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We study strong tractability and tractability of multivariate integration in the
worst case setting. This problem is considered in weighted tensor product repro-
ducing kernel Hilbert spaces. We analyze three variants of the classical Sobolev
space of non-periodic and periodic functions whose first mixed derivatives are
square integrable. We obtain necessary and sufficient conditions on strong tracta-
bility and tractability in terms of the weights of the spaces. For the three Sobolev
spaces periodicity has no significant effect on strong tractability and tractability. In
contrast, for general reproducing kernel Hilbert spaces anything can happen: we
may have strong tractability or tractability for the non-periodic case and intracta-
bility for the periodic one, or vice versa. © 2002 Elsevier Science (USA)

1. INTRODUCTION

In this paper we investigate tractability of integration in the worst case
setting. Integration is defined over the d dimensional unit cube for
weighted tensor product reproducing kernel Hilbert spaces of non-periodic
and periodic functions. Tractability means that the minimal number of
function values needed to reduce the initial error by a factor e by determi-
nistic algorithms in the worst case setting is polynomial in d and e−1. Here,



the initial error is given by the norm of the integration operator, and we
want to reduce the error for functions from the unit ball of the corre-
sponding Hilbert space. Strong tractability is the special case of tractability
in which the minimal number of function values is bounded independently
of d and depends polynomially on e−1.
We consider three variants of the classical Sobolev space of non-periodic
and periodic functions whose first mixed derivatives are square integrable.
These variants differ by the choice of a norm. More precisely, we consider
weighted tensor products of the univariate Sobolev spaces which consist of
absolutely continuous functions whose first derivatives belong to L2([0, 1]).
The univariate norms are of the form

||f||=(A2(f)+c−1 ||fŒ||2L2([0, 1]))
1/2

with three different choices of A(f):

A(f)=||f||L2([0, 1]), A(f)=f(0), A(f)=F
1

0
f(t) dt.

Here, c is a positive weight, and we take tensor products of such univariate
spaces with possibly different cj. The weights cj moderate the behavior of
functions: a small weight cj for a function f of norm 1 means that such a
function depends weakly on the jth variable. We assume that c1 \ c2 \ · · · ,
which means that the successive components are of decreasing importance.
Each of these Sobolev spaces is a reproducing kernel Hilbert space with
an explicitly known reproducing kernel. Our analysis depends on properties
of the reproducing kernels. For the first choice of A(f), the reproducing
kernel is especially intriguing. Its explicit form was found in [6].
The Sobolev space with the first choice of A(f) is probably the most
common one. Nevertheless, tractability of integration for this space has not
been previously studied, whereas the other cases have been studied at least
partially. In particular, the second choice of A(f) has been studied in [3,
4], and the third choice of A(f), which leads to the non-periodic and
periodic Korobov spaces, has been studied in the periodic case in [2, 5].
For all six Sobolev spaces, we obtain a necessary and sufficient condition
for strong tractability and tractability in terms of the weights cj.
In particular, strong tractability holds in all six cases iff

C
.

j=1
cj <.,
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and tractability holds in all six cases iff

lim sup
dQ.

;d
j=1 cj

ln d
<..

Such conditions on the weights for strong tractability and tractability are
typical, see [2–5].
A key concern of our paper is to investigate the role of periodicity, which
is more subtle than might at first appear. This is because we compare the
worst case error with the initial error. Periodicity always restricts the class
of integrands as compared with the non-periodic case, which of itself makes
the problem easier. At the same time periodicity may, and sometimes does,
reduce the initial error, and that makes the problem harder. A priori it is
not clear which of these two effects has the more significance for tracta-
bility. For the three classical Sobolev spaces periodicity has no significant
effect for tractability. For general weighted tensor product spaces anything
can happen. We provide an example for which the periodic case is tractable
whereas the non-periodic case is intractable. The opposite may also
happen. That is, we provide an example for which the non-periodic case is
tractable for some weights, whereas the periodic case is intractable for all
weights.

2. THREE SOBOLEV SPACES

We first define the three Sobolev spaces of not necessarily periodic real
functions defined over [0, 1]d. This will be done by taking the weighted
tensor product of the Sobolev spaces of univariate real functions defined
over [0, 1]. All these spaces are Hilbert spaces with reproducing kernels;
see [1, 8] for the theory of such spaces. In the second part of this section
we present periodic variants of the three Sobolev spaces by imposing the
condition for the univariate case that functions have the same values at the
boundary points.

