞÞ ¼ 0. For p ¼ 0; Ksð0Þ ¼ Kð0Þ is supposed
to be positive definite (as it is assumed above). Thus
detðKsð0ÞÞ > 0 and there is an open interval I � Rþ (by continuity)
such that detðKsðpÞÞ > 0 for all p 2 I. By definition psw ¼ infðIÞ. If I
is bounded then psw 2 Rþ. If I is not bounded then psw ¼ þ1 mean-
ing detðKsðpÞÞ > 0 for all p > 0.

If pfree;div is the divergence critical load of the free system Rfree

(the smallest positive root of detðKðpÞÞ ¼ 0), it has already been
proved that pfree;div P psw (Lerbet et al., 2009 for example) but it
obviously follows from the following result proven by Ostrowski
and Taussky (1951):

If A is any definite positive matrix (meaning that its symmetric
part is definite positive), then detðAÞP detðAsÞ > 0.

3.2. Main results and stiffness softening effect of kinematics constraints

Preserving the same notation as in the previous sections, two
results on the relation of the spectrum of the free system and that
of the constrained and associated systems are derived. The first one
is the following:
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Theorem 1.

x�;1ðpÞ 6 xfree;1ðpÞ 8p 2 ½0;psw½ ð9Þ
Proof. Suppose p 2 ½0; psw½ which means that KðpÞ (or equivalently
KsðpÞ) is positive definite and let be s 2 ½0;x�;1ðpÞ½. Thus, because
gðp;0Þ¼detðFsðp;0ÞÞ¼detðKsðpÞÞ, then f ðp;0ÞPgðp;0Þ>0. More-
over, as long as gðp;sÞ>0 the eigenvalues of the real symmetric
matrix Fsðp;sÞ cannot vanish and because for s¼0 they are all >0
(Ks positive definite), they are all > 0 for s 2 ½0;x�;1ðpÞ½ which
means that Fðp; sÞ remains positive definite for s 2 ½0;x�;1ðpÞ½.
Applying then the above result of Ostrowski and Taussky, we
deduce that f ðp; sÞP gðp; sÞ > 0 for s 2 ½0;xfree;1ðpÞ½. Because
xfree;1ðpÞ is the lowest positive root of s # f ðp; sÞ we obviously con-
clude that xfree;1ðpÞ R ½0;x�;1ðpÞ½ or that x�;1ðpÞ 6 xfree;1ðpÞ. h

Because detðFsðp;x�;1ðpÞÞÞ ¼ 0; dimKerðFsðp;x�;1ðpÞÞP 1 and
we may choose b ¼ bðpÞ which is nonzero in KerðFsðp;x�;1ðpÞÞ.
Let now a ¼ aðpÞ be in Fðx�;1ðpÞÞðbðpÞÞ.

From (7), hðp;x�;1ðpÞ;aðpÞÞ ¼ 0 meaning that x�;1ðpÞ lies in the
spectrum of RconsðaðpÞÞ. From Theorem 1 the second result reads
as follows:

Theorem 2. For all p 2 ½0; psw½ there is a constraint a ¼ aðpÞ such
that

xcons;1ðpÞ 6 xfree;1ðpÞ ð10Þ

where xcons;1ðpÞ ¼ xcons;1ðp;aðpÞÞ is the smallest eigenfrequency of the
constrained system RconsðaðpÞÞ.
Proof. Let us choose the constraint a ¼ aðpÞ as previously. Because
x�;1ðpÞ lies in the spectrum of RconsðaðpÞÞ it follows that
xcons;1ðpÞ 6 x�;1ðpÞ. Thus, from (9), we get:

xcons;1ðpÞ 6 x�;1ðpÞ 6 xfree;1ðpÞ

which allows to conclude. h

Because of the last result, we say that the system is softened by
the kinematics constraint meaning stiffness softening because of
the direct natural relation between the stiffness of the structure
and the lowest eigenfrequency for conservative systems through
Rayleigh’s quotient. The paradoxical effect resulting from Theo-
rem 2 means that there always exists a kinematics constraint that
makes the lowest eigenfrequency smaller in contrast to conserva-
tive systems.

