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 i g  h  l  i g  h  t  s

We  track  Luc2  human  neural  progenitor  cells  (hNPCLuc2)  via  bioluminescence  imaging.
hNPCLuc2 can  be visualized  in  rat  striatum  up  to twelve  weeks.
This  method  distinguishes  dead  versus  live  hNPCLuc2 in vivo  in rat striatum.
Region  of  interest-based  image  analysis  reveals  hNPCLuc2 contralateral  migration.
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Background:  Stem  cell  therapies  appear  promising  for treating  certain  neurodegenerative  disorders  and
molecular imaging  methods  that  track  these  cells  in  vivo  could  answer  some  key  questions  regarding
their  survival  and  migration.  Bioluminescence  imaging  (BLI),  which  relies  on  luciferase  expression  in
these cells,  has  been  used  for this  purpose  due  to  its high  sensitivity.
New  method:  In this  study,  we  employ  BLI to  track luciferase-expressing  human  neural  progenitor  cells

Luc2
uciferase
ioluminescence

(hNPC )  in  the  rat  striatum  long-term.
Results:  We  show  that hNPCLuc2 are  detectable  in  the  rat  striatum.  Furthermore,  we demonstrate  that
using  this  tracking  method,  surviving  grafts  can  be detected  in vivo for up  to 12  weeks,  while  those
at
uman neural progenitor cells that  were  rejected  do not  produce  bioluminescence  signal.  We  also  demonstrate  the  ability  to discern
hNPCLuc2 contralateral  migration.
Comparison  with  existing  methods:  Some  of  the  advantages  of BLI  compared  to other  imaging  methods  used
to  track  progenitor/stem  cells  include  its  sensitivity  and  specificity,  low  background  signal  and  ability  to

Abbreviations: BLI, bioluminescence imaging; hNPCLuc2, stable luciferase-expressing human neural progenitor cells; CNS, central nervous system; WT,  wild type; HD,
untington’s disease; PD, Parkinson’s disease; GDNF, glial cell line-derived neurotrophic factor; hNSC, human neural stem cells; DMEM,  Dulbecco’s modified Eagle medium;
SA,  penicillin/streptomycin/amphotericin; EGF, epidermal growth factor; FGF-2, fibroblast growth factor-2; LIF, leukemia inhibitory factor; CMV, cytomegalovirus; hNPC-
uc2,  transiently luciferase-expressing human neural progenitor cells; p-HEMA, polyhydroxyethylmethacrylate; IVIS, In Vivo Imaging System; SIN-W-PGK, self-inactivating
entiviral vector with posttranscriptional cis-acting regulatory elements of woodchuck hepatitis virus and mouse phosphoglycerate kinase 1 promoter; hNPCWT, wild type
uman  neural progenitor cells; PGK, phosphoglycerate kinase; PFA, paraformaldehyde; PBS, phosphate buffered saline; NDS, normal donkey serum; BSA, bovine albumin
erum; GFAP, glial fibrillary acidic protein; BrdU, bromodeoxyuridine; TBST, Tris-buffered saline with 0.5% Tween 20; QA, quinolinic acid; TA, tibialis anterior; BVC, bupiva-
aine;  IP, intraperitoneal; ROI, region of interest; RS, rostral; C, caudal; R, right; L, left; hCyto, human cytoplasmic marker; ANOVA, analysis of variance; SEM, standard error
f  the mean; RLU, relative light units; PGK, phosphoglycerase kinase; MRI, magnetic resonance imaging.
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distinguish  surviving  grafts  from  rejected  ones  over  the long  term  while  the  blood–brain  barrier  remains
intact.
Conclusions:  These  new  findings  may  be useful  in future  preclinical  applications  developing  cell-based
treatments  for neurodegenerative  disorders.
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incorporation with minimal cell death. Luciferase cDNA, pF9A-
. Introduction

Stem cell therapies have emerged as promising treatment meth-
ds for a number of neurodegenerative diseases, as these cells are
apable of surviving, migrating and integrating into the central ner-
ous system (CNS). Neural stem and progenitor cells, distinct in
heir ability to differentiate into cells of the neural lineage, are espe-
ially well-suited for cell-based treatment of neurodegenerative
isorders. Utilizing post-mortem histological analyses, these cells
ave been shown to survive over 7 months in the CNS of wild type
WT) rats and have been used in several preclinical studies of dis-
rders such as Huntington’s disease (HD) and Parkinson’s disease
PD) (Lindvall et al., 2012; Gowing et al., 2013). Specifically, fetal
rain-derived human neural progenitor cells (hNPC) have been
ransplanted in the striatum of a HD-induced rat model, demon-
trating their ability to migrate, protect the striatum, and initiate
ecovery (McBride et al., 2004). Furthermore, protection of injured
opaminergic neurons has been demonstrated following striatal
ransplantations of hNPC overexpressing glial cell line-derived
eurotrophic factor (GDNF) in animals experiencing PD-like par-
ial striatal lesions (Behrstock et al., 2006). Finally, a study in PD
ymptomatic non-human primates showed human neural stem
ell (hNSC) survival and migration as well as animals’ functional
mprovement following cell transplants (Redmond et al., 2007).
verall, neural progenitor/stem cells appear to be a promising tool

or therapy of neurodegenerative diseases.
While delaying neural degeneration with neural progeni-

or/stem cells seems possible, one of the major roadblocks in
herapeutic efforts arises from the inability to monitor cell fate
n vivo. In animal studies, cell survival and migration can be
ssessed using post-mortem histological analyses (Tang et al.,
003; Behrstock et al., 2008; Riley et al., 2009). However, a method
f in vivo noninvasive, longitudinal cell tracking in clinical settings
ould be invaluable, allowing scientists to understand cell dynam-

cs in single subjects as well as cohorts and adapt progenitor/stem
ell therapies for further studies.

Several molecular imaging techniques are used for non-invasive
tem cell tracking in vivo (Gera et al., 2010). In order for cells to
e efficiently detected, they must first be distinguished from sur-
ounding tissues. Additionally, the ideal imaging modality must be
ensitive enough to detect the appropriate cell number required
or treatment and have sufficient resolution to identify their loca-
ion and migration over time. Furthermore, to achieve meaningful
nformation from a cellular imaging modality, cell signal must also
e reflective of survival/viability. Currently, no one imaging tech-
ique has been shown to successfully address all of these important

ssues.
Bioluminescence imaging (BLI) is an optical imaging technique

hat relies on light emission from the cells or tissues of interest.
t has been explored for stem cell tracking because of its capabil-
ty of detecting small populations of cells (Kim et al., 2006; Daadi
t al., 2009). BLI exhibits low background signal due to emission
f optical light without an external light source, as well as the
ack of autobioluminesence in mammalian tissues. In order to be
etected with BLI, stem cells must first be induced to express a

uciferase protein. Among them, firefly luciferase was originally

xtracted from the North American firefly and then further engi-
eered to be used for imaging purposes. For signal to be detected,
tem cells must also be in the presence of ATP and O2, which in
© 2014  Published  by Elsevier  B.V.

concert with luciferase allow d-luciferin to be converted into oxy-
luciferin and light. Luciferase expression has been used for a variety
of assays such as gene expression quantification (Lipshutz et al.,
2000), tumor development tracking in rats (Kondo et al., 2009), and
stem cell localization in mice (Bradbury et al., 2007), showing that
BLI is valuable in determining cell viability and approximate loca-
tion in vivo. Until this point, luciferase overexpression has not been
explored for detection of slow proliferating progenitor cells in the
rat brain, particularly in a structure as deep as the striatum. Con-
cerns about bioluminescence signal penetrating rat’s skull, brain
tissue and hair have been some of the reservations of the scientific
community.