2.1. Non-periodic Case

The First Sobolev Space. Let Wc, 1 be the Sobolev space of absolutely
continuous real functions defined over [0, 1] whose first derivatives belong
to L2([0, 1]). The inner product in the spaceWc, 1 is defined as

Of, gPWc, 1=F
1

0
f(t) g(t) dt+c−1 F

1

0
fŒ(t) gŒ(t) dt -f, g ¥Wc, 1,
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where c is a positive parameter. The reproducing kernel Kc, 1 of this space
can be found in [6], and is of the form

Kc, 1(x, t)=
`c

sinh`c
cosh(`c (1−max(x, t))) cosh(`c min(x, t)),

-x, t ¥ [0, 1].

It is easy to check the reproducing kernel property,

OKc, 1(x, · ), fPWc, 1=f(x) -f ¥Wc, 1, x ¥ [0, 1].

It is also easy to see that Kc, 1(x, x) \Kc, 1(
1
2 ,
1
2 ) > 1 for all x ¥ [0, 1], and

that for small c we have

Kc, 1(x, t)=1+
c

2
1 (1−max(x, t))2+(min(x, t))2−1

3
2+O(c2)

=1+
c

2
1B2(|x−t|)+2 1x−

1
2
2 1 t−1

2
22+O(c2)

and

Kc, 1(x, x)=1+c(B2(x)+
1
6 )+O(c

2),

where B2(x)=x2−x+1/6 is the Bernoulli polynomial of degree 2.
Since f(x)=OKc, 1(x, · ), fPWc, 1 for all f ¥Wc, 1, by taking f=1 we
obtain

F
1

0
Kc, 1(x, t) dt=1 -x ¥ [0, 1].

This proves that univariate integration

I1(f) :=F
1

0
f(t) dt=Of, 1PWc, 1

is a continuous linear functional with the representer h1=1. We have,
independently of c,

||I1 ||Wc, 1=||h1 ||Wc, 1=1.
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We now turn to the d-variate case. We take

Wd, c, 1=Wc1, 1 éWc2, 1 é · · · éWcd, 1

as the tensor product of Wcj, 1 for possibly different positive cj. Throughout
this paper we assume that

c1 \ c2 \ · · · \ cd \ · · · > 0.

We then obtain the Sobolev space Wd, c, 1 of d-variate real functions
defined over [0, 1]d, which is a Hilbert space with the inner product

Of, gPWd, c, 1= C
u ı {1, 2, ..., d}

D
j ¥ u
c−1j F

[0, 1]d

“
|u|f
“xu
(x)
“
|u|g
“xu
(x) dx.

Here, x=[x1, x2, ..., xd] and xu denotes the vector of the |u| components
such that (xu)i=xi for all i ¥ u. For u=”, the product <j ¥ u c

−1
j is

replaced by 1, and the integrand is f(x) g(x).
The reproducing kernel of Wd, 1, c is the product of Kcj, 1 taken for the
successive components of the vectors x and t,

Kd, c, 1(x, t)=D
d

j=1
Kcj, 1(xj, tj) -x, t ¥ [0, 1]d.

Clearly, multivariate integration

Id(f) :=F
[0, 1]d

f(t) dt=Of, 1PWd, c, 1

is a continuous linear functional with the representer hd=1, and ||Id ||Wd, c, 1
=1 for all c.

The Second Sobolev Space. Let Wc, 2 be the Sobolev space of functions
which is algebraically the same as the space Wc, 1 but has the different inner
product given by

Of, gPWc, 2=f(0) g(0)+c
−1 F

1

0
fŒ(t) gŒ(t) dt -f, g ¥Wc, 2.

The well known reproducing kernel Kc, 2 is given by (as is easily verified)

Kc, 2(x, t)=1+c min(x, t).
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Univariate integration

I1(f) :=F
1

0
f(t) dt=Of, h1PWc, 2

is again a continuous linear functional, this time with the representer

h1(x)=F
1

0
Kc, 2(x, t) dt=1+c(x−x2/2).

In this case, we have

||I1 ||Wc, 2=||h1 ||Wc, 2=(1+c/3)
1/2.

As before, the d-variate case is given by

Wd, c, 2=Wc1, 2 éWc2, 2 é · · · éWcd, 2

as the tensor product ofWcj, 2 for possibly different positive cj. The Sobolev
space Wd, c, 2 of d-variate real functions defined over [0, 1]d is a Hilbert
space with the inner product

Of, gPWd, c, 2= C
u ı {1, 2, ..., d}

D
j ¥ u
c−1j F

[0, 1]|u|

“
|u|f
“xu
(xu, 0)

“
|u|g
“xu
(xu, 0) dxu.

Here, (xu, 0) denotes the vector of d components such that (xu, 0)i=xi for
all i ¥ u, and (xu, 0)i=0 for all i ¨ u. The reproducing kernel of Wd, c, 2 is
simply

Kd, c, 2(x, t)=D
d

j=1
Kcj, 2(xj, tj) -x, t ¥ [0, 1]d.