Definition 1. The constraint aðpÞ built as above is called the
critical or optimal constraint.
3.3. Divergence instability

The buckling problem is obtained as a particular case of this
equation, where the divergence buckling load pfree;div of the free
system is calculated from detðKðpÞÞ ¼ 0 or equivalently by

xfree;1ðpÞ ¼ 0 ð11Þ

while for the critical constraint aðpÞ, the divergence buckling load
pcons;div is calculated from the equation hðp;0;aðpÞÞ ¼ 0 or equiva-
lently from

xcons;1ðpÞ ¼ 0 ð12Þ

Thus, from (10)–(12) we deduce that

pcons;div 6 pfree;div ð13Þ
Thus, we reproduce by another way the result obtained in
Challamel et al. (2010) showing that there always exists a kinematic
constraint such that the critical divergence load of the correspond-
ing constrained system is lower than that of the free system and the
optimal one is given by the second order work criterion (see e.g.
Fig. 2).

3.4. Flutter instability

As mentioned in Challamel et al. (2009), there is no direct
relationship between the second order work criterion psw and the
critical flutter load pfree;fl meaning that we may meet psw < pfree;fl

or psw > pfree;fl according to the considered system while
psw 6 pfree;div always holds. Thus, similar conclusions hold with
pcons ¼ pcons;div and both following situations may occur illustrated
in Figs. 3 and 5 obtained with two different mass matrices and
two different values of c. On Fig. 3 calculated for a complete fol-
lower force (c ¼ 1) and a uniform mass distribution, we observe
that xcons;1ðpÞ 6 x�;1ðpÞ 6 xfree;1ðpÞ for all p 2 ½0; psw½ and pcons ¼
pcons;div 6 pfree;fl while on the Fig. 5 calculated for a partial follower
force (c ¼ 1

2) and another mass matrix, we observe that xcons;1ðpÞ
6 x�;1ðpÞ 6 xfree;1ðpÞ for all p 2 ½0; psw½ and pcons ¼ pcons;div P pfree;fl.

3.5. Constraint dependency on the load parameter

Without contradiction to the previous results, it is important to
stress that the kinematic constraints are themselves depending on
the load parameter p. This phenomenon, already investigated in
Guran and Plaut (1993), is actually the natural consequence of
the used method that leads to the optimal constraints for each
state of the system, each state precisely depending on the load
parameter. The question to know if there is a fixed family of kine-
matics constraints a not depending on p such that the correspond-
ing constrained system RconsðaÞ still satisfies the condition
xcons;1ðpÞ 6 xfree;1ðpÞ for all p 2 ½0; psw½ is a more difficult problem
although there are, by continuity, local results in the neighborhood
of each value of the load. For example, there is a neighborhood of
p ¼ 0, i.e. an interval ½0; p0½ such that xcons;1ðpÞ 6 xfree;1ðpÞ for all
p 2 ½0; p0½ for the constrained system defined by the fixed family
of constraints a ¼ að0Þ we may call here the fixed constrained sys-
tem. In Fig. 6, which is similar to Fig. 4, the constrained system
with fixed p ¼ 0 corresponds to the mixed dashed-dotted gold
curve, and we observe that it coincides with the optimal one (dot-
ted blue) on the whole interval ½0; psw½ while on Fig. 7 plotted for
c ¼ 3

4, the curve of the fixed constrained system (mixed dashed-
dotted gold) coincides only on a subinterval ½0; p0½ of ½0; psw½ with
the optimal constrained system (dotted blue), the eigenfrequency
of the fixed constrained system being always higher than (or equal
to) the one of the optimal constrained system: this is the property
of optimality.

4. Examples

4.1. The mechanical model

To illustrate the previous results, consider the following 2 dof
Ziegler column (see Fig. 1) (Ziegler, 1952; Bottema, 1956; Kirillov
and Verhulst, 2010). The system R consists of two bars OA;AB with
OA ¼ AB ¼ ‘ linked by two elastic springs with the same stiffness k.

The circulatory non conservative load~P is such that d~P; y ¼ ch2 with
0 6 c 6 1. For c ¼ 1, it is a complete follower force while for c ¼ 0
it is a conservative load. The equilibrium position is
h ¼ ðh1; h2Þ ¼ ð0;0Þ and the bars are supposed to be homogeneous
according to their mass distribution except for Fig. 5 obtained for
another mass matrix. Adopting a dimensionless format, we use



Fig. 1. 2 dof Ziegler’s column with partial follower force; c ¼ 1 corresponds to
complete follower force.

