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The eukaryotic V-type adenosine triphosphatase (V-ATPase) is a multi-subunit membrane protein complex that
is evolutionarily related to F-type adenosine triphosphate (ATP) synthases and A-ATP synthases. These ATPases/
ATP synthases are functionally conserved and operate as rotary proton-pumping nano-motors, invented by
Nature billions of years ago. In thefirst part of this reviewwewill focus on recent structural findings of eukaryotic
V-ATPases and discuss the role of different subunits in the function of the V-ATPase holocomplex. Despite struc-
tural and functional similarities between rotary ATPases, the eukaryotic V-ATPases are the most complex en-
zymes that have acquired some unconventional cellular functions during evolution. In particular, the novel
roles of V-ATPases in the regulation of cellular receptors and their trafficking via endocytotic and exocytotic path-
ways were recently uncovered. In the second part of this reviewwewill discuss these unique roles of V-ATPases
in modulation of function of cellular receptors, involved in the development and progression of diseases such as
cancer and diabetes as well as neurodegenerative and kidney disorders. Moreover, it was recently revealed that
the V-ATPase itself functions as an evolutionarily conserved pH sensor and receptor for cytohesin-2/Arf-family
GTP-binding proteins. Thus, in the third part of the reviewwewill evaluate the structural basis for and functional
insights into this novel concept, followed by the analysis of the potentially essential role of V-ATPase in the reg-
ulation of this signaling pathway in health and disease. Finally, future prospects for structural and functional
studies of the eukaryotic V-ATPase will be discussed.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The eukaryotic V-type ATPase (V-ATPase) is a multi-subunit mem-
brane protein complex that functions as a rotary proton-pumping
nano-motor. The structure of the V-ATPase is similar to that of the
F-ATP synthase found in the inner mitochondrial membranes of eu-
karyotes and the plasma membranes of eubacteria. It is also closely
related to the A-ATP synthase found in the plasma membranes of
archaea and some eubacteria [1–7]. They all have in common a
membrane-bound sector VO/AO/FO, with the “O” indicating the
oligomycin sensitive sector, which has been described for eukaryotic
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F-ATP synthases [8]. This membrane-integrated sector consists of the
motor and ion channel. The V1/A1/F1-sectors, which historically are
named according to the soluble factor (F1) of the beef heart mito-
chondrial F-ATP synthase, contain the ATPase/ATP synthase catalytic
sites [9]. As indicated by the bipartite names, these ATPases/ATP
synthases are evolutionarily related, functionally conserved and op-
erate as rotary proton-pumping nano-motors, invented by Nature
billions of years ago [1,10–18].

The eukaryotic V-ATPase is a 900 kDa membrane-intrinsic protein
complex consisting of multiple subunits called: A, B, C, D, E, F, G, H,
a, c, c′, c″, d and e that are distributed in two sectors called V1 and VO

(Table 1). A fundamental feature exclusive to V-ATPases is the revers-
ible assembly/disassembly of the V1 and VO sectors. Originally, this im-
portant mechanism was observed in response to ceased feeding in
Manduca sexta (M. sexta) [19,20] and in response to glucose depletion
in Saccharomyces cerevisiae (S. cerevisiae) [21–23]. Notably, neither
disassembly nor reassembly of V-ATPase requires new protein synthe-
sis. The relative scarcity of the sample and its tendency to disassemble
into V1 and VO sectors has so far prevented crystallization of the intact
enzyme. Instead, a hybrid approach to the structural analysis of the
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mailto:Vladimir_Marshansky@hms.harvard.edu
mailto:Vladimir.Marshansky@kadmon.com
http://dx.doi.org/10.1016/j.bbabio.2014.01.018
http://www.sciencedirect.com/science/journal/00052728


Table 1
Homology of subunit isoforms and the corresponding genes of V-ATPase, A-ATP synthase and F-ATP synthase. The table shows the list of the
V1-sector subunits, followed by the subunits of VO sector and, finally, by the accessory subunits. The subunits that form the “stators” of these
nano-motors are shown in black, while “rotor” forming subunits are indicated in red. The F-subunits of V-ATPase and A-ATP synthase are ho-
mologues in their 3D structure and different to the ε−subunit of F-ATP synthase. However, all of these subunits are proposed to be involved in
the couplingmechanisms between the catalytic headpieces and themembrane-embedded parts of these enzymes. The homology of subunit G
of V-ATPases and A-ATP synthases to the bacterial b subunit of F-ATP synthases is based on the sequence similarity of their soluble domain. The
homology of a-subunits of the V-ATPases and A-ATP synthases to the a-subunit of F-ATP synthases is related to their functional role in ion-
pumping activity. However, a-subunits of V-ATPases and A-ATP synthases are ~100 kDa proteins compared to the ~25 kDa membrane-
embedded a-subunit of F-ATP synthases.
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V-ATPase has proven most successful. Single particle electron cryo-
microscopy (cryo-EM) provides low-resolution maps of the intact en-
zyme, while X-ray crystallography and NMR spectroscopy provide
atomic models of individual subunits and subcomplexes. Thus, in the
first part of this review we will focus on the novel structural findings
from cryo-EM of holocomplexes and X-ray crystallography/NMR spec-
troscopy of subunits recently determined for eukaryotic V-ATPases
from M. sexta and S. cerevisiae. Based on this hybrid approach, we will
also analyze the general principles and functional insights into the reg-
ulation of V-ATPase's primary function as a proton-pumping rotary
nano-motor.

In spite of the structural and functional similarities between rotary
ATPases, the eukaryotic V-ATPases are the most complex nano-motors
that have acquired some unconventional cellular functions during
evolution. In particular, during the last decade unconventional roles of
theV-ATPases in the regulation of cellular receptors and their trafficking
via endocytotic and exocytotic pathways were uncovered. Thus, in
the second part of this review we will discuss these novel roles of
V-ATPases in modulation of function of cellular receptors that are in-
volved in the development and progression of diseases such as cancer
and diabetes as well as neurodegenerative and kidney disorders. More-
over, we have recently described that the V-ATPase also functions as
an evolutionarily conserved pH sensor and receptor for cytohesin-2/
Arf-family GTP-binding proteins. Thus, in the final part of this review
we will evaluate the structural basis for and functional insights into
this novel concept, followed by the analysis of the potentially essential
role of V-ATPase in the regulation of this signaling pathway in health
and disease.
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2. Structural insights into the eukaryotic V-ATPase: frommoderate
to high-resolution structures

2.1. The structure of the eukaryotic V1VO ATPase

2.1.1. Overall structure of the V1VO holocomplex
Eukaryotic V-ATPases are multiprotein complexes that consist of 14

different subunits A3B3CDE3FG3HacXc′Yc″Zde, where the stoichiometry
(X,Y,Z) of the c, c′, and c″-subunits are not known. Many of these
subunits are present in multiple isoforms [1,3,4]. The V-ATPase has a
Fig. 1. Summary of current structural information for the eukaryotic V-ATPase. A) The structur
olution. Most of the subunits of the complex could be identified in this map, including subun
C (brown), a (green), and the cc′c″ ring (pink). Crystal structures are known for the H-subun
brown) [57] and F-subunit (blue) [63]. B) The structure of the S. cerevisiae V-ATPase after ~90O o
eral stalks are indicated as S1, S2 and S3, respectively. However, while the peripheral stalks S1 a
ture of theV-ATPase after a ~180O of counter clockwise rotation of the image is shown inPanel A
after ~270O of counter clockwise rotation of the image shown in Panel A. The positions of periph
(aN), while the transmembrane C-terminal part is indicated as (aC). The proximal lobe of the a
terminal domain of H-subunit are shown as (CTD) and (NTD), respectively. Foot, neck and head d
1HO8) (F-subunit, PDB ID: 4IX9) (E-subunit, PDB IDs: 4dl0 and 4efa) (G-subunit, PDB IDs: 4dl
bipartite structure consisting of a soluble cytoplasmic V1-sector (sub-
units A3B3CDE3FG3H) and a membrane-integrated VO sector (subunits
a, c, c′, c″, d, and e), which together form the V1VO holocomplex
(Table 1) (Fig. 1A–D). Electron microscopy (EM) image analysis
[5,24–30] and small-angle X-ray scattering (SAXS) [28,31,32] have pro-
vided a general outline for the structural organization of the V1 and VO

sectors as well as the assembled V1VO holocomplex (Fig. 1A–D). Both
sectors are linked by connecting regions that are important for coupling
proton translocation in VOwithATP hydrolysis in V1, and are involved in
regulating the activity of the enzyme by reversible disassembly. These
e of the S. cerevisiae V-ATPase was determined from single particle cryo-EM at ~11 Å res-
its A (yellow), B (red), D and F (blue), d (light blue), E (purple), G (beige), H (orange),
it (orange) [61], C-subunit (brown) [58], the EG&C-head subcomplex (purple, beige and
f counter clockwise rotation of the image shown in Panel A. The positions of three periph-

nd S2 are clearly seen, the peripheral stalk S3 is hidden behind A3B3 hexamer. C) The struc-
. Thepositions of peripheral stalks S1 and S3 are indicated. D) The structure of theV-ATPase
eral stalks S2 and S3 are indicated. The cytosolicN-terminal part of a-subunit is indicated as
2N is marked as (aNPL) and distal lobe is marked as (aNDL). The C-terminal domain and N-
omains of the C-subunit are also indicated. (C-subunit, PDB ID: 1U7L) (H-subunit, PDB ID:
0 and 4efa) The scale bar represents 25 Å. Adapted with permission from [30].
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connecting regions consist of the central stalk subunits (D, F, and d), cen-
tral ring (c, c′, and c″) and peripheral stalk subunits (E, G, C, H, e and a)
(Fig. 1A–D).