Again multivariate integration

Id(f) :=F
[0, 1]d

f(t) dt=Of, hdPWd, c, 1

is a continuous linear functional, now with the representer

hd(x)=D
d

j=1
(1+cj(xj−x

2
j/2)),
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and

||Id ||Wd, c, 2=||hd ||Wd, c, 2=D
d

j=1
(1+cj/3)1/2.

Note that ||Id || is uniformly bounded in d iff ;.

j=1 cj <..

The Third Sobolev Space. To obtain the third Sobolev space Wc, 3 we
take algebraically the same spaceWc, 1 and equip it with the inner product

Of, gPWc, 3=F
1

0
f(t) dt F

1

0
g(t) dt+c−1 F

1

0
fŒ(t) gŒ(t) dt -f, g ¥Wc, 3.

It is easy to check that the reproducing kernel Kc, 3 is now equal to

Kc, 3(x, t)=1+
c

2
(B2(|x−t|)+2(x−1/2)(t−1/2)) -x, t ¥ [0, 1].

As for the first Sobolev space we have >10 Kc, 3(x, t) dt=1 for all x ¥ [0, 1].
Therefore we have for univariate integration

I1(f) :=F
1

0
f(t) dt=Of, 1PWc, 3 .

Hence, it is again a continuous linear functional with the representer h1=1
and ||I1 ||Wc, 3=1.
The d-variate case is given by the tensor product

Wd, c, 3=Wc1, 3 éWc2, 3 é · · · éWcd, 3.

The Sobolev space Wd, c, 3 of d-variate real functions defined over [0, 1]d is
a Hilbert space with the inner product

Of, gPWd, c, 3= C
u ı {1, 2, ..., d}

D
j ¥ u
c−1j F

[0, 1]|u|
1F
[0, 1]d− |u|

“
|u|f
“xu
(x) dx−u 2

×1F
[0, 1]d− |u|

“
|u|g
“xu
(x) dx−u 2 dxu.

Here, x−u denotes the vector x{1, 2, ..., d}−u. For u=” and u={1, 2, ..., d},
the integral >[0, 1]0 f(xu) dxu is replaced by 1. The reproducing kernel of
Wd, c, 3 is simply

Kd, c, 3(x, t)=D
d

j=1
Kcj, 3(xj, tj) -x, t ¥ [0, 1]d.
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Again multivariate integration

Id(f) :=F
[0, 1]d

f(t) dt=Of, 1PWd, c, 3

is a continuous linear functional with the representer hd=1 and
||Id ||Wd, c, 3=1.
This concludes the definition of the three Sobolev spaces of non-periodic
real functions. They are defined by the tensor products of the univariate
spaces that are algebraically the same but differ by the choice of the inner
products. Obviously, the norms of the three Sobolev norms are equivalent,
that is, there are positive numbers cd, c, i and Cd, c, i such that

cd, c, i ||f||Wd, c, 1 [ ||f||Wd, c, i [ Cd, c, i ||f||Wd, c, 1 -f ¥Wd, c, 1 and i=2, 3,

but the ratio Cd, c, i/cd, c, i may be exponentially large in d. Indeed, for f=1
we have ||f||Wd, c, i=1 for all i=1, 2, 3 showing that Cd, c, i \ 1. From the
Cauchy–Schwarz inequality we have

||f||Wd, c, 3 [ ||f||Wd, c, 1 -f ¥Wd, c, 1,

and hence Cd, c, 3=1. For f(x)=x1x2...xd we have

||f||Wd, c, 1=D
d

j=1

11
3
+
1
cj
21/2,

||f||Wd, c, 2=D
d

j=1

1
cj
,

||f||Wd, c, 3=D
d

j=1

11
4
+
1
cj
21/2.

This shows that

cd, c, 2 [ D
d

j=1

11+1
3
cj 2

−1/2

,

cd, c, 3 [ D
d

j=1

11+14 cj
1+13 cj
2−1/2.

Hence, we have an exponential dependence of Cd, c, i/cd, c, i on d for i=2, 3
if ;.

j=1 cj=.. This holds for the classical unweighted Sobolev spaces with
cj=1.
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We add that the Sobolev spaces Hd=Wd, c, i are related to each other
when we vary d while keeping i and c fixed. Indeed, for s [ d we have in
each case

Hs ıHd and ||f||Hs=||f||Hd -f ¥Hs.