Fig. 2. Comparison of the lowest eigenfrequencies for the free system characteristic
polynomial f ð32 ;1; sÞ (dashed red), the associated system characteristic polynomial
gð32 ;1; sÞ (plain green) and the (optimal) constrained system characteristic polyno-
mial hð32 ;1; s;aÞ (dotted blue): associated and constrained systems characteristic
polynomials have the same lowest root that is lower than the one of the free
system.(For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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p ¼ P‘
k as loading parameter. If X2 ¼ k

m‘2 ; X is then a pure elastic fre-
quency parameter of R and to simplify the presentation, we put
X ¼ 1.
4.2. Load–frequency boundary for the free system

The equations of motion (1) then read:

4
3

1
2

1
2

1
3

 !
€X þ

2� p �1þ cp

�1 1� ð1� cÞp

� �
X ¼ 0 ð14Þ

and the buckling/vibrations Eq. (2) of this free system is:
f ðp; c; sÞ ¼ detðKðp; cÞ � s2 MÞ

¼ 1� 3pþ 3cpþ p2 � cp2 þ �3þ 5
3

p� 5
6

cp
� �

s2

þ 7
36

s4

and its smallest positive root is:

xfree;1ðp;cÞ¼
1
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
378�210pþ105cp�21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
296�276pþ96cpþ72p2�72cp2þ25c2 p2

qr
4.3. Load–frequency boundary for the associated system

The characteristic polynomial of the associated system R�
reads:

gðp; c; sÞ ¼ detðKsðp; cÞ � s2 MÞ

¼ 1� 3pþ 3cpþ p2 � cp2 � 1
4

c2 p2

þ �3þ 5
3

p� 5
6

cp
� �

s2 þ 7
36

s4

and its smallest positive root is:

x�;1ðp; cÞ ¼
1
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
378� 42a� 210pþ 105cp

p
where a ¼ aðp; cÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
74� 69pþ 24cpþ 18p2 � 18cp2 þ 8c2 p2

p
4.4. Calculation of the optimal constraint

We follow now the algebraic procedure to find the convenient
kinematics constraint given in the previous section.

kerðFsðp; c;x�;1ÞÞ ¼ Vect x1 ¼
� 34þ4 c p�15 p�3 a

58�33 pþ20 c p�8 a

1

 !( )

and thus the subspace Vect ðKs �x2
�;1:MÞ:x1

n o
generated by the vec-

tor ðKs �x2
�;1:MÞ:x1 is the one-dimensional subspace

Vect
1
2 cp

1
2

c p 34þ4 c p�15 p�3 að Þ
58�33 pþ20 c p�8 a

 !( )
so, the constraint is given by the

vector:

a ¼
1
2 cp

1
2

c p 34þ4 c p�15 p�3 að Þ
58�33 pþ20 c p�8 a

 !
meaning that the constraint reads:

1
2

cph1 þ
1
2

cp 34þ 4cp� 15p� 3að Þ
58� 33pþ 20cp� 8a

h2 ¼ 0

or

58� 33pþ 20cp� 8að Þh1 þ 34þ 4cp� 15p� 3að Þh2 ¼ 0
4.5. Load–frequency boundary of the optimal constrained system

Because for n ¼ 2 it leads to effective and straightforward calcu-
lations, we propose here to explicitly calculate the constrained sys-
tem although obviously it is not the philosophy of the general
reasoning.

The constrained system is obviously a one dof system. The gen-
eral equations of motion (1) of a constrained 2 dof system read:

m11 m12

m21 m22

� �
€x1

€x2

� �
þ

k11 k12

k21 k22

� �
x1

x2

� �
þ

ka1

ka2

� �
¼

0
0

� �
a1 a2ð Þ

x1

x2

� �
¼0

�

By eliminating the variable x2 in order to keep only one equa-
tion in the single variable x1, we get the remarkable following
form:
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�a2 a1ð Þ
m11 m12