2.1.2. Structural features of the V1 sector: catalytic hexamer A3B3
The alternating arrangement of A and B subunits in the V1 region of

the V-ATPase was expected from the crystal structure of the F1 region
from the related F-ATP synthase [33]. Indeed, 3D maps of the V1 part
[24,34] andV1VOATPase ofM. sexta and S. cerevisiae, derived from single
particle analysis of electronmicrographs also showed a similar arrange-
ment of the V1 complex [24,30]. The most notable structural difference
between the A and B subunits is due to the protuberances at the top of
the catalytic subunits A, that is formed by an insert of 80–90 amino acids
and called “non-homologous region” [35,36]. These structural differ-
ences were further confirmed by the crystallographic structures of ho-
mologous subunits A [37] and B [38] of the related A-ATP synthase.
The asymmetric crystal structures of the entire A3B3 and A3B3DF com-
plexes of the A-ATP synthase from Enterococcus hirae (E. hirae) were re-
cently solved at high resolution, giving insights into the rotational
mechanism inside the catalytic hexamer A3B3 [39].

2.1.3. Structural features of the V1 sector: peripheral stalks
The most striking structural difference between evolutionarily relat-

ed F-ATP synthases, A-ATP synthases and eukaryotic V-ATPases is the
number of peripheral stalks of these nano-motors. Importantly, these
features may also reflect some fundamental differences in their function
and regulation. Using a combination of EM approaches, including 2D and
3D negative stain EM as well as 3D cryo-EM and mass-spectrometry
analysis it was demonstrated that unlike the F-ATP synthase, which
has one peripheral stalk [40–44], A-ATP synthases have two [45–50]
and V-ATPases have three peripheral stalks [5,28,29,51–56]. In particu-
lar, the evidence for two peripheral stalks in A-ATP synthases came
fromnegative stain EMof holocomplexes fromMethanococcus jannaschii
(M. jannaschii) [45], Caloramator fervidus (C. fervidus) [46] and Thermus
thermophilus (T. thermophilus) [47] enzymes. This model of subunit
arrangement in A-ATP synthases was further supported by mass spec-
trometry [48] and 3D maps from cryo-EM [49,50]. In particular, cryo-
EM of the A-ATP synthase from T. thermophilus, initially reached a reso-
lution of ~16 Å [49], which was sufficient to discern the arrangement
of subunits within the complex. Subsequent cryo-EM analysis yielded a
map at ~10 Å resolutionwhich allowed tracingmany of the alpha helices
of the enzyme [50]. The first evidence for three peripheral stalks in the
eukaryotic V-ATPase was obtained from mass spectrometry [29,55]
and negative stain EM [28,29] analysis. These structures were then
seen clearly in cryo-EM of the M. sexta [5] and S. cerevisiae enzymes
[30] (Fig. 1). The shape of these peripheral stalks fits well with SAXS-
derived structures of subunits EG [28] and EGC [28,56] as well as
the crystallographic structure of the subunit assembly EGChead of the
S. cerevisiae V-ATPase [57], including the head domain of subunit
C. Thus, these data further confirmed the EM, mass spectrometry and
biochemical evidence demonstrating that three E and G-subunits
are found in the eukaryotic V-ATPase complex, forming three EG-
heterodimers in the three peripheral stalks (Fig. 1A–D) [5,28,29,55].

2.1.4. Structural features of the V1 sector: collar-like structure
The combination of EM analysis [28–30] and the SAXS-derived struc-

ture of the EGC-domain [28,56] as well as electronmicroscopy with anti-
body labeling [54] demonstrated that the boot-shaped 103 Å long
subunit C [56,58] is positioned parallel to the membrane-embedded VO

sector, and links two of the peripheral stalks, referred to as S2 and S3,
by interacting with the N-termini of these EG-heterodimers (Fig. 1B–D)
[59,60]. The 3D maps of M. sexta and S. cerevisiae V-ATPases revealed
that beside the domain filled by subunit C, two additional subunits
form the collar-like structure. The crystal structure of subunit H of the
S. cerevisiae V-ATPase [61] produced a volume that fits in the density of
the upper domain (Fig. 1A–C). In this arrangement, the C-terminal part
of subunit H has a large surface interaction with the middle section of
the N-terminal part of the VO subunit a, which connects two peripheral
stalks, including the one (S2) that is in close proximity to the foot domain
of subunit C (Fig. 1A, B, and D). In comparison, the N-terminal part of
subunit H iswell exposed and accessible from all sides for binding to pro-
teins or to act as an adaptor between Nef and the adaptor protein com-
plex 2 (AP-2) [62].

2.1.5. Structural features of the V1 sector: central stalk
Low-resolution structures of the eukaryotic V1 sector and V1VO

holocomplex of ATPases had shown that the catalytic A3B3 hexamer
and the VO sector are separated by an approximately 100 Å long central
stalk, consisting of the subunits D, F andd, with subunit d forming the bot-
tom of the central stalk (Fig. 1C, D) [5,28–31]. The N and C termini of sub-
unit D penetrate into the cavity of the A3B3 headpiece (Fig. 1C, D). The
NMR solution structure and crystal structure of the S. cerevisiae subunit
F [63] fits well into the 11 Å cryo-EM map of the S. cerevisiae V-ATPase
[30,63]. The N terminus of subunit F and the bottom segment of D fit
into a cavity in subunit d [63], which, according to the structure of the
related A-ATP synthase subunit C, has a funnel shaped structure [64,65]
with a central cavity. The bottom region of the A-ATP synthase subunit
C has a diameter of about 30 Å, which is suitable for binding to the cen-
tral cavity of the c-ring of the VO sector. The A-ATP synthase subunit C
and eukaryotic V-ATPase subunit d have been described to be a spacer
that plays a role in coupling rotation between the c-ring and V1 regions
of the enzyme (Fig. 1C, D) [6,64,65].

2.1.6. Structural features of the VO sector: a-subunit and c-ring
In eukaryotic V-ATPases six subunits and two accessory proteins

have been identified as a part of the VO sector. In S. cerevisiae, VO consists
of subunits a (two isoforms in yeast are coded by the VPH1 and STV1
genes), c, c′, c″, d and e (Table 1) [4,66]. In comparison, the mammalian
VO sector is composed of five different subunits, since no gene has been
found for the c′ subunit (Table 1). Thus, the mouse and human VO sec-
tors are formedby the following subunits: a (a1, a2, a3 and a4 isoforms),
c, c″, d (d1 and d2 isoforms) and e (e1 and e2 isoforms), respectively
(Fig. 1). Moreover, in contrast to S. cerevisiae, the mammalian VO