That is, a function of s variables from Hs, when treated as a function of d
variables with no dependence on the last d−s variables, also belongs to Hd
with the same norm as in Hs. This means that we have an increasing
sequence of spaces H1 ıH2 ı · · · ıHd, and an increasing sequence of the
unit balls Bd of Hd, B1 ı B2 ı · · · ı Bd, and Hs 5 Bd=Bs.
The first Sobolev space is probably the most classical one and often used
in the study of partial differential equations. Tractability issues of multi-
variate integration have not been so far studied for this space. The second
Sobolev space is a typical example of a Hilbert space for which tractability
issues for tensor product functionals have been studied; see [3, 4, 11]. The
third Sobolev space corresponds to the non-periodic variant of the
Korobov space of periodic functions. For the latter, tractability of multi-
variate integration has been studied in [2, 5]. The exponential dependence
between the norms of the Sobolev spaces for some weights does not allow
one to conclude tractability of integration in one space in terms of the
other space.
We have assumed that all the weights cj are positive. It is easy to see that
we can also cover the zero weight cj by letting a positive cj tend to zero.
The zero weight cj means that the functions f in the space do not depend
on the jth variable.

2.2. Periodic Case

We now present the variants of the three Sobolev spaces for periodic
functions. This will be done by assuming that for the univariate case we
only allow functions f for which f(0)=f(1). The construction goes as
follows.
Let H(K) be a Hilbert space of univariate functions defined over [0, 1]
with the reproducing kernel K. We consider the subspace of H(K) consist-
ing of periodic functions,

H(K)6={f ¥H(K) : f(0)=f(1)}.

It is known that H(K)6=H(K̃) is a Hilbert space with the same inner
product as H(K), and that the reproducing kernel for this space is

K̃(x, t)=K(x, t)−
g(x) g(t)
||g||2H(K)

,
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where g is the representer of the linear functional L(f)=f(1)−f(0)=
Of, gPH(K). This yields g(x)=K(x, 1)−K(x, 0) and

||g||2H(K)=Og, gPH(K)=K(1, 1)−2K(1, 0)+K(0, 0)=g(1)−g(0).

It may happen that g=0 if we start with the space H(K) of periodic func-
tions. To deal with this case we adopt the convention that 0/0=0, and
then K̃=K.
We can verify that K̃ is indeed the reproducing kernel by noting that

Of, gPH(K)=0 for all f in H(K̃), and that consequently

OK̃(x, · ), fPH(K)=OK(x, · ), fPH(K)=f(x) -f ¥H(K̃).

Hence, K and K̃ both reproduce f(x) for functions from H(K̃). However,
K is not a reproducing kernel in the space H(K̃) because K(x, · ) ¨H(K̃),
since in general K(x, 1) ]K(x, 0). In contrast, K̃ is constructed to satisfy
K̃(x, 1)=K̃(x, 0) so that K̃(x, · ) ¥H(K̃) for x ¥ [0, 1].
We now consider a general linear continuous functional L(f)=

Of, f*PH(K) for f ¥H(K). The same functional over H(K̃) takes the form

L(f)=Of, f̃*PH(K̃) with f̃*(x)=f*(x)−
Of*, gPH(K)
||g||2H(K)

g(x).

In particular, we will use this form of the representer for univariate inte-
gration over the three Sobolev spaces.
Using this general construction for the Sobolev spaces Wc, i with
i=1, 2, 3, we obtain the Sobolev spaces W̃c, i of periodic functions. It is
easy to show that their reproducing kernels are

K̃c, 1(x, t)=Kc, 1(x, t)−a(sinh(b(x−1/2)) sinh(b(t−1/2))),

K̃c, 2(x, t)=1+c(min(x, t)−xt),

K̃c, 3(x, t)=1+
c

2
B2(|x−t|),

where a=`c/sinh`c and b=`c . For small c, we have

K̃c, 1(x, t)=1+
c

2
1 (1−max(x, t))2+(min(x, t))2−1

3
−2(x−1/2)(t−1/2)2

+O(c2).

For i=3, we have the weighted Korobov space W̃c, 3 of periodic functions.
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We obtain the d-variate case by taking the tensor products. Hence,

W̃d, c, i=W̃c1, i é W̃c2, i é · · · é W̃cd, i,

and the inner product of W̃d, c, i is the same as the inner product of Wd, c, i,
whereas the reproducing kernel is

K̃d, c, i(x, t)=D
d

j=1
K̃cj, i(xj, tj).

The Sobolev spaces W̃d, c, i consist of periodic functions in the sense that

f(x1, ..., xj−1, 0, xj+1, ..., xd)=f(x1, ..., xj−1, 1, xj+1, ..., xd)

for all xi ¥ [0, 1] with i ] j and all j=1, 2, ..., d.
We now consider multivariate integration Id for functions from W̃d, c, i. To
obtain its representer, we use the general construction outlined above. For
i=1 and i=3, we have h1=1, and

Oh1, Kc, i( · , 1)PWc, i=Oh1, Kc, i( · , 0)PWc, i=1.