In this study, for the first time, luciferase expression in hNPC
was induced to assess and track cells in vivo in the rat striatum.
We show that these cells can be visualized long-term in vivo and
that their survival and location can be deduced from BL images.
These methodological findings may  be useful in future preclinical
applications aimed at developing cell-based treatments for neu-
rodegenerative disorders.

2. Methods

2.1. Cell culture

Human neural progenitor cells were isolated between 10 and 15
weeks gestation using the protocols set by the National Institutes
of Health (NIH) and the local ethics committees at the Univer-
sity of Wisconsin, Madison and University of Freiburg, Germany.
All of the work was approved by the Institutional Review Board.
A previously described method was used to prepare human cor-
tical neural progenitor cells, G010 line, from fetal brains and
induce their optimal cell expansion (Svendsen et al., 1997). These
cells were grown as neurospheres in basic medium contain-
ing Dulbecco’s modified Eagle medium (DMEM, Sigma–Aldrich,
St. Louis, MO)  and Ham’s F12 (Sigma–Aldrich) (7:3), and peni-
cillin/streptomycin/amphotericin B (PSA, 1% v/v, Life Technologies,
Carlsbad, CA), supplemented with B27 (2% v/v, Invitrogen), epi-
dermal growth factor (EGF, 100 ng/ml, Millipore Corp., Billerica,
MA,), fibroblast growth factor-2 (FGF-2, 20 ng/ml, WiCell Research
Institute, Inc.) and heparin (5 �g/ml, Sigma–Aldrich). Neuro-
spheres were passaged approximately every 14 days by chopping
with McIlwain automated tissue chopper (Mickle Engineering,
Gomshall, Surrey, UK) (Svendsen et al., 1998). After passage 10, the
cells were switched to maintenance medium: basic medium sup-
plemented with N2, EGF, leukemia inhibitory factor (LIF, 10 ng/ml,
Millipore), FGF-2 and heparin, helping to increase the rate of expan-
sion and permitting stable growth for another 20 to 30 passages.

2.2. Transient luciferase expression

Transient luciferase expression was  established using the Lonza
Nucleofection System (Lonza Group Ltd., Basel, Switzerland).
Nucleofection is a non-viral method of transfection that employs
both electroporation and lipofection in order to achieve high cDNA
Luc2 (Promega Corp., Madison, WI), was  under the control of
the cytomegalovirus (CMV) promoter. Briefly, hNPC were dissoci-
ated using a Trypsin solution (TrypLE, Invitrogen) and 5 × 106 cells
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ere resuspended in 100 �l Basic Nucleofection Solution Pri-
ary Neurons (Kit VPI-1003) with 4 �g of pF9A-Luc2. The cells
ere then pulsed using the C-30 program, generating transiently

uciferase-expressing hNPC (hNPC-Luc2), and immediately trans-
erred into pre-warmed fresh maintenance medium. For in vitro
nalysis, 3.0 × 104 transfected cells were plated as monolayers
n glass coverslips that were pre-coated with poly-ornathine
Sigma–Aldrich, 0.1 mg/ml) and poly-l-laminin (Sigma–Aldrich,
0 �g/ml) to promote adherence. In preparation for in vivo
nalysis, 3 × 106 transfected cells were added to a well in a 6-
ell plate coated with polyhydroxyethylmethacrylate (p-HEMA,

igma–Aldrich, 12 mg/ml) to minimize adherence. Luciferase activ-
ty was assessed 24–48 h following cell plating using either
mmunostaining, GloMax® 96 Microplate Luminometer or In Vivo
maging System (IVIS Spectrum, Perkin Elmer, Waltham, MA)  or
8–72 h following cell transplantation using IVIS.

.3. Stable luciferase expression

PCR was used to amplify the Luc2 gene from pF9A-Luc2 using
0× Platinum Pfx Amplification Buffer (Invitrogen), 10 mM dNTP
ix  (Promega), 50 mM MgSO4 (Promega), 100 ng template DNA,

latinum Pfx DNA Polymerase (Invitrogen), 10× Enhancer and
rimer mix  containing 15 �M BamHI (5′-CTAGCGGGATCCC-
TCGAGAATTAGCTTCGCCACCATGGAAGATGCCAAAAACATTAAG-
AGG-3′) and 15 �M MluI (5′-GGTACCACGCGTGAATTGATCCTC-
CACGGCGATCTTGCCGCCCTTCTTGGCC-3′) restriction sites. The
CR cycle parameters were: 94 ◦C for 2 min  once, 94 ◦C for 15 s,
0 ◦C for 30 s, 68 ◦C for 90 s, the last three steps were repeated
5 times, 68 ◦C for 7 min  once. Subsequently, the Luc2 gene was

igated into a self-inactivating lentiviral vector with posttranscrip-
ional cis-acting regulatory element of woodchuck hepatitis virus
nd mouse phosphoglycerate kinase 1 promoter (SIN-W-PGK)
huttle vector. Lentivirus was produced from the Luc2-SIN-W-PGK
huttle vector and was used to infect wild type hNPC (hNPCWT) as
reviously described (Capowski et al., 2007). Briefly, the cells were
issociated with TrypLE and incubated overnight with the viral
iter of 100 ng p24 per million cells of luciferase lentivirus in half
f the normal volume of maintenance medium. The medium was
oubled 24 h later, and half of the medium was replaced twice per
eek thereafter while the infected cells (hNPCLuc2) were allowed

o reform spheres. hNPCLuc2 continued to be passaged by chopping
as described in Section 2.1) for approximately 15 weeks, at which
oint they were used for further experiments.

.4. Immunocytochemistry

Immunocytochemistry was performed to ensure that the Luc2
rotein was expressed after transfection and lentiviral infection
nd to assess cell differentiation compared to hNPCWT controls.
ells were fixed using 4% paraformaldehyde (PFA) for 20 min  and
insed in phosphate buffered saline (PBS). Cells were blocked in
BS with 5% normal donkey serum (NDS) and 0.2% Triton X-
00 (Sigma–Aldrich) for 30 min. For luciferase staining, cells were
locked in 1% bovine serum albumin (BSA) and 0.2% Triton X-
00 in PBS. Primary antibodies against luciferase (Millipore, goat
olyclonal 1:500), �III-tubulin (Sigma–Aldrich, mouse monoclonal
:1000), or glial fibrillary acidic protein (GFAP, Dako, Carpinteria,
A, polyclonal rabbit 1:1000) were used. Primary antibody incuba-
ion for 1 h at RT was followed by PBS washes, a 30 min  incubation
ith the appropriate secondary antibody and nuclear labeling with
oechst 33258 (Sigma–Aldrich, 0.5 �g/ml). All double labels were

erformed simultaneously. Images were acquired using the Nikon

ntensilight C-HGFI camera and Nikon Eclipse (80i) fluorescence
icroscope. The quantification of fluorescence was  done using
IS Element D Software by counting the ratio of Hoechst-positive
ce Methods 228 (2014) 67–78 69

nuclei to immunostained cells and converting it to percent in
three to six independent fields from at least three coverslips. The
data counted was plotted as mean ± standard error of the mean
(SEM).