contains the two additional subunits Ac45 and M8-9 [4,66]. According
to current structural models, the VO sector is composed of a ring of
c-subunits and the adjacent single copy of the a-, e-, Ac45 and M8-9
subunits [4,66,67]. However, the stoichiometry of the e-, Ac45 and
M8-9 subunits remains to be clarified and they are not shown in the
structural V-ATPase model (Fig. 1). As suggested by the 3D map of the
VO sector from bovine brain clathrin-coated vesicles V-ATPase, accesso-
ry subunit Ac45 contacts the c-ring from the lumen side [27,68]. On the
other hand, the N-terminal cytosolic tail of the a-subunit is oriented
parallel to the cytoplasmic surface of the membrane and in close
proximity to the N terminus of the H-subunit [28–30] (Fig. 1A–C). A re-
cent SAXS-derived structure of the N-terminal tail a104–363 of the
S. cerevisiae V-ATPase, suggested the organization of the connection be-
tween the cytoplasmic N-terminal and the transmembrane C-terminal
domains of a-subunit [32]. This arrangement makes the N-terminal
part of subunit a accessible for cytohesin-2 and Arf-family GTP-
binding proteins, described to be essential for various signaling path-
ways [1,69,70] (see details below). The C-terminal part of subunit a is
membrane-embedded and its transmembrane topology remains con-
troversial [70]. Previously, six [71,72], eight [73,74], and nine [75,76]
transmembrane helix topology models of the C terminus of a-subunit
of the V-ATPase have been proposed. However, recent studies strongly
indicate an eight transmembrane topology for the yeast a-isoforms
(Vph1p and Stv1p) [77,78]. According to the topology model with
eight transmembrane helices, both N and the C termini of these
isoforms are located in the cytosol, which is supported by experimental
data showing interaction of phosphofructokinase-1with the C-terminal
tail of the human a4- and a1-isoforms [79]. The recent cryo-EM map
of the S. cerevisiae V-ATPase showed that the contact between the
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C-terminal and ion-translocating domain of a-subunit and the c-ring is
small and occurs near the middle of the membrane region [30]. In this
3D map the c-ring has an average outer diameter of about 85 Å and an
average inner diameter of about 40 Å, enabling the fit of the
crystallographic structure of the c-ring of the related E. hiraeA-ATP syn-
thase, which is composed of ten c subunits, each with four transmem-
brane α-helices [80]. The c- and c′-subunits are 16 kDa proteins,
proposed to contain four transmembrane helices with two cytosolic
loops exposed to the cytosol, while the c″ subunit is a 23 kDa poly-
peptide with five putative transmembrane helices, two loops and a
C-terminal tail exposed to the cytosol [81,82]. At the moment, the sub-
unit composition and number of transmembrane helices in the c-rings
of eukaryotic V-ATPases are an open questions.
Fig. 2.High-resolution structures of subunits E and G of eukaryotic V-ATPase. A) Superpo-
2.2. High-resolution structures of key eukaryotic V-ATPase subunits and
their implication to function

To date, as with many other proteins, homologues of the eukaryotic
V-ATPase from thermophilic eubacteria or archaea A-ATP synthase
have led theway for structural analysis. Crystal structures have been de-
termined for the A1 regions (A3B3DF) from T. thermophilus [83] and
E. hiraea [39], the EG-peripheral stalk subcomplex from T. thermophilus
[84], and the isolated DF subcomplex from E. hiriae [85]. From the AO

region of enzymes from thermophilic archaea and eubacteria, crystal
structures have been determined for the equivalent of the d subunit
from T. thermophilus [64,65], the N-terminal domain of the equivalent
of the a-subunit from Meiothermus ruber (M. ruber) [86], and the c10-
ring from E. hirae [80]. Importantly, all these crystal structures were
useful for fitting into cryo-EM maps of both eukaryotic M. sexta and
S. cerevisiae V-ATPases (see discussion above). For the eukaryotic
V-ATPase, only a few crystal structures are available and all from the
S. cerevisiae enzyme. In particular, during the last decade the individual
subunits C [58], E [57,87,88], F [63], G [57,89,90] and H [61] of the
S. cerevisiae V-ATPase have been solved at high resolution, Most recent-
ly, the crystal structure of an EGChead subcomplex was determined [57].
These structures fit into a cryo-EM map of the V-ATPase as shown in
Fig. 1A.
sition of subunit E of the S. cerevisiaeV-ATPase solved at 2.91 Å (purple; PDB ID: 4dl0) and
2.82 Å resolution (pink; PDB ID: 4efa) [57] and the NMR solution structure of E1-69 (red,
PDB ID: 2KZ9) [87]. B) Comparison of the S. cerevisiae G subunit determined at 2.91 Å
(wheat; PDB ID: 4dl0) and 2.82 Å resolution (brown; PDB ID: 4efa) [57] and the NMR
structure of G1–59 (yellow, PDB ID: 2K88) [90]. The short random coil “bulge” includes
the residues 63GGVG66.
2.2.1. C-subunit: collar-like structure
As shown for its hydrated [56] and crystallized form [58], subunit C is

a boot-shaped protein with an upper head domain, composed of both
α-helices and β-strands (residues 166–263) and a globular foot domain
(residues 1–55 and 320–392). Both domains are connected by an elon-
gated helical neck domain (Fig. 1A, D) [58]. During physiological stress,
such as deprivation of glucose from themedia or a drop in the ATP/ADP
ratio [78], eukaryotic V-ATPases undergo a reversible disassembly of
their V1 and VO sectors and regulatory dissociation of C-subunit from
V-ATPase [91]. The critical role of the C-subunit in V-ATPase function
was also supported by mutational analysis studies [59]. The location
and orientation of the C-subunit in the V-ATPase complex enables its
binding to actin [58], ADP/ATP [92] andWNT-kinase [93]. These interac-
tions take place via its C-terminal foot domain, which is in proximity to
theN-termini of an EG-heterodimer, formingperipheral stalk S2, aswell
as in theneighborhood of theN-terminal region of subunit a (Fig. 1A, D).
It is noteworthy that interaction affinity of the EG-peripheral stalk (S2)
and the foot domain of subunit C is lower compared to the interaction
affinity between subunit C and the EG-peripheral stalk (S3 in Fig. 1A,
D) [94,95]. Moreover, it was suggested that ATP/ADP-binding [92]
and/or phosphorylation [93] of subunit C could alter the stability of
a-subunit EGC-assembly by affecting its binding properties with either
the EG-heterodimer or with actin. Thus it is tempting to propose that
modulation of these interactions is critical in reversible disassembly
of V1 and VO sectors and regulatory dissociation of C-subunit from
V-ATPase [19,21,22,95].
2.2.2. Subunits E and G: peripheral stalks
Subunit E of the S. cerevisiae V-ATPase contains a 110 amino acids

long N-terminal α helix and a globular C terminus, consisting of a
mixture of α-helices and β-sheets, arranged as β1:α1:β2:β3:β4:α2,
and connected by flexible loop regions (Fig. 2A) [57,87,88]. Subunits E
and G form a ~150 Å long complex (Figs. 1A, 2A, B and 3E) with both
N-termini folded into a noncanonical, right-handed coiled coil. The
N-terminal helix of subunit G (α1) (Fig. 2B) contains a deformity
starting around N61, characterized by a short random coil “bulge”,
which includes the residues 63GGVG66. These amino acids are flanked
by residues predicted to be disordered [57], a phenomenon also pro-
posed for the equivalent region in subunit E. These areas in EG are pro-
posed to be important during the association of the EG-heterodimer
and subunit C [57]. A short helix between E67 to Q77, called the
“rectifying” helix (α2) (Fig. 2B), follows the random coiled structure
in subunit G and allows G to cross subunit E at an angle of about 45°
and to bring the E and G-subunits back into a parallel orientation
(Figs. 1 and 3E). Subsequently, two α helices, made up by the residues
78G to K90 (α3) and K91 to K104 (α4), follow the “rectifying” helix
at an angle of 120° and 103°, respectively (Fig. 2B). Due to the interrup-
tion and orientations of theseα-helices in the C terminus of subunit G, a



Fig. 3. Structural insights of the threeEG-heterodimers and their implication to V-ATPase function.A–D)The 3D reconstruction EMmapof the 11Å resolution EMdensity of the S. cerevisiae
V-ATPase [30] in three different side views (A–C) and one top view (D). A–C) The three peripheral stalks, formed by the three EG-heterodimers, show different kinked features in the
upper C-terminal- and/or middle domain of the peripheral stalk (indicated by arrows). The three differently shaped peripheral stalks are indicated as S1 (brown), S2 (light pink) and
S3 (pale green). Side view (E) and top view (F) of the three peripheral stalks of the EM map fitted with the atomic structures of curved 2.82 Å resolution structure of the S. cerevisiae
EG-heterodimer. E, F). The crystallographic structure of the subunit E (pink) and G (light orange) assembly fits into the peripheral stalk S2 and S3 of the EM density. In contrast, a fit
could not be achieved with peripheral stalk S1.
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three-helix bundlewith an extensive hydrophobic core can be arranged
with the C-terminal helix of subunit E, revealing relative the stability in
the C-terminal domain of the EG-heterodimer (Figs. 1A and 3E). In par-
allel, a second conformation of the EG-heterodimer, including the head
domain of subunit C, has been determined at 2.82 Å resolution [57].
Whereas the N-terminal α-helix (residues Q3 to A62) of the 2.91 Å res-
olution structure described above [57] fits well with the NMR solution
structure of the N-terminal helix of G1–59 of the S. cerevisiae V-ATPase
[89], the N-terminal helix of G in the 2.82 Å resolution is turned by
around 47° (Fig. 2B). A similar phenomenon can also be seen in the
comparison of the N-terminal helix of subunit E (Fig. 2A). A second
hinge region rearrangement between both structures in the C-terminal
region of E and G are in proximity to the “rectifying” helix of subunit G
and the region close to residueM84 in subunit E [57]. The two structures
of the EGChead of the S. cerevisiae V-ATPase indicate that concerted rear-
rangements in the individual subunits E and G will allow the incorpora-
tion of the peripheral stalk(s) into the enzyme during assembly of V1 and
VO and vice versa during the process of disassembly.