Therefore Oh1, gPWc, i=0, and there is no change of the representer. For
i=2, there is a change of the representer that is easy to obtain. We thus
have

Id(f)=F
[0, 1]d

f(t) dt=Of, h̃dPW̃d, c, i -f ¥ W̃d, c, i,

with

for i=1, h̃d(x)=1,

for i=2, h̃d(x)=D
d

j=1
(1+cj(xj−x

2
j )/2),

for i=3, h̃d(x)=1.

Observe that for i=2 we now have ||Id ||Wd, c, 2=<d
j=1 (1+cj/12)

1/2.
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3. TRACTABILITY

We analyze tractability of integration in the worst case setting. Let Hd be
a reproducing kernel Hilbert space of real functions defined over [0, 1]d

with the norm || · ||Hd , and with reproducing kernel Kd. Later in this section
we take Hd to be one of the Sobolev spaces Wd, c, i or W̃d, c, i for i=1, 2, 3,
whereas different spaces Hd will be taken in further sections. We assume
that

Id(f)=F
[0, 1]d

f(t) dt -f ¥Hd

is a well defined continuous linear functional. This holds if hd(x)=
>[0, 1]d Kd(x, t) dt belongs to Hd. Then Id(f)=Of, hdPHd .
We approximate the multivariate integrals Id(f) for f from Hd by algo-
rithms of the form

Qn, d(f)=C
n

k=1
akf(tk)

for deterministically chosen ak ¥ R and tk ¥ [0, 1]d.1 The worst case error of

1 There is no need to consider more general algorithms since non-linear algorithms and
adaptive choice of tj does not reduce the worst case error; see, e.g., [7].

Qn, d is defined as

e(Qn, d; Hd)=sup{|Id(f)−Qn, d |: f ¥Hd, ||f||Hd [ 1}.

For n=0, we formally define Q0, d=0 and its error e(Q0, d; Hd)=||Id ||Hd is
the initial error that can be achieved without sampling the function. For
e ¥ (0, 1), let

n(e, Hd)=min{n: ,Qn, d such that e(Qn, d; Hd) [ e ||Id ||Hd}

be the minimal number of function values needed to reduce the initial error
by a factor of e. Multivariate integration is tractable in Hd iff there exist
non-negative numbers C, p, q such that

n(e, Hd) [ Ce−p dq -e ¥ (0, 1) and d \ 1,

and is strongly tractable if q=0 in the last bound.
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We are ready to present conditions on strong tractability and tractability
for the six Sobolev spaces in terms of the weights cj. Some of these condi-
tions have been known as indicated in the proof of the following theorem.

Theorem 1. Let Hd be one of the six Sobolev spaces Wd, c, i or W̃d, c, i for
i=1, 2, 3.

(i) Multivariate integration is strongly tractable in Hd iff

C
.

j=1
cj <..

If so, then there is a non-negative number C such that

n(e, Hd) [ Ce−2 -e ¥ (0, 1), -d \ 1.

(ii) Multivariate integration is tractable in Hd iff

a :=lim sup
dQ.

;d
j=1 cj

ln d
<..

If so, then for any q > q* there is a nonnegative number C such that

n(e, Hd) [ Ce−2 dqa -e ¥ (0, 1), - d \ 1,

where q*=1/6 for the three non-periodic cases, and q*=1/12 for the three
periodic cases.

Proof. We first prove upper bounds on n(e, Hd). It is shown in [4,
p. 26] that

n(e, Hd) [ Krde
−2L,

where

rd=
>[0, 1]d Kd(x, x) dx

>[0, 1]2d Kd(x, t) dx dt
.
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For i=3 we get

rd=D
d

j=1
(1+cja),

where a=1/6 for the non-periodic case, and a=1/12 for the periodic
case. Clearly, rd is uniformly bounded in d if ;.

j=1 cj <. and we have
strong tractability. We also have

rd=e C d
j=1 ln(1+cja) [ da C

d
j=1 cj/ln d [ daa+o(1)

for large d. This proves tractability and bounds on n(e, Hd) for i=3.
The case i=2 for the non-periodic case was studied in [4]. The periodic
case can be easily done by computing the corresponding rd.
For i=1, recall that ||f||Wd, c, 3 [ ||f||Wd, c, 1 . Hence the unit ball of Wd, c, 1 is a
subset of the unit ball of Wd, c, 3, and e(Qn, d; Wd, c, 1) [ e(Qn, d; Wd, c, 3) for any
algorithm Qn, d. Since the initial errors of multivariate integration are 1 in
both spaces, this proves that multivariate integration over Wd, c, 1 is no
harder than multivariate integration overWd, c, 3.2