2.5. BrdU Labeling

To observe cell proliferation rates, hNPCWT and hNPCLuc2 were
pulsed with bromodeoxyuridien (BrdU) as previously described
(Wright et al., 2003; Suzuki et al., 2004). Briefly, cells were incu-
bated with 0.2 �M BrdU (Sigma–Aldrich) for 16 h and subsequently
dissociated into single cell suspensions using TrypLE. Dissociated
cells were then plated as monolayers on glass coverslips, allowed
to attach for two hours in maintenance medium and then fixed
with 4% PFA for 20 min. Alternatively, BrdU-pulsed hNPCWT and
hNPCLuc2 were plated onto glass coverslips and maintained for 14
days in plating media (basic medium supplemented with 2% B27)
with half medium replacement twice per week before fixation.

Fixed cells were incubated with 2 N HCl in PBS for 20 min  at
37 ◦C, then quenched with 0.1 M Na-Borate buffer (pH 8.5) for
10 min  at RT. Cells were blocked in PBS with 5% NDS and Triton
X-100 for 30 min. The primary antibody against BrdU (Accurate
Chemical, Westbury, NY, monoclonal rat 1:500), was  incubated for
1 h at RT and then overnight at 4 ◦C, followed by PBS washes and
a 30 min  incubation with the appropriate secondary antibody and
Hoechst 33258 nuclear labeling. When double labeling with BrdU
and luciferase was required, luciferase staining was  completed
prior to commencing the BrdU stain.

2.6. Western blot

hNPCLuc2 and hNPCWT were washed in PBS, lysed by shaking for
15 min  at 4 ◦C in RIPA buffer (Sigma–Aldrich) and protease inhibitor
(1:20), centrifuged for 10 min  at 2000 RPM and protein lysates
were stored at −80 ◦C. Protein concentration was  determined by
the DC Protein Assay Kit (Bio-Rad Laboratories, Inc., Hercules, CA)
with BSA as a standard curve. Sample concentrations were cal-
culated using FLUOstar OPTIMA (BMG Labtech GmbH, Ortenberg,
Germany). Approximately 15 �g of protein was  loaded into Mini-
PROTEAN® TGX Precast gels (Bio-Rad Labs), separated with 110 V
for 1.5 h and electro-transferred onto Immobilon transfer mem-
brane (Millipore) for 70 min  at 250 mA.  The membrane was  blocked
in 5% milk in Tris-buffered saline with 0.5% Tween 20 (TBST) for 1 h
at RT and then exposed to the primary antibody against luciferase
(Promega Corp, 1:1000, goat,) in blocking buffer overnight at 4 ◦C.
Anti-goat secondary antibody conjugated to peroxidases (Dako,
Promega Corp., 1:1000) was applied in blocking buffer for one hour
at RT, followed by exposure with the chemiluminescence kit (Pierce
ECL Western Blot Substrate, Thermo Fisher Scientific, Inc. Waltham,
MA). Equal protein loading was  confirmed by incubating the mem-
brane in the Coommassie blue stain for 15–20 min.

2.7. In vitro imaging

In vitro imaging of Luc2-transfected cells was performed using
the GloMax 96 Microplate Luminometer (Promega Corp.) and IVIS.
Luc2-transfected cells were plated at a density of 1 × 105 cells/well
in a 96-well plate coated with poly-l-laminin to permit cell adher-
ence. The next day, 0.2, 2, or 20 mM luciferin (VivoGloTM) was  added
to triplicate wells for 1 h, with no luciferin addition as a nega-
tive control. The cells were scanned in the GloMax® 96 Microplate
Luminometer using the luminescence protocol.
Luc2-transfected hNPC or hNPCLuc2 were also imaged using IVIS.
Luciferase-expressing and WT  cells were plated at a density of
1 × 105 cells/well in a 24-well plate. The next day, 0–2 mM luciferin
was added for 1 h. The cells were imaged with IVIS biolumines-
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ence protocol using 620 nm emission, 30 s exposure time and 1 cm
amera height.

.8. Animals

Sprague Dawley rats were obtained from Taconic (Hudson, NY).
he animals were housed under controlled temperature (20–26 ◦C)
nd illumination (12 h on, 12 h off) with unlimited access to labo-
atory chow and water. The University of Wisconsin-Madison and
IH guidelines were followed for all animal experiments.

.9. Cell transplantation

Transiently or stably luciferase-expressing and hNPCWT were
ransplanted into the rat brain. Transfected cells were transplanted
wo days after transfection while stably expressing hNPCLuc2 were
ransplanted over four months after lentiviral infection. Cells were
issociated into single cells using TrypLE and resuspended at a den-
ity of 1.5 × 105 cells/�l in Leibowitz transplantation medium (L 15
eibowitz, Invitrogen)/0.6% glucose (d-(+)-Glucose, Sigma–Aldrich)
n PBS (1:1) and B27 (2% v/v). Isoflurane-anesthetized adult female
ats were transplanted using a 30 g sharp tip needle connected to a
0 �l Hamilton syringe secured by a stereotaxic frame (David Kopf

nstruments, Tujunga, CA). Either three striatal sites (AP +1.0, −1.0
nd −1.2; ML  ±3.0, ±3.7 and ±4.5; DV −4.5 from Bregma) were
sed on their own or in addition to three cortical sites (AP +1.0,
1.0 and −1.2; ML  ±3.0, ±3.7 and ±4.5; DV −2.0). Alternatively,

ells were transplanted in only two striatal sites (AP +0.5 and −0.1;
L ±3.3 and ±2.8; DV −4.5). In all instances, 3 × 105 cells were

ransplanted per site. hNPCWT were injected contralaterally as a
egative control. For striatal and cortical transplants (N = 5), the
eedle was first lowered into the striatum for 2 min. Using a pump,
.0 × 105 cells were injected at the rate of 1 �l/min for 2 min, inject-

ng 2 �l of cells. The needle was left in place for 2 min, then slowly
ifted to the cortex for transplantation of 3.0 × 105 cells using the
ame procedure. This process was repeated for each transplantation
ite for a total of 1.8 × 106 cells. For striatal only transplants, animals
eceived either 9.0 × 105 cells in three sites (N = 7) or 6 × 105 cells in
wo sites (N = 10). In addition, serial dilutions (1.5 × 105, 1.5 × 104

nd 1.5 × 103 cells/�l) of hNPCLuc2 were injected into the striatum
o determine the minimum cell number that can be detected in vivo.
y injecting 1 �l/min for 2 min, injecting 2 �l of cells per site, into
hree sites, the first animal received 9 × 105 cells, the second 9 × 104

nd the third 9 × 103, and each animal received non-luciferase-
xpressing hNPC contralaterally as a negative control.