As seen in the 3Dmaps of the S. cerevisiae enzyme [29,30], the three
peripheral stalks are not identical, with a different degree of twisting in
the C-terminal and/or middle part of the shape and called S1, S2 and S3
(Fig. 3). The 2.82 Å resolution crystal structure of the curved S. cerevisiae
V-ATPase EG-heterodimer fits into peripheral stalks S2 and S3 of the 11
Å resolution EM density of the S. cerevisiae V-ATPase with relative
correlation coefficients of 0.916 and 0.972, respectively (Fig. 3E, F).
In comparison, no proper fitting could be achieved with peripheral
stalk S1, indicating the differences of the three peripheral stalks in the
V-ATPase complex (Fig. 3E, F). In all arrangements the C termini of the
EG-heterodimers are located at the very top of the A3B3-hexamer and
enable the connection(s) of the catalytic headpiece with the subunit C,
H and a, which, as discussed above, form the collar domain of the en-
zyme (Figs. 1A–D, 3A–C).

Most recently, the peripheral stalks of V-ATPases have been proposed
to provide transient elastic energy during the rotary catalytic cycle, with
subunit E tethering the peripheral stalk to the V1-headpiece sector
[57,84,96] (Fig. 3A–C). This suggestion has been made based on the
first determined heterodimeric right-handed coiled-coil (RHCC) struc-
ture of the T. thermophilus EG-subunits of the related A-ATP synthase,
where the RHCC contains a hendecad- and a quindecad repeat [84].
As shown in Fig. 2B, subunit G of the S. cerevisiae V-ATPase is entirely
α-helical with a long N-terminal helix and a shorter C-terminal helix,
which are linked by a sharp kink. These, together with the two observa-
tions of the more straight E and curved-shaped E structure, support the
proposed flexibility in the stator subunits, which alters the conformation
of the extended N-terminal helix of subunit E from a straight to a curved
structure after a rearrangement of the two flexible helices and vice versa.
These alterations move the N-terminal helix of subunit E away or closer
to the N-terminal helix of subunit G (Fig. 3E). Combined with the
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rotation of the left-handed coiled-coil structure of the central subunit D,
the movements of subunit E relative to G would facilitate the storage of
transient elastic energy during rotary motion. Whether the arrange-
ments of the random coiled bulge region, the “rectifying” helix α2 and
the C-terminal helices α3–α4 in subunit G (Fig. 2B) contribute to the
storage of elastic energy due to ATP hydrolysis and/or whether they
store during the processes of reversible disassembly, have to be investi-
gated in the future. Importantly, direct evidence of flexibility within the
V-ATPase during its function as rotary nano-motor has been recently ob-
tained using electron microscopy [97,98].
2.2.3. Subunit F and H: regulatory subunits
During catalysis the central stalk subunit F is proposed to undergo

structural alterations by interacting with subunits A, B, D and d in a nu-
cleotide dependent manner (Fig. 1C, D) [63,99,100]. The N-terminal 94
amino acids of S. cerevisiae subunit F has an elliptical shapewith a size of
30 × 16 × 38 Å (Fig. 1A). It contains four-parallel β-strands, which are
intermittently surrounded by four α-helices forming an egg-shaped
structure (Figs. 1A and 4A). This elliptical N-terminal domain is connect-
ed via a linker segment to the C-terminalα5-helix with the residues 103
to 113 [63,101]. The surface electrostatic potential of F shows that one
side of the protein is hydrophobic and proposed to face the rotating
subunit D, whereas the opposite side is composed of both positive and
negative charge [63]. Two loops, which are conserved in eukaryotic
F subunits, have been determined in the crystal structure, located be-
tween the α1–β2 (26GQITPETQEK35) (Fig. 4A) and α2–β3 (60ERDDI64).
In the V-ATPase complex the 26GQITPETQEK35-loop (Fig. 4A) faces the
C-terminal serine residue S381 of subunit H (Fig. 4B), revealed to be
involved in cross-linking subunit F of the disassembled V1 sector
Fig. 4.High-resolution structures of the eukaryotic V-ATPase subunit F and H. A, B) Struc-
ture of the S. cerevisiae subunit F (blue; PDB ID: 4IX9) [63] with its characteristic
26GQITPETQEK35-loop (red). Subunit D is shown in beige. A) The sulfhydryl cross-linker
4-(N-maleimido)benzophenone (MBP) (stick; green) is described to link the H-subunit
(brown) (PDB ID: 1HO8) [61] and F subunit via the H-subunit residue S381 (red) only
in the free S. cerevisiae V1 domain [103]. B) It has been proposed that the disassembly of
the V1 from the VO part causes alterations in the C-terminal domain of subunit H
(yellow), bringing the epitope around residue S381 in close proximity to the exposed
loop 26GQITPETQEK35 (red) of subunit F [63].
[102,103]. This arrangement of the 26GQITPETQEK35-loop relative to
the C terminus of H led to the proposal, that in the process of V1 and
VO disassembly the flexible C-terminal domain of subunit H moves
slightly closer to its nearest neighbor, the exposed 26GQITPETQEK35-
loop of subunit F, where it causes conformational changes, leading to
an inhibitory effect of ATPase activity in the V1 ATPase [30,63,103].
15N-[1H] heteronuclear NOE studies on the S. cerevisiae subunit F re-
vealed a rigid core formed by ß-strands, ß1 to ß4, andα2 toα4. In com-
parison, the N- and C-terminal helices α1 and α5 with their adjacent
loops 26GQITPETQEK35 and 94IPSKDHPYD102, respectively, aremore flex-
ible in solution [63]. TheN-terminal helixα1 of subunit F and the bottom
segment of subunit D form the neighborhood with subunit d [63]. It has
been proposed that this area undergoes alterations during the process of
disassembly and reassembly of the V1 and VO sectors. In this scenario the
higher flexibility of α1 in subunit F would allow it to transmit the alter-
ation of subunit d during dissociation from the DF-heterodimer and also
allow the movement of subunit H closer to F, via the neighboring
26GQITPETQEK35-loop [63].

The crystal structure of the S. cerevisiae subunit H (54 kDa) is an
α-helical subunit, whose N- and C-terminal domain form a shallow
groove, which are connected by a flexible four-residue loop (Figs. 1A,
B and 4B) [61]. The structural rearrangement of both the N- and
C-terminal domain, which is needed to bring both subunit H and F in
close proximity, is mediated through the flexible four-residue linker
segment regulating the ATPase activity of the enzyme [30]. The 11 Å
resolution cryo-EMmap of the V-ATPase from S. cerevisiae [30] allowed
for accurate docking of the yeast V-ATPase crystal structure of subunit
H. This docking suggested a mechanism by which the H-subunit of the
enzyme inhibits ATP hydrolysis upon separation of the V1 and VO

sectors as shown by biochemical experiments [103,104]. This model
suggests that upon V1VO disassembly the inhibitory C-terminal domain
of the H-subunit loses its binding site on the N-terminal domain of sub-
unit a (Fig. 1B). Due to flexibility in the linker that connects the N- and
C-terminal domains of the H-subunit, the C-terminal domain is free to
sample different orientations, so that it can bind to an inhibitory posi-
tion on V1 [30,102–104]. The molecular mechanism of this inhibition
was discussed above in detail (Fig. 4) [63].
3. V-ATPase is the nano-motor invented by Nature billions
of years ago

3.1. Function of V-ATPase as a rotary proton-pumping machine

As discussed above, eukaryotic V-ATPase consists of a soluble cata-
lytic V1 (A3B3DE3FG3H) and a membrane-bound VO sectors (acc′c″de)
(Table 1) (Figs. 1 and 5). However, within these two sectors there are
other functionally identifiable subcomplexes. The DFcXc′Yc″Zd subcom-
plex comprises the rotor of the nano-motor which consists of central
stalk (DFd) subunits and proteolipid c-ring (cXc′Yc″Z) subunits (Fig. 5,
rotor is shown in gray and outlined by the dashed-lines). The rotor of
the V-ATPase nano-motor is surrounded by its stator which consists
of: i) a catalytic hexamer (A3B3) subcomplex and ii) collar-like structure
formed by the subunits C, H and a. These two subcomplexes are con-
nected by three peripheral stalk (EG) subcomplexes, while subunits
a and e form the membrane-embedded part of the stator (Table 1)
(Figs. 1 and 5). During its principal activity of ATP-driven proton
pumping, ATP hydrolysis in the interfaces of the A and B subunits
induces conformational changes that drive rotation of the rotor sub-
complex (Fig. 5, rotor). Clockwise rotation of the c-ring of the rotor
against the a-subunit of VO sector drives the translocation of protons
across the membrane. The peripheral stalk subcomplexes serve to re-
strain the a-subunit to the A3B3-subcomplex, allowing the relative rota-
tion of the rotor against the a-subunit. It is very likely that the c-ring of
the rotor also rotates against the e-subunit of VO sector, however, its
exact location in the V1VO V-ATPase holocomplex is currently unknown.