m21 m22

� � �a2

a1

� �
€x1þ �a2 a1ð Þ

k11 k12

k21 k22

� � �a2

a1

� �
x1¼0

ð15Þ

or here (x1 ¼ h1) which gives

Mcons
€h1 þ Kconsh1 ¼ 0

with

Mcons ¼ �1288pþ 336p2 þ 448cp� 336cp2 þ 448
3

c2p2

� 140
3

cpaþ 4144
3
� 406

3
aþ 77pa

and

Kcons ¼ 19240� 28744pþ 14754p2 þ 12160cp� 13704cp2

þ 4000c2p2 � 2628p3 � 2228a� 1034cpaþ 2278pa

þ 653cp2 a� 228c2p2 a� 2608c2p3 þ 4068cp3 � 618p2 a

þ 640c3p3

The buckling/vibrations equation of the constrained system is
obtained for the divergence-type systems as:

fconsðp; c; sÞ ¼ Kcons �Mcons s2

whose the smaller positive root obviously is:

xcons;1ðp;cÞ¼
1
7

ffiffiffiffiffiffi
21
p
ðð592þ192cp�552pþ64c2p2�144cp2

�
þ144p2�58a�20cpaþ33paÞð19240�28744p

þ12160cpþ14754p2�13704cp2þ653cp2 a

þ4000c2p2�2628p3�2228a�1034cpa

þ2278pa�228c2p2 a�2608c2p3þ4068cp3

�618p2 aþ640c3p3ÞÞ
1
2

�
=ð592þ192cp�552p

þ64c2p2�144cp2þ144p2�58 a�20cpaþ33paÞ
4.6. Discussion and analysis of results

4.6.1. Comparison of frequencies at fixed loading parameter p
The validity of the results is restricted to the interval ½0; psw½. As

already done in Challamel et al. (2010), the critical value psw of the
loading parameter according to the second order work criterion is
the lowest root of

detðKsðpÞÞ ¼ det
2� p �1þ 1

2 cp
�1þ 1

2 cp 1� ð1� cÞp

 !
¼ 0

which leads here to

psw ¼
2 ð�3þ 3cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� 14cþ 10c2

p
Þ

�4þ 4cþ c2 :

For c ¼ 1, the system is Ziegler’s model with complete follower
load. In this case, the free system loses its stability by flutter. Let
us then choose p < psw ¼ 2, for example p ¼ 3

2. We then find the
corresponding numerical values of the lowest frequencies

x�;1
3
2
;1

� �
� 0:5073 6 xfree;1

3
2
;1

� �
� 0:7830

More precisely, the positive roots of detðFsð32 ;1; sÞ ¼ 0 areffiffiffi
3
p
� 1

2

ffiffiffi
6
p

;
ffiffiffi
3
p
þ 1

2

ffiffiffi
6
p

and thus, with previous notations

x�;1ð32 ;1Þ ¼
ffiffiffi
3
p
� 1

2

ffiffiffi
6
p
� 0:5073.
We obviously conclude that

xcons;1
3
2
;1

� �
� 0:5073 6 x�;1

3
2
;1

� �
� 0:5073 6 xfree;1

3
2
;1

� �
� 0:7830

This is illustrated on Fig. 2 where the characteristic polynomials
and their lower positive roots are plotted: the optimal constrained
system in dotted blue line (unique root xcons;1

3
2 ;1
� 	

� 0:5073) , the
associated system in plain green line (lowest root
x�;1 3

2 ;1
� 	

� 0:5073) and for the free system in dashed red line
(lowest root xfree;1

3
2 ;1
� 	

� 0:7830).
For c ¼ 1

2. Let us choose p < psw ¼ 12�4
ffiffi
2
p

7 � 0:9061, for example
p ¼ 1

2.
Corresponding numerical values are

xcons;1
1
2
;
1
2

� �
� 0:3914 6 x�;1

1
2
;
1
2

� �
� 0:3914 6 xfree;1

1
2
;
1
2

� �
� 0:3999

It is worth mentioning that any kinematic constraint changes a two
degree-of-freedom circulatory non-conservative system into a
one-degree-of-freedom conservative system. Especially for
c 2 ½12 ;1½ the critical load by divergence of the constrained system
pcons;div (for any kinematic constraint) is necessarily strictly lower
than the critical load by divergence of the free system
pfree;div ¼ þ1!!! (see Challamel et al., 2009 for example). Viewed as
the decreasing of the critical divergence load, any additional
kinematic constraint has then a destabilizing or a sort of stiffness
softening effect. This stiffness softening effect however may fail if
it is viewed as the decreasing of the lowest eigenfrequency of the
system for a given constraint. For example with the constraint
h1 ¼ h2 and for the loading p ¼ 1

2 ; c ¼ 1
2, we find xcons;1ð12 ; 1

2Þ ¼ffiffi
3
p

4 � 0:4330 > xfree;1
1
2 ;

1
2

� 	
� 0:3999.