For cell migration experiments, quinolinic acid (QA) was  used to
romote hNPCLuc2 migration. Ipsilateral cell migration in the rostral
irection was induced by injecting 100 nM QA at AP 0.48, ML  −3.0
nd DV −4.0, followed after a week by hNPCLuc2 cell transplantation
nto the striatum (AP −1.1, ML  −2.8, −3.4, and −4.0, and DV −4.0)
N = 3). Contralateral cell migration along the corpus callosum was
nduced by injecting QA at AP 0.48, ML  3.0 and DV −2.5, followed
fter a week by hNPCLuc2 cell transplantation into the cortex (AP
.0, 0.48 and −0.04, ML  −3.0 and DV −2.0) (N = 3).

Intramuscular transplantations of hNPCLuc2 in the tibialis ante-
ior (TA) hind limb muscle were performed as described previously
Suzuki et al., 2008). Briefly, partial muscular lesion was induced
sing bupivacaine (BVC) hydrochloride (0.35 mg  per muscle;
ensorcaine-MPF, AstraZeneca, London, UK) injected unilaterally
nto TA one day before hNPCLuc2 transplantations using a 30-gauge
eedle connected to a 1 ml  syringe. hNPCLuc2 (10,000 cells/�l in
0 �l) were injected 24 h later into the muscle using a 33-gauge

eedle connected to a 100 �l Hamilton syringe.

All animals received daily intraperitoneal (IP) cyclosporine
njections (10 mg/kg, Sandimmun, Novartis, Basel, Switzerland)
tarting the day before transplantation. After the final scan, animals
ce Methods 228 (2014) 67–78

were perfused with chilled 0.9% saline and subsequently with 4%
PFA. The brains were removed, post-fixed in 4% PFA overnight and
then cryopreserved in 30% sucrose before sectioning at 30–40 �m
with a sliding microtome (Leica Microsystems, Bannockburn, IL).

2.10. In vivo imaging and migration analysis

One to three days after hNPCLuc2 transplantation, animals were
imaged using IVIS. Animals imaged long-term were scanned after
7 days and at least three more times thereafter for up to 12 weeks.
Finally, animals used in the study to determine the minimal number
of detectable cells were imaged 7 and 21 days following surger-
ies. Only hNPC stably expressing luciferase were used for imaging
studies longer than three days. Rats were anesthetized in a hold-
ing chamber with 4% isoflurane in compressed air, injected with
VivoGloTM luciferin (150 mg/kg, IP) and moved into the scanner
after 15 min, where they were maintained on 2–3.5% isoflurane.
The scans were performed using the bioluminescence protocol with
open emission, 60 s exposure and 3.0 cm camera height.

Image analysis assessing cell migration was performed at each
imaging time point. In each image a rectangular region of interest
(ROI) was  selected based on anatomical landmarks such as the ears
and eyes. The ROI limits were defined as the most medial parts of the
eyes in the medial-lateral direction and most caudal part of the eyes
and the most rostral part of the ears in the rostral-caudal direction.
For detecting ipsilateral migration, the ROI was  split in half hor-
izontally and the mean luminescence signal level was measured
in the rostral (RS) and caudal (C) halves of the ROI. The ratio RS/C
was calculated for each time point and the change in this ratio was
noted over time. For detecting contralateral migration, the ROI was
split in half vertically and the mean luminescence signal level was
measured on the right (R) and left (L) side of the ROI. The ratio R/L
was calculated for each time point and the change in this ratio was
observed over time. Imaging parameters, ROI size and measure-
ment procedure were kept consistent within and between subjects
to minimize human errors in migration analysis measurements.

2.11. Histological analysis

Brain sections were blocked with 3% NDS, 0.3% Triton X-100
in PBS for 1 h, then incubated with primary antibodies against
either human cytoplasmic marker (hCyto, Stem Cells Inc, Newark
CA, mouse, 1:200), nestin (Millipore, 1:200), luciferase (Promega,
goat, 1:100) or GFAP (Dako, mouse, 1:200) overnight at RT. They
were then washed and incubated with appropriate fluorescent-
conjugated secondary antibodies for 1 h. Sections were mounted
and coversliped using DAPI mounting medium (Vectashield Hard
Set, Mounting Medium with DAPI, Vector Labs).

2.12. Statistical analysis

Unpaired Student’s two-tailed t tests were used to compare data
between various time points or different groups for all experiments
requiring cell counts. Migration data comparing cell signal shift
over time between histologically determined migration and non-
migration groups was analyzed using two-way analysis of variance
(ANOVA) for migration, time and their interaction. A Bonferroni

test was  applied to account for multiple comparisons. All analy-
sis was  done using GraphPad Prism 5 software. Data are shown as
mean ± SEM. P values <0.05 were considered statistically signifi-
cant.
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Fig. 1. Transient luciferase expression in hNPC. (A) Immunocytochemical image of hNPC with robust transient expression of luciferase. (B) Quantification of immunocyto-
chemical analysis determines the percent of hNPC transiently expressing luciferase. (C) Comparison of signal intensity (relative light units, RLU) of hNPC exposed to different
concentrations of luciferin. (D) In vitro image of Luc2-transfected hNPC incubated with luciferin, compared with those not incubated with luciferin and hNPCWT incubated
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ith  luciferin. (E) Detection of 5.0 × 105 Luc2-transfected hNPC in rat left hind limb
9  × 105) of rat. All data is given as mean ± SEM. Scale bar 20 �m.

. Results

.1. hNPC transiently express luciferase

We  used nucleofection to induce transient luciferase expression
n hNPC in vitro, for ultimate in vivo cell detection. Immuno-
ytochemistry with a luciferase antibody confirmed that hNPC
ransiently express robust levels of luciferase (Fig. 1A). To deter-

ine the percent of hNPC that express luciferase and the time
ourse of luciferase expression following nucleofection, transiently
xpressing hNPC were plated as single cells and immunostained
ver ten days. The results show that for up to 2 days following
ucleofection, at least 28% of total hNPC express luciferase. The

uciferase expression then greatly decreases on day three follow-
ng transfection, reducing to less than 5% of total hNPC expressing
uciferase by day ten (Fig. 1B).

Following confirmation of luciferase expression in fixed cells,
e next used optical imaging to observe bioluminescence sig-
al from luciferase-expressing live cells both in vitro and in vivo.
uciferin substrate is an essential component in bioluminescence
maging of firefly luciferase. To determine the optimal concentra-
ion of the luciferin substrate for in vitro detection of hNPC-Luc2,
e incubated cells in three different concentrations of luciferin and

ssessed the BLI signal intensity using a GloMax® 96 Microplate-
uminometer. Two mM of luciferin provided the highest signal
ntensity and hence was used in all subsequent in vitro experiments
Fig. 1C). An additional imaging system, IVIS, confirmed high levels
f luciferase activity in live hNPC-Luc2 following exposure to 2 mM

uciferin (Fig. 1D). Importantly, the IVIS imaging data also showed
hat neither hNPCWT exposed to luciferin nor hNPC-Luc2 not incu-
ated with luciferin produced signal above background (Fig. 1D),
onfirming that hNPCWT show no endogenous levels of luciferase
cle. (F) Detection of Luc2-transfected hNPC in right cortex (9.0 × 105) and striatum

activity and that luciferin must be catalyzed by luciferase for optical
light emission.