Fig. 5. V-ATPase is a primary proton-pumping nano-motor invented by Nature billions of years ago. During function of V-ATPase as a proton-pumping nano-motor, the hydrolysis of ATP
induces conformational changes that promote clockwise rotation of the rotor subcomplex against the stator subcomplex (viewed from the V1 region toward the VO region). The colors
of the stator subunits of V-ATPase are indicated as in Fig. 1, while the c-ring and DFd subunits forming rotor are shown in gray. This rotation in turn drives the translocation of protons
(indicated by red arrows) from the cytosol to lumen of endomembrane organelles of endocytic (endosomes, lysosomes, and phagosomes) and exocytic pathways (Golgi, secretory ves-
icles) and, thus, gives rise to the generation of an electrochemical proton gradient or a proton-motive force (pmf) across themembrane. The pmf consists ofmembranepotential (ΔΨ) and a
proton gradient (ΔpH). The values ofΔΨ=27mV andΔpH=2.2 unitswere previously determined in early phagosomes using direct a FRET approach [118]. In endosomes, the V-ATPase
driven current of protons is neutralized by electrogenic CLC-5 (2Cl−/H+-exchanger), which promotes an additional acidification and accumulation of Cl− ions (indicated by black arrows).
Importantly, the coupled function of V-ATPase with 2Cl−/H+-exchangers is a universal mechanism, which provides an additional control of differential acidification generated
by V-ATPases located either on plasma membrane or in endomembranes of other intracellular organelles [1]. The localization of the cytosolic V1-sector and transmembrane VO sector is
shown on the left, while the location of catalytic hexamer, central stalk region and proton pathway is shown on the right. Themovies showing the rotation of yeast V-ATPase and bacterial
F-ATP synthase nano-motors were previously published [1].
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The hydrolysis of ATP by the catalytic hexamer (A3B3) of V-ATPase
induces conformational changes that drive clockwise rotation (viewed
from the V1 region toward the VO region) of the rotor against the stator
(Fig. 5). In contrast, the ATP synthase nano-motors rotate in a counter
clockwise direction (viewed from the V1 region toward the VO region),
when driven by proton gradients. Thus, this structural design of
ATPases/ATP synthases allows the relative rotation of the membrane-
embedded c-ring rotor against the stator's transmembrane subunits,
which in turn drives the translocation of protons across the membrane.
The basis of rotary catalysis in the V1 regions of ATPases/ATP synthases
is currently emerging from high-resolution crystal structures from
A-ATPases [39,63,83] and reconstitution studies [105]. In particular, a re-
cent study has reported the asymmetric structures of the nucleotide-free
and nucleotide-bound A3B3 hexamer of the E. hirae A-ATPsynthase, and
thus, has revealed the conformational changes of A3B3 hexamer during
the cooperative binding of nucleotides in this rotary nano-motor [39].
On the other hand, the question of how rotation of the central rotor is
coupled to proton translocation through themembrane is still enigmatic.
The dominant model for this mechanism proposes two offset half-
channels: one channel that exchanges protons from one side of the
membrane and the middle of the lipid bilayer, and a second that
exchanges protons from the middle of the lipid bilayer and the other
side of the membrane [16,17]. Once delivered to the middle of the lipid
bilayer, protons may bind conserved glutamate residues on the ring-
forming c-subunits of the ATPase. The ring is driven to rotate by the
power provided by ATP hydrolysis in the V1 region. The recent cryo-
EM map of the A-ATP synthase from T. thermophilus [50] provided
some experimental evidence for this model of proton translocation by
showing offset contacts between the a-subunit and two different ring-
forming c-subunits in that enzyme. However, the proton path and chem-
istry of this interaction are not known. The eukaryotic V-ATPase has
rings composed of different subunits (subunits c, c′, and c″ in the yeast
and c, c″ inmammalian cells) and it is not clear how these subunits func-
tion together to allow proton translocation by the V-ATPase. Finally, an-
other apparently unique attribute of the eukaryotic V-ATPase is that
during dissociation of the V1 and VO sectors the proton translocation
by the VO region also ceases [106]. However, the nature of the conforma-
tional or chemical change in the VO region that stops proton transloca-
tion after dissociation of V1VO holocomplex has not been established.

3.2. Regulation of V-ATPase nano-motor and modulation of V-ATPase
driven acidification

As a result of ATP hydrolysis and rotary-driven proton pumping,
V-ATPases generate an electrochemical proton gradient or proton-
motive force (pmf) across the membranes (Fig. 5), which gives rise to
acidification of intracellular compartments. All intracellular compart-
ments of eukaryotic cells requiremaintaining V-ATPase dependent acid-
ic luminal pH [1]. The V-ATPase is also targeted to the plasmamembrane
and is involved in extracellular acidification of some specialized cells in
kidney [107,108], epididymis [109,110] and bone [72,111–114] tissues.
It is also acidifies extracellular environment in metastatic cancer cells
[115–117]. The pH becomes more acidic as the exocytic and endocytic
vesicular trafficking pathways reach their destination [1]. The regulation
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of V-ATPase function and V-ATPase driven differential acidification is
achieved by the following mechanisms: i) modulation of V-ATPase
dependent acidification via chemiosmotic mechanism; ii) regulation
of coupling of the V-ATPase nano-motor; iii) subunit-specific targeting
of V-ATPase and iv) regulation of V-ATPase activity via reversible
association/dissociation of V1 and VO sectors.

3.2.1. Chemiosmotic mechanism
The proton-motive force (pmf) generated by V-ATPases consists of a

proton gradient (ΔpH) and membrane potential (ΔΨ) components. In
phagosomes, the valuesΔpH=2.2 units andΔΨ=27mVwere exper-
imentally determined using a FRET approach [118]. It is noteworthy that
according to the Nernst equation the value of ΔpH = 2.2 units corre-
sponds to the value of ΔΨ= 129.8 mV, and thus, it is the predominant
component of the V-ATPase driven pmf. However, this component of
pmf and the corresponding levels of acidification could vary depending
on the origin of intracellular organelles. In particular, the differential
level of acidification in endosomes and lysosomes of endocytic path-
ways depend on the coupled function of V-ATPase in these organelles
with the function of electrogenic 2Cl−/H+-exchangers called CLC-3,
CLC-5 andCLC-7 (Fig. 5) [119–121]. These exchangers shunt electrogen-
ic proton currents and promote accumulation of chloride anions in en-
docytotic compartments [122]. A similar chemiosmotic mechanism is
also involved in the regulation of acidification of the compartments
along the exocytic pathway, since CLC-3 is present on synaptic vesicles
and CLC-4, CLC-5 can reach the plasmamembrane [123]. Thus, a crucial
role of the Cl−/H+- and also Na+/H+-exchangers is generally accepted
as an important chemiosmotic mechanism of regulation of V-ATPase
driven acidification of intracellular organelles during cellular homeosta-
sis [119,123–125].

3.2.2. ATP hydrolysis/proton-pumping coupling mechanism
The modulation of V-ATPase activity and differential acidification of

intracellular compartments is also achieved by the regulation of the
coupling between ATP hydrolysis and proton pumping during its
function as a rotary nano-motor. In yeast, the a-subunit isoforms and
non-homologous region of the a-subunit V-ATPase have been implicat-
ed in this type of regulation [126–128]. Moreover, a “mouse/yeast”
hybrid V-ATPase approach has uncovered an essential role of the E- and
C-subunit isoforms in regulating the coupling efficiency of S. cerevisiae
V-ATPase [129,130].