2 It can be checked that the exponent q* cannot be improved by direct computation of rd.
Indeed, it is enough to consider small cj and use the asymptotic formulas for the kernels Kcj, 1
and K̃cj, 1

We now turn to necessary conditions on strong tractability and tracta-
bility. For i=2 these were established in [4] for the non-periodic and
periodic cases. For i=3 these were established in [2] for the periodic case.
Since the non-periodic case is no easier, the necessary conditions from the
periodic case also apply.
Hence, it remains to consider necessary conditions for the case i=1. For
the periodic and non-periodic case, the initial error is one. This means that
the periodic case is no harder than the non-periodic case, and it is enough
to study only necessary conditions for the periodic case. Our approach is to
apply the results from [3] which state necessary conditions on strong trac-
tability and tractability of the form of Theorem 1 under the assumptions
that the reproducing kernel has a decomposable part and that the corre-
sponding components of the representer of univariate integration are not
zero.
Consider the nested subspaces of W̃c, 1,

Ac={f ¥ W̃c, 1 : f(0)=0},

Bc={f ¥ W̃c, 1 : f(0)=f(1/2)=0}.
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It can be verified that the reproducing kernels of Ac and Bc are

KAc (x, t)=K̃c, 1(x, t)−
K̃c, 1(x, 0) K̃c, 1(0, t)

K̃c, 1(0, 0)

=a sinh(b(1−max(x, t)) sinh(b min(x, t)),

KBc (x, t)=KAc (x, t)−
KAc (x, 1/2) KAc (1/2, t)

KAc (1/2, 1/2)
,

where, as before, a=`c/sinh(`c) and b=`c. It is easy to check that
KBc is decomposable with a=1/2, see [3], i.e.,

KBc (x, t)=0 -0 [ x [ 1/2 [ t [ 1.

We split the kernel K̃c, 1 of W̃c, 1 as

K̃c, 1=KRc+KBc ,

where

KRc=
K̃c, 1(x, 0) K̃c, 1(0, t)

K̃c, 1(0, 0)
+
KAc (x, 1/2) KAc (1/2, t)

KAc (1/2, 1/2)

is the reproducing kernel of the two dimensional space

Rc :=span(K̃c, 1( · , 0), KAc ( · , 1/2)).

Obviously, Rc 5 Bc={0}, and therefore any element f of W̃c, 1 has a unique
decomposition, f=fRc+fBc with fRc ¥ Rc, fBc ¥ Bc. We use this decompo-
sition for the representer h1=1 of univariate integration. We have
hRc (x)=1−hBc (x) and hBc (x)=>10 KBc (x, t) dt. Let hBc, (0)(x)=hBc (x) for
x ¥ [0, 1/2] and hBc, (0)(x)=0 for x ¥ [1/2, 1], and hBc, (1)(x)=hBc (x)−
hBc, (0)(x) for x ¥ [0, 1]. Then we have for x ¥ [0, 1/2],

hBc, (0)(x)=
8as4 sinh(bx/2)

b
(c4 sinh(b(1−x)/2)−s4 cosh(bx/2)),

and for x ¥ [1/2, 1],

hBc, (1)(x)=
8as4 sinh(b(1−x)/2)

b
(c4 sinh(bx/2)−s4 cosh(b(1−x)/2)),
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with s4=sinh(b/4) and c4=cosh(b/4). We have hBc, (0)(x)=hBc, (1)(1−x)
for x ¥ [0, 1]. Therefore

||hBc, (0) ||W̃c, 1=||hBc, (1) ||W̃c, 1 .

Let Qn, d be an arbitrary algorithm. Then with the definitions above a
slight modification of the proof of Theorem 2 in [3] yields

e2(Qn, d; W̃d, c, 1) \ C
d

k=0
(1−n2−k)+ C

u ı {1, 2, ..., d}, |u|=k
D
j ¨ u
||hRcj ||

2
W̃cj, 1

D
j ¥ u
||hBcj ||

2
W̃cj, 1
.

Observe that the initial error can be written as

e2(Q0, d; W̃d, c, 1)=C
d

k=0
C

u ı {1, 2, ..., d}, |u|=k
D
j ¨ u
||hRcj ||

2
W̃cj , 1

D
j ¥ u
||hBcj ||

2
W̃cj, 1
.

Hence, we have

e2(Qn, d; W̃d, c, 1)
e2(Q0, d; W̃d, c, 1)

\
;d
k=0 C

−

d, k(1−n2
−k)+

;d
k=0 C

−

d, k

,

with

C −d, k= C
u ı {1, 2, ..., d}, |u|=k

D
j ¥ u

||hBcj ||
2
W̃cj, 1

||hRcj ||
2
W̃cj, 1

.