4.6.2. Frequencies as functions of the loading parameter, comparison,
stability

Concerning the flutter instability, because it depends on the
considered system, it has been already discussed in 3.4.

For c ¼ 1, we then find

xfree;1ðp;1Þ ¼
1
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
378� 21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
296� 180pþ 25p2

p
� 105p

q

xfree;2ðp;1Þ ¼
1
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
378þ 21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
296� 180pþ 25p2

p
� 105p

q
and

xcons;1ðp;1Þ¼
1
7

ffiffiffiffiffiffi
21
p ��

19240�16584pþ5050p2�528p3

�2228
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
74�45pþ8p2

p �
þ1244p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
74�45pþ8p2

p
�193p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
74�45pþ8p2

p �.�
592�360pþ64p2

�58
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
74�45pþ8p2

p
þ13p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
74�45pþ8p2

p �1
2

leading to Fig. 3 where, as mentioned in 3.4:

xcons;1ðpÞ 6 xfree;1ðpÞ and pcons ¼ pcons;div ¼ 2 6 pfree;fl ¼
18
5
� 2

5

ffiffiffi
7
p

� 2:5416

The non-constrained pendulum is stable at positive p when
p < pfree;fland unstable by flutter when p > pfree;fl.

For c ¼ 1
2, we then find



Fig. 3. c ¼ 1 Eigenfrequencies x as functions of the load parameter p: lowest
eigenfrequency of the free system (plain red), highest eigenfrequency of the free
system (dashed green) and (optimal) constrained system (dotted blue): the free
system has no divergence instability but only flutter instability and the constrained
system has a divergence load which is smaller than the flutter load of the free
system.(For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 4. c ¼ 1
2 Eigenfrequencies x as functions of the load parameter p: lowest

eigenfrequency of the free system (dashed green), highest eigenfrequency of the
free system (plain red) and (optimal) constrained system (dotted blue): the free
system has no flutter instability but only flutter instability and the constrained
system has a divergence load which is smaller than the divergence load of the free
system.(For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. c ¼ 1 and another mass matrix. Eigenfrequencies x as functions of the load
parameter p: lowest eigenfrequency of the free system (dashed green), highest
eigenfrequency of the free system (plain red) and (optimal) constrained system
(dotted blue): the free system has no divergence instability but only flutter
instability and the constrained system has a divergence load which is larger than
the flutter load of the free system.(For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Eigenfrequencies x as functions of the load parameter p: lowest eigenfre-
quency of the free system (dashed green), highest eigenfrequency of the free system
(plain red), optimal constrained system (dotted blue) and fixed (p ¼ 0) constrained
system (mixed dashed-dotted gold): the optimal constraint and the fixed constraint
give the same curve.(For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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1
2
Þ ¼ 1

7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
378� 21
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Fig. 7. Eigenfrequencies x as functions of the load parameter p: highest eigenfre-
quency of the free system (dashed green), lowest eigenfrequency of the free system
(plain red), optimal constrained system (dotted blue) and fixed (p ¼ 0) constrained
system (mixed dashed-dotted gold): the optimal constraint curve is lower than the
fixed constraint curve.(For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

(a) (b)

Fig. 8. In the ð/;xÞ plane the frequencies xfree;1 (horizontal l

Fig. 9. In the ða1;a2;xconsÞ space the surfaces of frequencies of the c
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leading to Fig. 4 where, as mentioned in 3.3:

xcons;1ðpÞ 6 xfree;1ðpÞ and pcons ¼ pcons;div ¼
12
7
� 4=7

ffiffiffi
2
p
� 0:906

6 pfree;div ¼ 1

Finally, calculations for the following mass matrix

M ¼
3 0
0 1

� �
lead to Fig. 5 where, as mentioned in 3.4:

xcons;1ðpÞ 6 xfree;1ðpÞ and pcons ¼ pcons;div ¼ 2 P pfree;fl

¼ 5� 2
ffiffi
ð

p
3Þ � 1:536
4.6.3. Dependency on p
As already discussed in (3.5), the variety of the loading

dependency of the constraints is illustrated here on Figs. 6 and 7.
Comparison of the loading dependency optimal constraint and
the fixed constraint is done with the fixed p ¼ 0 constraint by add-
ing the curve of the fixed constraint (mixed dashed-dotted gold
line) on previous Figs. 3 and 4. In the first case the added curve
coincides with the curve of the optimal constrained system: the
optimal constraint is exactly the fixed p ¼ 0 constraint on the
whole interval ½0; psw½. In the second one, the added curve does
not coincide with the curve of the optimal constrained system
(c)

ines) and xcons for (a) p ¼ 1:5, (b) p ¼ 2, and (c) p ¼ 2:1.