Having confirmed that luciferase-expressing hNPC can be
detected in vitro using IVIS, we next investigated their detectabil-
ity in vivo. Two days following transfection with Luc2 cDNA, a
total of 1.8 × 106 cells were injected in the cortex (9.0 × 105) and
striatum (9.0 × 105) of adult rats. The cortex, a dorsal structure
compared to the striatum, was  injected to increase the likeli-
hood of in vivo cell detection. Additionally, 5 × 105 of the same
cells were injected in the hind limb muscle (tibialis anterior) as
a positive control. Three days following transplantation, the ani-
mals received IP injections of luciferin and were imaged 15 min
later. In vitro, cells still showed transient expression at 5 days
post-transfection, which was reinforced in vivo by the continued
expression of luciferase that permitted cell detection in the muscle
(Fig. 1E) and the brain (Fig. 1F), although the signal from the mus-
cle was significantly higher despite a lower number of transplanted
cells. These proof-of-concept experiments were important to con-
firm that luciferase-expressing hNPC can indeed be detected both
in vitro and in vivo.

3.2. hNPC stably express luciferase

Our transient expression results show promise in that the
luciferase reporter protein can be used for in vitro and in vivo
imaging of hNPC. However, the short duration of reporter pro-
tein expression indicates that stable protein expression in hNPC
is required for cell tracking over the course of an in vivo cell ther-

apy experiment. Several of our previous studies have demonstrated
successful stable protein expression in hNPC using lentiviral infec-
tion (Behrstock et al., 2006; Capowski et al., 2007; Suzuki et al.,
2007; Behrstock et al., 2008). This method relies on insertion of
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Fig. 2. Stable luciferase expression in hNPC (hNPCLuc2). (A) Schematic of lentiviral construct. LTR, the long terminal repeat; PGK, the mouse phosphoglycerate kinase 1
promoter; WPRE, the post transcriptional regulatory element of woodchuck hepatitis virus; cPPT, the central polypurine tract; SIN, self-inactivating. (B) Western blot of
hNPCLuc2 and hNPCWT lysates stained against luciferase. (C) Percentage of hNPC stably expressing luciferase more than seven months post infection. (D) Comparison of
hNPCLuc2 and hNPCWT in their capacity to proliferate (BrdU marker) and differentiate (�III tubulin and GFAP markers). (E) In vitro image of hNPCLuc2 with and without
luciferin incubation. (F) Detection of hNPCLuc2 in right cortex (9.0 × 105) and striatum (9.0 × 105) of WT rats. (G) Detection of 9 × 105 hNPCLuc2 in right striatum only of WT
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 potentially sizeable gene into the genome in both dividing and
on-dividing cells and provides high infection efficiency. The Luc2

entiviral shuttle vector consisted of Luc2 cDNA under the control of
ouse phosphoglycerate kinase (PGK) promoter to provide consti-

utive protein expression (Fig. 2A). The lentivirus generated from
he construct was used to infect hNPCWT. Three months follow-
ng infection, stable expression of the Luc2 protein in hNPCLuc2
as verified in two ways. First, Western blot analysis of protein
xtracted from both hNPCLuc2 and hNPCWT and stained against
uciferase revealed that luciferase was produced by hNPCLuc2 but
ot by hNPCWT (Fig. 2B). In addition, hNPCLuc2 were plated as
) for in vitro and in vivo conditions. Minimal cell number study confirms the ability
CLuc2 in the left striatum of WT rats using both auto exposure (approximately 60 s)
tinguished from background even using longer exposure time. All data is given as

single cells and immunostained for luciferase over ten days.
Luciferase expression was maintained for at least 10 days post-
plating and quantification showed that approximately 40% of total
hNPC stably expressed luciferase (Fig. 2C). The stable expression
of luciferase was  confirmed for up to four months post-infection
in vitro and an additional three months post-transplantation
using histology. This suggests that hNPC expressing the luciferase

reporter protein can be used for long-term cell tracking. To increase
the percentage of hNPC stably expressing luciferase, we  did a sub-
sequent infection on hNPCWT that yielded 53.5 ± 1.5% of total hNPC
expressing luciferase (data given as mean ± SEM). Given that we
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chieved an infection level over 50%, it was unnecessary to stress
he hNPCLuc2 with cell sorting. This hNPCLuc2 population had a sim-
lar long-term expression profile to the initial hNPCLuc2 stable line
Fig. 2B and C) and was used for subsequent transplantation exper-
ments.

Before using lentivirus-infected hNPC stably expressing
uciferase in further experiments, we needed to ensure that
either the lentivirus nor stable luciferase expression altered cell
roliferation and differentiation capacity. hNPCLuc2 and hNPCWT

roliferation was compared by pulse-labeling cells with BrdU, a
ynthetic nucleotide which incorporates into the DNA of replicat-
ng cells. After labeling, single cells were plated down for one to
hree hours, then fixed and fluorescently immunostained with an
nti-BrdU antibody to detect newly dividing cells. Approximately
0% of hNPCWT and hNPCLuc2 stained positive for BrdU, showing
hat neither lentiviral infection nor stable luciferase expression
ignificantly change cell proliferation rates (Fig. 2D). Furthermore,
ur previous studies have shown that hNPC differentiate mainly
nto astrocytes and a limited number of neurons (Svendsen et al.,
998). To examine the differentiation capacities of hNPCLuc2

ompared with hNPCWT, both cell types were plated as single
ells and allowed to differentiate for 14 days without any growth
actors in the media, to promote differentiation into astrocytes
nd neurons. Immunostaining with a glial fibriallary acidic protein
GFAP) antibody or �III tubulin antibody was used to assess the
umber of astrocytes and neurons, respectively. Both hNPCWT

nd hNPCLuc2 differentiated into approximately 50% astrocytes
nd 15% neurons (Fig. 2D). The remaining cells are presumably
ndifferentiated, nestin-postive cells (data not shown). This data
emonstrated no significant differences in differentiation rates
etween hNPCLuc2 and hNPCWT suggesting that, along with pro-

iferation rate, differentiation potential is not altered following
entiviral infection or stable luciferase expression.

.3. Detection of hNPCLuc2 with optical imaging system

After verifying that hNPC could stably express luciferase with-
ut changes in their proliferation or differentiation, we examined
hether stably-expressing hNPCLuc2 could be detected in vitro and

n vivo with IVIS. To confirm the ability of hNPCLuc2 detection
n vitro, hNPCLuc2 were plated as single cells for 24 h and then incu-
ated with luciferin for one hour prior to imaging with IVIS. As

 negative control, hNPCLuc2 not exposed to luciferin were also
maged. The acquired images demonstrated that hNPCLuc2 incu-
ated with luciferin could be detected, while the hNPCLuc2 not

ncubated with luciferin produced no signal (Fig. 2E).
To test whether hNPCLuc2 can be imaged in vivo with IVIS, we

njected the cells unilaterally into both the cortex (9.0 × 105) and
he striatum (9.0 × 105) of WT  rats, and into the hind limb muscle
s a positive control. The animals were imaged three days following
ransplantation. hNPCLuc2 in both the muscle and the brain could
e detected, suggesting that stable expression of luciferase can be
sed for identifying hNPC in vivo (data not shown). Since neurolog-

cal diseases such as PD and HD may  benefit from cell transplants
nto the striatum, it was important for our study to ensure that
NPCLuc2 can be detected if injected into the striatum alone. We

njected 9.0 × 105 hNPCLuc2 unilaterally into the striatum and, as
he positive control, we injected hNPCLuc2 into both the cortex
nd the striatum as before. Indeed, signal could be detected in the
ositive control (Fig. 2F) and it also remained detectable when
ells were injected into the striatum only (Fig. 2G). We  confirmed

hat signal originated from the striatum, rather than from along
he injection tract, using three-dimensional diffuse luminescence
omography (3D DLIT, Fig. S1) and histology (Fig. 4C). This is
he first time that stable luciferase-expressing slow proliferating
ce Methods 228 (2014) 67–78 73

progenitor cells have been visualized in the rat brain, specifically
in a deep structure such as the striatum.