Observe that we can assume that all cj are small, say cj [ c* for a suffi-
ciently small c*, since the decrease of cj makes the unit ball of W̃c, 1 smaller,
and multivariate integration easier. For small c, it is easy to check that

||hBc, (i) ||
2
W̃c, 1=

c

96
(1+o(1))), i=0, 1.

Therefore

||hBcj ||
2
W̃cj, 1

||hRcj ||
2
W̃cj, 1

=
cj

48− cj
(1+o(1)).
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Hence,

C −d, k= C
u ı {1, 2, ..., d}, |u|=k

D
j ¥ u
c −j

with c −j=cj/48(1+o(1)).
This form of C −d, k is exactly as in [3], and therefore we can apply the
proof of Theorem 3 of [3] to conclude the necessary conditions on strong
tractability and tractability of multivariate integration. This completes the
proof. L

4. THE PERIODIC CASE MAY BREAK INTRACTABILITY

We now provide an example of a space Hd for which multivariate inte-
gration is intractable for the non-periodic case, whereas it is strongly
tractable for the periodic case. For such a space, periodicity of functions is
a very powerful property.
We define the reproducing kernel space Hd by its kernel. For d=1, we
take

K1, c(x, t)=K1(x, t)+cK2(x, t) -x, t ¥ [0, 1],

where

K1(x, t)=g1(x) g1(t)+g2(x) g2(t), K2(x, t)=B2(|x−t|),

where g1(x)=0 for x ¥ [0, 1/2], g1(x)=`2 for x ¥ (1/2, 1], and g2(x)=
`2 for x ¥ [0, 1/2), g2(x)=0 for x ¥ [1/2, 1]. As before, B2(u)=
u2−u+1/6 is the Bernoulli polynomial. Note that the functions gi have
disjoint support, and g1(x)=(1/`2) K1(x, 1), g2(x)=(1/`2) K1(x, 0).
Observe that Ki are reproducing kernels, and they generate Hilbert
spaces H(Ki) such that

H(K1)=span(g1, g2), H(K2)={f ¥ W̃2, 3 : I1(f)=0}.

The space H(K1) is two dimensional, and it can easily be checked that g1
and g2 are orthonormal. Hence, for f=c1 g1+c2 g2 we have ||f||

2
H(K1)=

c21+c
2
2. We also have I1(f)=(c1+c2)`2/2, and I1(f

2)=c21+c
2
2=||f||

2
H(K1).

The space H(K2) is a subspace of the periodic space W̃c, 3 with c=2.
Therefore the inner product in H(K2) is Of, gPH(K2)=>10 fŒ(t) gŒ(t) dt/2.
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Clearly, H(K1) 5H(K2)={0} and for any f ¥H(K1, c) we have a
unique representation f=f1+f2 with fi ¥H(Ki), and ||f||

2
H(K1, c)=

||f1 ||
2
H(K1)+c ||f2 ||

2
H(K2). Since I1(f)=I1(f1) and f(1)−f(0)=f1(1)−f1(0),

we conclude that

f1(t)=
`2

2
1F 1
0
f(t) dt+

f(1)−f(0)
2
2 g1(t)

+
`2

2
1F 1
0
f(t) dt−

f(1)−f(0)
2
2 g2(t),

and

||f||2H(K1, c)=
1
2
1F 1
0
f(t) dt+

f(1)−f(0)
2
22+1
2
1F 1
0
f(t) dt−

f(1)−f(0)
2
22

+
1
2c

F
1

0
((f(t)−f1(t))Œ)2 dt.

Consider now the univariate integration I1(f)=>10 f(t) dt=Of, hPH(K1, c)
with

h(x)=F
1

0
K1, c(x, t) dt=

`2

2
(g1(x)+g2(x))=1+.

Here 1+(x)=1 for all x ] 1/2, and 1+(1/2)=0. We also have
||h||H(K1, c)=1. We stress that the representer h does not have a component
in H(K2) since >10 B2(|x−t|) dt=0 for all x ¥ [0, 1].
For arbitrary d, we take as always

Hd=H(K1, c1 ) é · · · éH(K1, cd )

which has the reproducing kernel

Kd, c(x, t)=D
d

j=1
K1, cj (xj, tj).

The multivariate integration Id(f)=Of, hdPHd has the representer

hd(x)=1+(x1) 1+(x2) · · · 1+(xd)

which is almost everywhere equal to 1, and has norm 1.
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From our construction it follows that multivariate integration over Hd is
no easier than multivariate integration over

Fd=H(K1) éH(K1) é · · · éH(K1).