onstrained system plotted for (a) p ¼ 1:5, (a) p ¼ 2, (c) p ¼ 2:1.
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and is obviously over the optimal one because precisely the opti-
mality of the constraint.

4.7. A singular surface

Finally, we study the frequency of the constrained pendulum as
a function of the coefficients of the constraints, a1 and a2 in the
assumption that c ¼ 1. According to Eqs. (14) and (15), this fre-
quency is a root of the polynomial

4
3
a2

2 � a2a1 þ
1
3
a2

1

� �
x2 ¼ 2a2

2 � a2
2pþ 2a2a1 � a2a1pþ a2

1:

Since the roots depend only on the ratio of the two coefficients,
then, introducing a1 ¼ cosð/Þ and a2 ¼ sinð/Þ, we find

x2
cons¼

�2�2sinð/Þcosð/Þþsinð/Þcosð/Þpþcosð/Þ2þp�cosð/Þ2p

sinð/Þcosð/Þ�4=3þcosð/Þ2
:

In the ð/;xÞ plane let us plot the two frequencies, xfree;1 and
xcons, for different values of p that are inside the stability interval
of the free system, see Fig. 8. The horizontal lines in Fig. 8 show
xfree;1 for a given p, whereas the curves show the frequencies of
the constrained pendulum �xcons.

The frequency xcons;1
3
2 ;1
� 	

� 0:5073 is achieved at a unique
constraint that corresponds to the minima visible in the panels
(a) and (b) of Fig. 8. On the panel (a) the minimum is the frequency
xcons;1

3
2 ;1
� 	

� 0:5073. For p ¼ 2 it is zero. For p > 2 there is a diver-
gence interval, and the minimal frequencies are zero at its ends, see
the panel (c) of Fig. 8.

Therefore, at every p from the stability interval of the free pen-
dulum there is a continuum of the ratios of a1 to a2 that yields the
effect of softening. The constraint that is found from the general
theory developed above is the optimal one, because it gives the
minimal possible frequency.

In the ða1;a2;xconsÞ space we plot the surfaces of frequencies of
the constrained system as functions of a1 and a2, see Fig. 9. The pa-
nel (a) corresponds to p ¼ 1:5 and shows two Plücker conoids of de-
gree 2 (Berger and Gostiaux, 1988; Kirillov and Stefani, 2012). The
panel (b) shows one Plücker conoid of degree 1. The right panel
shows the conical wedge of Wallis known in the physical literature
under the name of the double coffee-filter (Berger and Gostiaux,
1988; Kirillov and Stefani, 2012). The three classical ruled surfaces
demonstrate how the constraints introduce singularities in the
behavior of eigenfrequencies which explains their high sensitivity
to the variation of the constraints coefficients.

5. Conclusion

In this paper, we generalized the possible paradoxical soften-
ing effect that originates after kinematic constraints are applied
to a system. We investigated this stiffness softening effect by
means of the spectral analysis of the free and constrained sys-
tems. With the use of the second order work criterion, it is
established that, for each value of the load parameter, there al-
ways exists a (family of) constraint(s) allowing to make the
lowest eigenfrequency of the system smaller. Moreover, the sec-
ond order work criterion provides, in a certain sense, the opti-
mal kinematic constraint. The consequences for the divergence
and flutter instabilities are discussed and numerous examples
illustrating the results are considered. The behavior of eigenfre-
quencies as functions of both the load parameter and con-
straints are also studied. It shows a variety of possible
situations for occurrence of flutter and reveals the typical singu-
larities on the eigenfrequency surfaces. The important and diffi-
cult problem of finding a global (meaning independent on the
load parameter) stiffness softening kinematic constraint is still
open.
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