Supplementary Fig. S1 related to this article can be
found, in the online version, at http://dx.doi.org/10.1016/
j.jneumeth.2014.03.005.

The successful visualization of cells transplanted into a more
ventral brain region led us to next investigate the minimum number
of hNPCLuc2 that can be detected using IVIS both in vitro and in vivo
in the rat striatum. This is a fundamental question as subsequent
studies may  require a different number of transplanted hNPCLuc2.
To determine the range of detectable cells permitted by the IVIS, we
plated a monolayer of cells in serially decreasing numbers (9 × 105,
9 × 104, and 9 × 103). The day after plating, images of cells incu-
bated with 2 mM luciferin showed that each cell amount could be
serially detected (Fig. 2H). To determine the range of detectable
cells following striatal transplantation, animals were transplanted
with the same serially decreasing number of cells (9 × 105, 9 × 104

and 9 × 103 cells) that was  shown to be detectable by IVIS. In vivo
imaging at one and three weeks following surgeries showed that BLI
signal could be detected from 9 × 105 and 9 × 104 hNPCLuc2 (Fig. 2I
and J, respectively and Fig. 2H). In the animal transplanted with
9 × 104 hNPCLuc2, cell signal was visualized better after exposure
time was increased from 1 to 3 min  (Fig. 2K). On the other hand,
the signal from the animal injected with 9 × 103 cells could not be
distinguished from background even following exposure adjust-
ments (Fig. 2L and H). This suggests that the lowest detectable
number of hNPCLuc2 in the striatum using our infection and trans-
plantation protocols is between 9 × 104 and 9 × 103. Furthermore,
a comparison of in vitro and in vivo signal intensities revealed
that the average signal intensity in vitro is approximately two
orders of magnitude higher than in vivo (Fig. 2H). Overall, through
these studies we were able to determine the approximate hNPCLuc2

number that can be visualized in the rat striatum and assess
the magnitude of signal difference between in vitro and in vivo
imaging.

3.4. Long-term detection of hNPCLuc2 with optical imaging system

Next, we wanted to establish whether hNPCLuc2 could be tracked
long-term, for up to 10–12 weeks in the rat striatum. For this
purpose, 9 × 105 hNPCLuc2 were transplanted into the striatum of
14 animals. Non-luciferase-expressing hNPC, as negative controls,
were transplanted contralaterally into six of these. The animals
were imaged seven days following transplantation and then incre-
mentally until end point at 10–12 weeks. In 12 of the 14 animals,
bioluminescence signal was  detected using IVIS throughout this
period of time using both 2-dimensional BLI (Fig. 3A–D) and 3D DLIT
(Fig. S1). The average radiance over time was  quantified throughout
the study.

Detection of bioluminescence signal from two animals ceased
at two  and six weeks post-transplantation, respectively. These
animals were re-imaged approximately 10 days later to ensure
that lack of signal was not a result of improper luciferin delivery.
The additional scan confirmed signal loss, and further histological
evaluation showed that lack of bioluminescence signal (Fig. 3E)
corresponded with an absence of hCyto expression (data not
shown). The absence of hCyto-expressing cells suggested graft
rejection. However, given that animals were sacrificed nearly 2
weeks following the loss of BLI signal, the cells had likely already
been cleared, not allowing for confirmation of cell death using
apoptosis or necrosis markers. Alternatively, lost bioluminescence
signal could result from cell migration rather than a lack of cell sur-

vival. To address this, we  carefully analyzed the histological slices
in the vicinity of the graft from these animals to confirm that there
was no significant cell migration. Other than the cells transplanted
near the white matter tracks, which could be easily identified

http://dx.doi.org/10.1016/j.jneumeth.2014.03.005
http://dx.doi.org/10.1016/j.jneumeth.2014.03.005
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Fig. 3. Analysis of long-term hNPCLuc2 tracking. IVIS images of an animal transplanted with 9 × 105 hNPCLuc2 in the left striatum and imaged at weeks (A) 1, (B) 5, (C) 9 and
(D)  12. (E) Average radiance of luciferase signal over time plot for all fourteen animals included in long-term studies. Symbols are X for loss of signal (N = 2) that was later
confirmed histologically, stop sign for the end of the 10 week study and cross for animal death (N = 2) that was  unrelated to the study. (F) In the representative animal (same
as  A–D), histological analysis of GFAP (green) and luciferase (red) expression with DAPI (blue) confirms good survival in the striatum. (G) Human cytoplasmic marker (hCyto)
and  luciferase analysis confirms cell survival and continued expression over the 12 week time period. (H) Nestin and (I) GFAP analysis shows that luciferase-expressing cells
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emained as undifferentiated neural progenitors and that some differentiated towa

igrating along the corpus callosum, we did not observe any evi-
ence of hNPC migrating in the striata of WT  animals, suggesting
hat the signal loss was likely a result of cell death rather than cell

igration.
In all other animals, survival of luciferase-expressing cells was

vident in the rat striatum (Fig. 3F). Additional histochemical anal-
sis confirmed luciferase expression specific to hNPCLuc2 using
uman cytoplasmic marker (hCyto, Fig. 3G). Nestin and GFAP
taining revealed that some cells remained as undifferentiated
eural progenitors while others began differentiating into astro-
ytes, respectively (Fig. 3H and I). Overall, out of the fourteen
nimals transplanted with hNPCLuc2, approximately 86% (twelve)
ad surviving grafts at the end of the long-term study which lasted
etween 10 and 12 weeks, with one animal dying of unrelated
auses at 7 weeks post-transplantation with surviving hNPCLuc2

rafts. This experiment confirmed that hNPCLuc2 can be detected

n vivo for at least 12 weeks following striatal injections, exhibiting
he potential for long-term tracking. In addition, it showed that cell
eath can reliably be established from the loss of bioluminescence
ignal during the study.
lial phenotype, respectively. Scale bar 20 �m (G–I) and 100 �m (F).