3.2.3. Subunit specific V-ATPase targeting mechanism
Inmammalian cells various subunit isoforms have been identified: i)

four isoforms for a-subunit (a1, a2, a3 and a4); ii) three isoforms for the
C and G-subunits; iii) and two isoforms for the B, E, H and d-subunits
(Table 1 and Fig. 1) [1,4,130–132]. The levels of expression of thesemul-
tiple isoforms of V-ATPase are tissue and cell specific and their gene
regulation is largely unknown. On the other hand, the targeting of
V-ATPase subunit isoforms is also cell and intracellular compartment
specific and the mechanism of this phenomenon is currently emerging
[1,114,132].

In yeast, V-ATPase is targeted by the two a-subunit isoforms Vph1p
and Stv1p to the vacuole and Golgi/endosomes, respectively [127,133].
Studies with chimeric Vph1p and Stv1p proteins revealed that the
targeting information is located in the cytosolic N-terminal domain of
a-subunit (Fig. 1) [127]. Recently, random mutagenesis studies of
Stv1p N terminus have identified theW(83)KY sequence as a novel sig-
nal that is both necessary and sufficient for targeting of V-ATPase to the
Golgi/endosomes in yeast [134]. Similarly, in mammalian cells, localiza-
tion of V-ATPase in endocytic and exocytic compartments and targeting
to the plasma membrane depend on a-subunit isoforms [1,4,114,132].
However, the specific targeting signal of mammalian a-subunits has
not been yet determined.

The a1-subunit isoform is specifically targeted to presynaptic mem-
branes and exocytic synaptic vesicles in mammalian neurons [135,136].
Recent studies with neurosecretory PC12 cells revealed that a1-subunit
functions cooperatively with a2-subunit in order to regulate the acidifi-
cation and neurotransmitter uptake, storage and release by exocytic
vesicles [137]. On the other hand, in microglial cells of brain the
a1-subunit was implicated in modulation of the endocytic pathway
via its role in the fusion between phagosome and lysosomes during
phagocytosis, an important process of microglial-mediated neuronal
degeneration [138]. Moreover, recent immunocytochemistry and cell
fractionation experiments demonstrated that in presenilin-1 (PS1)
null blastocysts neurons the a1-isoform containing V-ATPases is also
targeted to lysosomes of endocytic pathway [139]. In this study the
authors proposed that physical interaction of the unglycosylated
a1-isoform with PS1 is required for its targeting and delivery from
ER to lysosome. Thus, according to this study the PS1 is essential for
V-ATPase targeting to the lysosomes, lysosomal acidification and prote-
olysis during autophagy associated with Alzheimer's disease (AD)
[139]. However, this concept and the role of PS1 in the V-ATPase depen-
dent lysosomal acidification and protein degradation during AD were
recently challenged [140–143].

The a2-subunit isoform targets V-ATPases to early endosomes of the
endocytic pathway both inMTC cells in vitro and in kidney proximal tu-
bule epithelial cells in situ [69,70,144]. Overexpression of recombinant
a2-isoform (a2-EGFP) in these cells targets V-ATPase to endosomal
compartments [145]. In contrast, in cultured osteoclast cells and B16
cells both endogenous a2- and a1-isoforms are targeted to the Golgi
complex of secretory vesicles in the exocytic pathway [114,137]. Simi-
larly, overexpression of recombinant a2-isoform (a2-EmGFP) in neuro-
endocrine PC12 cells targets V-ATPase to the Golgi apparatus [114,137].

The a3-subunit of V-ATPase is a lysosomal specific isoform in
osteoclasts, which is relocated to plasma membrane during osteoclast
differentiation [111,114]. Recent studies revealed, that the V-ATPase
a3-subunit mutation (R444L), which causes infantile malignant
osteopetrosis in humans, in a mouse model gives rise to its defective
glycosylation, retention in endoplasmic reticulum and defective traf-
ficking to the plasma membrane [146]. Subsequently, the specific sites
of the a3-subunit glycolylation were also identified and characterized
[78]. During bacterial infection, the nascent phagosomes of macro-
phages also acquire a3-subunit containing V-ATPase from lysosomes
[147]. In contrast, in neuroendocrine PC12 cells the recombinant
a3-isoform (a3-EmGFP) is targeted to early endosomes of the endocytic
pathway, while in pancreatic β-cells the endogenous a3-isoform is spe-
cifically targeted to insulin containing secretory granules of the exocytic
pathway [1,114]. Finally, V-ATPase containing the a3-isoform is also
targeted to the plasma membrane of osteoclasts [72,111–114] and
breast cancer cells [115–117], in which it is involved in bone reabsorp-
tion and metastasis, respectively.

The a4-isoform is highly specific for kidney and epididymis, in
contrast to the tissue ubiquitous a1-, a2- and a3-isoforms. In these
tissues the a4-isoform is specifically targeted to the apical plasma
membrane of collecting duct intercalated cells and epididymal clear
cells [148,149]. In these specialized cells, V-ATPase containing the
a4-isoform is involved in maintenance of acid-balance [107,108] and
sperm-maturation [109,110], respectively. Thus, depending on the cell
type and tissue specificity the V-ATPase is differentially targeted
by the a-subunit isoforms to the various intracellular compartment
and plasma membrane. In turn, this cell and tissue specific targeting
and assembly of V-ATPase may modulate its function, giving rise to
the differential levels of acidification of intracellular endocytic/exocytic
organelles and extracellular milieu [1,3,110,132].

3.2.4. Reversible assembly/disassembly of V1VO sectors
The regulation of V-ATPases by reversible assembly/disassembly of

the V1VO sectors was first described in response to glucose depletion
in S. cerevisiae [21–23] and in response to ceased feeding in M. sexta
[19,20]. In yeast, assembly/disassembly of the V1VO sectors is regulated
by the a-subunits (Vph1 and Stv1 isoforms). It is also dependent on the
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micro-environment, where these isoforms are located and on levels
of vacuolar luminal acidification [4,126,150]. Importantly, in yeast
the reversible assembly/disassembly of V1VO sectors is tightly con-
trolled by the following two distinct mechanisms: i) disassembly
involves the cytosolic microtubular network, while ii) the assembly
requires the cytosolic RAVE/rabconnectins complex (Rav-1, Rav-2 and
Skp1) [1,4,23,151]. Moreover, the yeast RAVE complex is an a-isoform
specific factor. Recent study revealed that RAVE complex is necessary
for assembly of Vph1p-containing but not for Stv1p-containing
V-ATPase in yeast [152]. However, the molecular details of this regula-
tion remain obscure. In yeast, the reversible assembly/disassembly
of the V1VO sectors is also controlled by the direct interaction of
V-ATPase with cytosolic aldolase (a central enzyme of the glycolytic
pathway), which was suggested to act as a cytosolic glucose-sensor
[153–155]. It is noteworthy that the glucose-dependent assembly/
disassembly of V-ATPase and its interaction with aldolase is modulated
by the Ras/cAMP/PKA pathway [156]. However, in kidney proximal tu-
bule epithelial cells the effect of glucose on V-ATPase function is medi-
ated by the phosphatidylinositol 3-kinase (PI3K) pathway [157]. Thus, it
has become generally accepted that multiple regulatory pathways are
involved in and intersect with each other to control the reversible as-
sembly/disassembly of V-ATPase along the endocytic pathway [158].
In mammalian cells, the regulation of V-ATPase by this mechanism
was also previously shown in lysosomes during the maturation of den-
dritic cells, in which it is critical for lysosomal acidification, protein deg-
radation and antigen presentation [159]. Recently, it was demonstrated
Fig. 6. Role of V-ATPase in signaling and trafficking of EGFR/ErbB-receptors. Signaling of epiderm
endosoma/lysosomal protein degradative pathway. The shown image of single cell is divided in
recycling branch (blue arrows) and B) the degradation branch (black arrows). The endocytic c
coated vesicles (CCV); ii) early endosomes (EE); iii) recycling endosomes (RE); iv)multivesicula
A) The super-complex containing V-ATPase/CTH2/ALDO/Arf proteins (Complex 1, EE) was previ
pH-sensing and cytohesin-2 signaling receptor, which is involved in: i) formation of MVB's; ii)
ulation of trafficking of EGFR/ErbB-receptors and their signaling to control genes expression
mTORC1/Rheb proteins (Complex 2, LS)was recently identified in lysosomes [190,192,194]. Th
ulation of mTORC1-dependent downstream cellular programs and cell growth. Importantly, rec
sosomal V-ATPase is regulated by signaling of EGFR/ErbB-receptors via Akt/Erk pathway (das
(CTH2); ADP-ribosylation factor 1 (Arf1); ADP-ribosylation factor 6 (Arf6); aldolase B (ALD
EGFR/ErbB-receptor (dErbB); mammalian target of rapamycin complex 1 (mTORC1); mamm
GTPase); tuberous sclerosis complex (TSC complex); Ragulator complex (Ragulator); Rag A/C
(TFEB) and proton-coupled aminoacid transporter 1 (PAT1).
that assembly of V-ATPase in dendritic cells is also regulated via a PI3K
andmTOR-dependent pathways [160]. Finally, the reversible assembly/
disassembly of V1VO sectorswas also recently identified as an important
regulatorymechanismof signaling, trafficking anddegradation of EGFR/
ErbB-receptors within endosomal/lysosomal protein degradation path-
way [161].