This follows from the fact that ||Id ||Hd=||Id ||Fd=1 and e(Qn, d; Hd) \
e(Qn, d; Fd) for any algorithm Qn, d.
It is known that multivariate integration over Fd is intractable for
deterministic algorithms, see [9]. Hence, it is also intractable over Hd and
this holds for arbitrary weights cj, including even cj=0.
We now turn to the periodic case. That is, for d=1 we take

H(K̃1, c)={f ¥H(K1, c) : f(0)=f(1)}.

It is easy to check that

K̃1, c(x, t)=1++cB2(|x−t|).

Then f ¥H(K̃1, c) has the form f=f1+cf2 with f1(x)=I1(f) 1+(x) and
f2 ¥H(K2). We now have

||f||2H(K̃1, c)=I
2(f)+

1
2c

F
1

0
((f(t)−I1(f))Œ)2 dt.

For d \ 1, we take

H̃d=H(K̃1, c1 ) é · · · éH(K̃1, cd ).

The representer of multivariate integration is still 1+(x), with norm one.
Basically, the multivariate integration problem over Hd is the same as over
W̃d, 2c, 3 which is strongly tractable iff ;.

j=1 cj <.. For such weights cj, the
periodic case breaks intractability.

5. THE PERIODIC CASE MAY INTRODUCE INTRACTABILITY

We now present an example of multivariate integration which is strongly
tractable in the nonperiodic case for some weights cj and becomes intract-
able in the periodic case for arbitrary positive weights. For this example,
periodicity of functions introduces intractability.
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For d=1, similarly as in [10], we take the kernel K1, c of the space
H(K1, c) as

K1, c(x, t)=h(x) h(t)+c(min(x, t)−xt),

where a function h is such that h(0)=1, h(1)=0 and I1(h) ] 0. Observe
that then f(1)=0 for all f ¥H(K1, c). It is easy to check that the inner
product in H(K1, c) is of the form

Of, gPH(K1, c)=f(0) g(0)+c
−1 F

1

0
(f(t)−f(0) h(t))Œ(g(t)−g(0) h(t))Œ dt.

For d \ 1, we take the tensor product

Hd=H(K1, c1 ) é · · · éH(K1, cd )

with the reproducing kernel

Kd(x, t)=D
d

j=1
K1, cj (xj, tj).

It is proven in [10] that multivariate integration for deterministic algo-
rithms is strongly tractable if there exists a number a ¥ (0, 1) such that
;.

j=1 c
a
j <.. This holds, in particular, for cj=j

−a with a > 1.
We now turn to the periodic case. For d=1, we already have f(1)=0,
and therefore we need only to assume that f(0)=0. That is, we switch to
the subspace {f ¥H(K1, c) : f(0)=0} which has the kernel

K̃1, c(x, t)=K1, c(x, t)−
K1, c(x, 0) K1, c(t, 0)

K1, c(0, 0)

=K1, c(x, t)−h(x) h(t)=c(min(x, t)−xt).

Note that

Of, gPH(K̃1, c)=c
−1 F

1

0
fŒ(t) gŒ(t) dt.

For d \ 1 we have H̃g=H(K̃1, c1 ) é · · · éH(k̃1, cd ) with inner product

Of, gPH̃d=(c1...cd)
−1 F

[0, 1]d

“
df(x)

“x1...“xd

“
dg(x)

“x1...“xd
dt.
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The reproducing kernel K̃d takes the form

K̃d(x, t)=c1...cd D
d

j=1
(min(xj, tj)−xjtj)

and multivariate integration Id has the norm

||Id ||H̃d=(c1...cj)
1/2 12−d/2.

It is easy to see that the weights cj do not play any role for this periodic
case since they cancel when we consider the ratio e(Qn, d; H̃d)/||Id || for any
algorithm Qn, d. Hence it is enough to consider the unweighted case for
which it is known that multivariate integration is intractable; see [3].
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plexity,’’ Academic Press, New York, 1988.

8. G. Wahba, ‘‘Spline Models for Observational Data,’’ SIAM-NSF Regional Conference
Series in Appl. Math., Vol. 59, SIAM, Philadelphia, 1990.
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11. H. Woźniakowski, Efficiency of quasi-Monte Carlo algorithms for high dimensional
integrals, in ‘‘Monte Carlo and Quasi-Monte Carlo Methods, 1998’’ (H. Niederreiter and
J. Spanier, Eds.), pp. 114–136, Springer-Verlag, Berlin, 1999.

TRACTABILITY OF INTEGRATION 499


	1. INTRODUCTION
	2. THREE SOBOLEV SPACES
	3. TRACTABILITY
	4. THE PERIODIC CASE MAY BREAK INTRACTABILITY
	5. THE PERIODIC CASE MAY INTRODUCE INTRACTABILITY
	ACKNOWLEDGMENTS
	REFERENCES