3.5. Migration detection of hNPCLuc2 with optical imaging system

After validating that viable hNPCLuc2 can be identified in vivo
in the rat striatum long-term, we  examined whether migration
of these cells can be detected. QA, a neurotoxin that has been
shown to induce lesions that model HD, was  employed based on
our previous studies demonstrating radial hNPC migration as a
result of ipsilateral QA-induced lesions (Behrstock et al., 2008).
On the other hand, hNPC behavior following transplants con-
tralateral to the lesion has not been investigated. One week after
QA injection, 9 × 105 hNPCLuc2 were transplanted contralaterally
or ipsilaterally to the toxin. The animals were imaged immedi-
ately after transplantation and during week one, two, and every
other week following transplantation until end point at 12 weeks.
Migration was  assessed by defining an ROI based on anatomical
landmarks and determining a ratio of signal intensity between the

area to which the cells were intended to migrate and the area
where the cells were transplanted (Fig. 4A and B). The brain tissues
were also histologically analyzed for migration. Ipsilateral migra-
tion could not be detected histologically nor by ROI-based analysis
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Fig. 4. Assessment of hNPCLuc2 migration using IVIS. Example of the method used to calculate signal movement for (A) contralateral and (B) ipsilateral migration. (C) Histology
using  human cytoplasmic marker (hCyto) shows hNPCLuc2 striatal graft (highlighted in light yellow box) and hNPCLuc2 migration along the corpus callosum (highlighted by
red  box). A zoomed medial region confirms luciferase expression. Histological comparison of two grafts which (D) did and (E) did not result in migrating hNPCLuc2. Schematic
of  transplant sites (green, solid line) and migration paths (orange, dotted line) for animals whose (F) hNPCLuc2 migrated contralaterally and (G)  those whose cells did not. (H)
G  migra
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raph  comparing signal change ratio (opposite side vs. original side) and time of the
ifference between the groups, asterisks suggest significant difference in the particu
0  �m (Luc2) (C), 100 �m (D–E).

n any of the animals. Interestingly, it was found that contralat-
ral migration along the corpus callosum occurred in one animal
elonging to the ipsilateral migration group. For this reason, all ani-
als transplanted with hNPCLuc2 and imaged for 12 weeks were

lso analyzed for migration both histologically and with the ROI-
ased method. Altogether, contralateral hNPCLuc2 migration was
bserved in four animals (Fig. 4C and D) while four animals had

Luc2
NPC transplants that did not migrate (Fig. 4E). The schematic
epresentation of both group’s grafts and subsequent hNPCLuc2

igration is shown (Fig. 4F and G). The ROI analysis of the same
nimals confirmed that the ratio of signal in the opposite side of
tion and non-migration groups. While ANOVA 2-way test determined a significant
e points. All of the data is given as mean ± SEM, *p < 0.05. Scale bar 100 �m (hCyto),

cell transplantation to that of original side of cell transplantation
was increasing in animals with histologically observed contralat-
eral migration, but not in the animals where migration was not
histologically detected. The averages of these ratios were analyzed,
and significant differences were found between the two groups
with respect to time and cell migration overall. Post hoc analy-
sis also determined a significant difference at weeks 9 and 10

between the two  groups (Fig. 4H). This study demonstrated that
although contralateral migration is not readily visible by eye on
bioluminescence images, it can be detected with an ROI-based
approach.



7 roscien

4

l
s
i
c
u
p
w
n
c
P

4

d
f
c
a
u
c
f
i
t
a
l
b
b
b
l
a
t
t
n
a
o
p
m
m
h

4

t
d
t
e
t
e
t
i
a
1
d
a
t
o
o
s
r
r

6 K. Bernau et al. / Journal of Neu

. Discussion

In the present study, we have shown for the first time that
uciferase-expressing hNPC grafts can be detected in the intact rat
triatum using bioluminescence imaging. Furthermore, this imag-
ng technique permits tracking of cell migration along the corpus
allosum. Detecting transplanted cells is essential in evaluating and
nderstanding stem cell therapy. Luciferase expression makes it
ossible to detect the cells of interest in the rat brain and reveals
hether they remain alive. These new findings show that biolumi-
escence imaging can be efficiently utilized in preclinical studies of
ell-based therapy for neurodegenerative diseases such as HD and
D.

.1. Imaging hNPC transiently expressing luciferase

Experiments with transiently luciferase-expressing hNPC
emonstrated that these cells can be detected in the rat brain
ollowing transplantations into the cortex and striatum. Striatal
ell transplantations are relevant for various disease models such
s HD and PD (Behrstock et al., 2006, 2008). It was  previously
nclear whether the optical signal from luciferase-expressing hNPC
ould penetrate the brain, skull and surrounding tissue. To account
or this possibility, luciferase-expressing hNPC were transplanted
nto the cortex as well as the striatum. Cell transplantations into
he hind limb served as a positive control as it avoids the skull
nd the blood–brain barrier that can make signal acquisition chal-
enging. This study revealed that cell signal could be detected in
oth the brain and hind limb muscle, with the hind limb signal
eing greater despite over an order of magnitude higher cell num-
er in the brain (Fig. 1E). This was presumably due to reduced

uciferin concentration in the brain compared to the muscle as
 result of the blood–brain barrier (Aswendt et al., 2013). Fur-
hermore, the skull acted as an additional, less penetrable barrier
han the muscle tissue. The signal from cells in the brain was
evertheless easily detectable, further highlighting sensitivity as

 major strength of bioluminescence imaging (Fig. 1F). Exploration
f hNPCLuc2 survival and long-term detection in hind limb was  not
ursued extensively in this study as the hind limb was  used pri-
arily as a positive control for hNPCLuc2 visualization. This subject
atter has been considered, however, using luciferase-expressing

uman mesenchymal stem cells (Krakora et al., 2013).

.2. Inducing stable expression of luciferase

Studies using hNPC transiently expressing luciferase indicated
hat BLI can be used to detect these cells in the brain. However, we
etermined that luciferase expression in hNPC following transfec-
ion significantly decreased by day 10, with less than 5% of cells still
xpressing the protein (Fig. 1B). For cell tracking over the extended
ime periods likely used in cell therapy experiments, long-term
xpression of luciferase would be required. Lentiviral transduc-
ion is an established method to achieve stable protein expression
n cells (Capowski et al., 2007). Following lentiviral production,
pproximately 55% of hNPCLuc2 stably expressed luciferase for up to
5 weeks. It was vital to confirm that long-term protein expression
id not alter the capacity of hNPC to proliferate and differenti-
te. Compared to retroviral techniques, which have been shown
o activate proto-oncogenes by the inserted gene, lentiviral meth-
ds of stable transduction do not appear to have a negative effect

n proliferation (Stein et al., 2010). Our data support this result,
howing that hNPCLuc2 proliferation and differentiation capacities
emained the same as that of hNPCWT (Fig. 2D). Overall, lentivi-
al infection successfully induced stable expression of luciferase
ce Methods 228 (2014) 67–78

in hNPC without changing their proliferation and differentiation
potential.