4. Unconventional functions of V-ATPase in eukaryotic cells: role in
health and disease

During the last decade unconventional roles of V-ATPases in the
regulation of signaling, trafficking and degradation of variety cellular re-
ceptorswere described. Herewewill discuss these novel emerging roles
of V-ATPase in themodulation of function of cellular receptors and their
regulatory complexes. These findings will be also analyzed taking into
consideration the emerging crucial role of V-ATPase in the development
and progression of diseases like cancer and diabetes aswell as neurode-
generative and kidney disorders.

4.1. Function of V-ATPases in the endocytotic pathway and its role
in disease states

Endocytosis is a fundamental cellular process that is used by eukary-
otic cells to communicate between the intracellular environment and
external milieu. This mechanism is used by cells to internalize an enor-
mous variety of macromolecules, nutrients and hormones, as well as
al growth factor (EGF) and trafficking of the EGFR/ErbB-receptors via clathrin-dependent
two parts depicting twomajor branches of endocytic vesicular trafficking pathway: A) the
ompartments of this pathway are shown in yellow/red and labeled as follows: i) clathrin-
r bodies (MVB); v) late endosomes (LE); vi) lysosomes (LS) and vii) autophagosomes (AP).
ously identified in early endosomes [265]. The V-ATPase of this super-complex functions as
modulation trafficking between early and late endosomes and iii) potentially, in the reg-
and cell proliferation. B) A novel super-complex containing V-ATPase/Ragulator/RagA/C/
e V-ATPase of this super-complex is involved in sensing of levels of amino acids and mod-
ent studies demonstrated, that the reversible assembly/disassembly of V1VO sectors of ly-
hed red arrows) [161]. The V-ATPase and its subunits are shown as in Fig. 1. Cytohesin-2
O); epidermal growth factor (EGF); monomeric EGFR/ErbB-receptor (mErbB); dimeric
alian target of rapamycin complex 2 (mTORC2); Ras homolog enriched in brain (Rheb
GTPases (RagA/C); FK506/rapamycin binding protein (FKPB12); transcription factor EB
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microorganisms, viruses and DNA. It is also crucial for the internaliza-
tion of a variety of cellular receptors localized at the plasmamembrane.
In particular, the constitutively operated clathrin-dependent endocyto-
sis (CDE) pathway mediates internalization of such receptors as: EGFR/
ErbB, Fz/LRP6, PRR, Notch, transferrin and megalin/cubilin among
many others (Fig. 6) [145]. After binding to corresponding ligands, the
receptor/ligand complexes initiate signaling and are then retrieved
from the plasma membrane, followed by their trafficking via the
endosomal/lysosomal pathway. In this pathway, the receptor/ligand
complexes are delivered via clathrin-coated vesicles (CCV) to early
endosomes (EE), multivesicular bodies (MVB), late endosomes (LE) and
then to lysosomes (LS) for acidification-dependent protein degradation
(Fig. 6 A,B, degradation branch). Alternatively, after V-ATPase-
driven pH-dependent dissociation from ligands in early endosomes,
these receptors are returned back to the plasmamembrane via recycling
endosomes (RE) (Fig. 6A, recycling branch). However, as discussed
below,mounting evidence indicates that establishing the acidic environ-
ment of intracellular organelles is not the only function of V-ATPase. This
nano-motor complex is also involved in variety of direct protein–protein
interactions and could directly modulate the function of various recep-
tors and their regulatory proteins along the endocytic pathway.
4.1.1. Frizzled (Fz) and low-density receptor-related protein (LRP6)
receptors

The Wnt/β-catenin, Wnt/PCP (planar cell polarity) and Wnt/Ca2+

signaling pathways are fundamental mechanisms that control embry-
onic tissue development, homeostasis, cell proliferation, polarity and
apoptosis [162,163]. They are strongly linked to the development of a
variety of human diseases including metastatic cancers [162–164].
Recently, an unexpected direct role of the V-ATPase in the regulation
of Wnt/β-catenin and Wnt/PCP signaling pathways was uncovered
[165,166]. It was shown that signal transmission after association of
Wnt ligands with Fz/LRP6 co-receptors requires direct interaction of
LRP6 with an accessory M8-9 subunit of V-ATPase, also called V-ATPase
lysosomal accessory protein-2 (ATP6AP2). This interaction takes place
in early endosomes and the ATP6AP2 subunit acts as an adaptor that
brings together V-ATPase and the Wnt/Fz/LRP6 receptor complex. Thus,
this work revealed that both direct and electrochemical regulation
by V-ATPase are involved in signaling of Wnt/Fz/LRP6 in the early
endosomal compartment of the protein degradation pathway.
4.1.2. (Pro)renin receptor (PRR)
The (pro)renin receptor (PRR), a single transmembrane domain

cell surface receptor, plays a central role in the activation of the local
renin-angiotensin system (RAS). Binding of prorenin to PRR induces
a conformational change, allowing conversion of angiotensinogen
to angiotensin-I, which is subsequently converted to angiotensin-II by
an angiotensin-converting enzyme (ACE) [167,168]. However, two
angiotensin-independent functions of PRR were also recently discov-
ered. Firstly, it was demonstrated that binding of prorenin to PRR
induces its own intracellular signaling via activation of the p38 MAP
kinase pathway [168–170]. Secondly, PRR was also identified as an ac-
cessory ATP6AP2 subunit of V-ATPase (see above) [165,166,168,171].
Tissue-specific conditional knockout experiments confirmed an essen-
tial role of ATP6AP2 subunit in assembly of the V1VO holocomplex of
V-ATPase [172]. However, further studies are needed in order to reveal
the interplay between these novel functions of PRR. Importantly, the
level of prorenin is elevated during diabetes and over-activation of
PRR is strongly associated with development of hypertension and dia-
betic kidney disease [173]. The role of PRR in kidney function and its as-
sociation with diabetes and hypertension was recently reviewed
[168,171,174]. Thus, future studies in this area could lead to the devel-
opment of novel therapeutic approaches for the treatment of hyperten-
sion, diabetes and its complications.
4.1.3. Notch receptor
The cell-to-cell signaling by the Notch receptor pathway is critical

during development and tissue renewal for controlling the balance
between cell proliferation and apoptosis. Pathological deregulation
of Notch receptor signaling is also a hallmark of different cancers
[175,176]. Activation of the Notch receptor by ligands gives rise to its
cleavage by γ-secretase-mediated intra-membrane proteolysis follow-
ed by activation of specific target genes. Surprisingly, recent studies
revealed that in Drosophila V-ATPase driven acidification may control
two opposite processes in Notch signaling: i) lysosomal degradation
and deactivation of Notch receptors; and ii) γ-secretase-mediated
Notch receptor activation in early endosomes [177]. Moreover, both in
Drosophila and mammalian cells Notch receptor signaling is also con-
trolled by Rabconnectin-3A/B (Rbcn-3) via its regulation of V-
ATPase function [178,179]. It is important to underline that mammalian
Rbcn-3 protein is a homolog of yeast Rav-1, which forms a part of the
RAVE (Rav-1, Rav-2 and Skp1) complex, and which directly interacts
with the V-ATPase and is essential for assembly of the V-ATPase V1VO

holocomplex (see also above) [23,151,180]. Thus, similar to Wnt-
signaling these studies also revealed two novel mechanisms of Notch-
signaling modulation by V-ATPase in mammalian cells: i) via subse-
quent Rbcn-3, V-ATPase, Notch regulation and ii) via V-ATPase-driven
acidification-dependent/electrochemical γ-secretase activation of
Notch signaling [166,177–179].