4.3. Imaging hNPC stably expressing luciferase

Similar imaging results were observed in vitro and in vivo fol-
lowing transplantation of stable hNPCLuc2 compared to transiently
transfected cells. Successful detection of hNPCLuc2 injected into the
striatum alone showed that cortical injections were not necessary
for signal detection. To our knowledge, this is the first time that
non-tumor cells have been detected in the striatum of WT  rats using
BLI (Kondo et al., 2009). This result is especially meaningful since
hNPC proliferation has been shown to be considerably slow post-
transplantation, suggesting that the cell number most likely did
not significantly increase (Ostenfeld et al., 2000). Furthermore, it
was found that the minimum cell number that could be imaged in
the rat striatum was between 9 × 103 and 9 × 104 (Fig. 2K and L).
This detection limit is a useful starting point for future experimen-
tal designs. It must be emphasized that only approximately 55%
of the hNPCLuc2 were expressing luciferase, which indicates that
the detection cut-off may  be lower if a 100% luciferase-expressing
population were selected and transplanted (i.e. it may otherwise be
possible to detect fewer cells using the same transplantation and
imaging parameters). Conversely, all of the cell numbers examined
in vivo could also be detected in vitro, with a two-fold higher signal
intensity compared to in vivo data (Fig. 2H). This finding is reflec-
tive of luminescence signal absorption and scatter that occurs in
any tissue type, as well as the previously discussed decrease in sig-
nal due to specific obstacles of brain imaging. In this part of the
study, we  determined lower limits of detection in vitro and in vivo,
although they may  vary based on experimental settings and should
be considered in future studies.

4.4. Visualizing hNPCLuc2 for up to twelve weeks in rat striatum

We  further show that hNPCLuc2 can be tracked for up to twelve
weeks in the WT  rat striatum, while a loss of signal reflects cell
graft rejection. Once bioluminescence signal could not be detected
for at least two successive scan time points, the animals with signal
loss were sacrificed for histological analysis. In those cases, no live
hNPCLuc2 were found, confirming that hNPCLuc2 must be viable for
luciferase-catalyzed optical light production and subsequent sig-
nal detection. Importantly, this shows that luciferase expression
and successive bioluminescence scanning can be used for in vivo
cell survival analysis. Analysis of mean signal intensities in rats
spanning all long-term experiments revealed that bioluminescence
signal varied between animals based on several factors. Animals
receiving cortical transplants demonstrated higher signal intensity
at the commencement of the study compared to animals receiving
striatal transplants. One exception to this rule was that extremely
large, dense striatal grafts of hNPCLuc2 produced high levels of bio-
luminescence signal. At the study completion, three animals had
higher signal than the rest, two  of which were the animals men-
tioned above with particularly large, dense striatal grafts and one
with a large cortical graft (Fig. S2). The rest of the animals, with
lower signal level at end point had either smaller cortical or aver-
age sized striatal grafts. This indicates that signal intensity over
time may  predict graft size, structure and survival, but other meth-
ods such as 3D DLIT may  have to be used to separate the dual effects

of graft size and structure.

Supplementary Fig. S2 related to this article can be
found, in the online version, at http://dx.doi.org/10.1016/
j.jneumeth.2014.03.005.

http://dx.doi.org/10.1016/j.jneumeth.2014.03.005
http://dx.doi.org/10.1016/j.jneumeth.2014.03.005
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.5. Detecting hNPCLuc2 migration to contralateral side of the rat
rain

Finally, we demonstrate for the first time that contralateral
igration of hNPCLuc2 in WT  rat brain can be identified using

ioluminescence imaging. QA was intended to initiate migration
f hNPCLuc2 in both contralateral and ipsilateral directions. How-
ver, our findings show that QA alone did not induce obvious
ell migration in either direction. While this may  be a result of
ifferent transplantation coordinates compared to our previous
tudies, it could also be due to inability to assess hNPC migrat-
ng in the rostral-caudal direction through histological analysis of
oronal brain sections (Behrstock et al., 2008). Furthermore, radial
igration that may  have occurred could not be detected using our

OI-based analysis since the cells migrated equally in both rostral
nd caudal directions. However, while lesions contralateral to cell
ransplants did not appear to induce contralateral migration, trans-
lantation near the corpus callosum white matter tract seemed
o be an important factor in contralateral hNPCLuc2 migration.
ll of the animals undergoing scans for 12 weeks were analyzed
oth histologically and using ROI-based analysis to assess whether
NPCLuc2 migrated along the corpus callosum (Fig. 4A and C). The

mage analysis method described above indicated with statistical
ignificance that in four animals, hNPCLuc2 migrated contralater-
lly. Histological analysis confirmed hNPCLuc2 migration along the
orpus callosum to the contralateral side of the brain. No migra-
ion was observed histologically in other subjects. Past studies
ave shown that bioluminescence imaging is capable of tracking

uciferase-expressing hNPC migration in nude mice (Tang et al.,
003; Waerzeggers et al., 2008). However, hNPCLuc2 migration in
ats has not been established prior to this study. Moreover, most
tudies attempting to visualize hNPC in BLI employ nude animals
nsuring that hair cannot interfere with optical imaging signal. In
ur report, we  use WT  animals treated with cyclosporine immuno-
uppressive therapy whose hair is simply removed prior to in vivo
maging. While further studies must be done to establish a method
hat can be used to detect ipsilateral migration, our technique
ppears to successfully detect contralateral migration.

.6. Novel aspects of current study

Even though a number of preclinical and clinical studies using
uman neural progenitor/stem cells find promising results in treat-
ent of neurodegenerative diseases, the inability to predict and

nderstand the dynamics of cell homing and migration poses a seri-
us challenge to the field. This study develops a method that can be
sed to answer some of these vital questions. We  find that hNPCLuc2

an be visualized in vivo in the WT  rat striatum. Multiple past stud-
es have focused on detecting luciferase-expressing cells in nude

ice (Caceres et al., 2003; Ragel et al., 2008; Hafeez et al., 2013).
n this work, we have shown that this depth-dependent imaging

ethod can be used to track hNPCLuc2 in a larger, WT  rodent model,
aking BLI even more applicable for preclinical studies. This report

lso encourages the exploration of luciferase-based BLI in larger
nimals, such as pigs and monkeys. While this technology’s utility
n the larger animal CNS must be tested, our results suggest that
ells can be detected with BLI in larger animals than previously
hought. Therefore, studies using pigs and monkeys may  also ben-
fit from BLI to further provide an understanding of cell behavior
n vivo. Importantly, this method is valuable as a tool to discrimi-
ate between live and dead cells in vivo. Graft rejection is a major

oncern in therapeutic applications of hNPC (Riley et al., 2009).
aving the capacity to distinguish between live and dead hNPCLuc2

n vivo without histological analysis is an incredibly useful tool as
he field moves forward. Finally, detection of cell migration in the
ce Methods 228 (2014) 67–78 77

contralateral direction is the first step in being able to recognize
cell movement within the host tissue. These studies must be con-
tinued in order to develop more flexible and robust methods of
migration detection. BLI still lacks resolution when compared with
some other imaging modalities, as only approximate cell locations
can be determined. Therefore, BLI would benefit considerably from
multi-modality imaging, where a higher resolution modality such
as magnetic resonance imaging (MRI) is employed concurrently to
provide more accurate cell location information. Still, these encour-
aging results show that bioluminescence of luciferase-expressing
cells is helpful in understanding cell location, viability and migra-
tion over a long period of time in living animals.

5. Conclusions

In this study, we show for the first time that viable hNPCLuc2

can be imaged in the rat striatum using BLI for up to twelve weeks.
We show that this method can be used to ascertain whether the
transplanted cells are alive or dead and to detect contralateral cell
migration along the corpus callosum. In conclusion, our study con-
sists of several novel discoveries that may  serve to further develop
the field of in vivo stem cell tracking in a therapeutic setting.
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