4.1.4. Insulin-like growth factor (IGF-I) receptor and heme-binding protein
(HRG-1)

Both the growthhormone (GH) and insulin-like growth factor 1 (IGF-
I) exert powerful control over lipid, protein and glucosemetabolism. The
function of GH/IGF-I axis is associated with longevity, and thus, aging re-
latedmorbidities including diabetes and cancer [181,182]. It also plays an
important role in muscle maintenance and repair [183]. Signaling by
insulin-like growth factor receptor (IGF-IR) controls expression of
heme-binding protein (HRG-1) among others proteins. A recent study
revealed specific targeting of this protein to early endosomes and its di-
rect interaction with the c-subunit of the V-ATPase [184]. Moreover,
the HGR-1 expression correlates with function of V-ATPase, levels of
endosomal acidification and endocytic trafficking of receptors, which fa-
cilitate tumor growth and cancer progression [184].
4.1.5. mTOR complex 1 (mTORC1) and complex 2 (mTORC2)
Themammalian target of rapamycin (mTOR) is a large cytosolic ser-

ine–threonine kinase that controls cellular growth and metabolism.
Under physiological conditions it is involved in neonatal autophagy
and survival as well as development of obesity and aging processes in
adulthood [185,186]. Abnormal function of mTOR is implicated in the
pathogenesis of many diseases including cancer, diabetes, and neurode-
generative and kidney disorders [185,187–189]. The mTOR belongs to
the superfamily of phosphatidylinositol-3 kinase related-kinases
(PI3KK) that forms the core of two functionally distinct complexes:
mTORC1 and mTORC2. In particular, mTOR complex 1 (mTORC1) re-
sponds to the levels of growth factors, amino acids, oxygen, energy
and stress and thus integrates/communicates signaling of a variety of
cellular stimuli (Fig. 6B) [185,187,190]. On the other hand, mTORC2
plays a central role in the growth factor and insulin signaling cascades.
It also regulates cytoskeleton function, metabolism and cell survival
[187,191]. Recently, V-ATPase was identified as an important com-
ponent of the mTORC1 regulatory super-complex and signaling path-
way [192]. This novel V-ATPase containing super-complex consists of
V-ATPase/Ragulator/Rag/mTORC1/Rheb proteins and is associated
with late endosomes (LE) and lysosomes (LS) of theprotein degradation
pathway (Fig. 6B) [192,193]. Localization of mTORC1 on the lysosomal
membrane is critical for its activation as a multifunctional serine–
threonine kinase and is regulated by two types of small GTPases:
i) Rheb GTPase (Ras homolog enriched in brain); and ii) Rag GTPases.
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It is well recognized, that Rheb is a potent activator of mTORC1, which
funnels signaling of growth factors, oxygen, energy supply and stress
via the tuberous sclerosis complex (TSC), acting as a GTPase activating
protein (GAP) for Rheb small GTPase. On the other hand, while the
central role of amino acids as an important nutrient supply in the mod-
ulation of cell growth and homeostasis is generally accepted, themolec-
ular aspects of their regulation of mTORC1 function remained elusive.
However, recently the V-ATPase was uncovered as a major player in
the amino acids dependent recruitment, activation and signaling to
mTORC1 [192]. It was demonstrated that V-ATPase is involved in sens-
ing of the levels of intra-lysosomal amino acids via its direct interaction
with the Ragulator complex, that acts as a GTP/GDP-exchange factor
(GEF) for Rag small GTPases [194]. This cell biological event results in
V-ATPase/Ragulator “inside-out” signaling from the lysosomal lumen,
that leads to activation and recruitment of cytosolic RagA/B small
GTPase. Interestingly, the V-ATPase is not required to be active for this
signaling to occur (Fig. 6B) [190,192,194]. The authors proposed that
the primary function of amino acid-dependent V-ATPase/Ragulator/
Rag-signaling is to promote the recruitment of mTORC1 to lysosomal
membrane, and in this way, to trigger the TSC/Rheb-driven “ignition
key” for the activation of the kinase activity of lysosomal mTORC1 com-
plex. Thus, in this scenario the V-ATPase plays a direct role in intra-
lysosomal sensing of amino acids and transmembrane signaling to
mTORC1. It is noteworthy that this mechanism requires physical inter-
action of V-ATPase with Rag-GEF Ragulator and RagA/B small GTPases
(Fig. 6B).
4.1.6. Epidermal growth factor receptors (EGFR/ErbB's)
The epidermal growth factor receptor (EGFR) was among the first

discovered growth receptors that regulate crucial cell biological pro-
cesses including cell proliferation [195,196]. The EGFR/ErbB-receptors
(EGFR/ErbB's) family comprises four members: i) EGFR; ii) ErbB-2;
iii) ErbB-3 and ErbB-4 and are involved in the development of a
variety of cancers [197,198]. These receptors are composed of five do-
mains including: i) extracellular domain; ii) transmembrane domain;
iii) juxtamembrane domain; iv) tyrosine kinase (TK) domain and
v) C-terminal tail [199]. Activation of EGFR/ErbB-receptors by extracel-
lular EGF ligand promotes their hetero-dimerization with subsequent
activation of TK-domains and tyrosine trans-phosphorylation of the
cytoplasmic tail. However, the cytoplasmic proteins that are able to
directly modulate EGF-induced activation and signaling of EGFR/ErbB-
receptors were largely unknown. Recently cytohesin-2 (CTH2) was
identified as a cytoplasmic activator of EGFR/ErbB-receptors (Fig. 6A)
[200,201]. Cytohesin-2 enhances trans-dimerization and activation of
EGFR/ErbB's by direct binding with TK-domains of dimerized receptors
and by facilitating conformational changes and trans-phosphorylation
of these domains. Fig. 6A illustrates the signaling of the epidermal
growth factor (EGF) via EGFR/ErbB's localized at the plasma mem-
brane and early endosomes and the crucial role of CTH2 in hetero-
dimerization of these receptors. It also depicts trafficking and signaling
of EGFR/ErbB-receptors via the clathrin-dependent endocytosis (CDE)
endosoma/lysosomal protein degradative pathway. After ligand bind-
ing and CTH2-dependent activation at the plasma membrane, the
EGFR/ErbB's are rapidly internalized into early endosomes (EE) from
where they either: i) undergo dephosphorylation/deactivation and
recycled back via recycling endosomes (RE) to the plasma membrane
(Fig. 6A), or ii) are delivered via multivesicular bodies (MVB) and late
endosomes (LE) to lysosomes (LS) for degradation (Fig. 6B). It is note-
worthy that while initiated at the plasma membrane, signaling of
EGFR/ErbB-receptors is sustained, enhanced and in some conditions ac-
tually originates from early endosomes [202,203]. Thus, V-ATPase-
dependent acidification may play a key role in the modulation of
EGFR/ErbB-receptors function in EE and is pivotal for their fate in
sustained signaling, recycling or degradation (Fig. 6A). Moreover, it is
reasonable to suggest, that similarly to the Wnt- and Notch pathways
(see above), the cytohesin-2 may act as adaptor between EGFR/ErbB-
receptors and V-ATPase at the plasma membrane, early endosomes
and even lysosomes (Fig. 6A and B). However, this potentially impor-
tant role of cytohesin-2 must be explored experimentally.

On the other hand, it is important to underline, that a novel impor-
tant role of the V1VO assembly/disassembly mechanism and V-ATPase-
dependent acidification of LE and LS in EGFR/ErbB-receptors function
was recently revealed [161]. Previous studies clearly demonstrated
that EGF/EGFR-dependent signaling contributes to proliferation of
liver cells and is an important regulator of hepatic regeneration in vivo
[204]. This signaling involves EGF-induced activation of mTORC1 on
late endosomes/lysosomal compartments of hepatocytes [205,206].
It was shown that EGF-induced activation of mTORC1 involves the
Akt/Erk activation, TSC complex inhibition and Rheb(GTP) forma-
tion. However, in contrast to amino acid-induction studies [192], this
signaling does not accompany mTORC1 recruitment from the cytosol
and its translocation to the lysosomal membrane [161,192]. Surprising-
ly, it was demonstrated that EGF/EGFR-dependent signaling promotes
the rapid recruitment of cytosolic V1-sectors of the V-ATPase and
gives rise to its increased assembly as V1VO-holocomplexes on late
endosomal/lysosomal compartments. This assembly in turn gives rise
to increased V-ATPase driven lysosomal acidification, increased protein
degradation and release of amino acids from lysosomal compartments
needed for Rheb(GTP) andmTORC1 activation (Fig. 6B). In this scenario,
signaling of EGFR/ErbB-receptors results in Erk/Akt activation and
consequent assembly of V1VO-holocomplexes of LE/LS V-ATPase. Erk/
Akt activation promotes an increased V-ATPase driven acidification
of these compartments, increased protein degradation and amino
acid production followed by their release and “cytosolic sensing” by
Rheb and activation of the mTORC1 complex. According to this study,
the V-ATPase is playing an indirect role in EGF-dependent activation
of mTORC1 signaling pathway and it occurs by modulating the V1VO-
holocomplexes assembly/disassembly mechanism of V-ATPases [192].
Therefore, this study provides the first evidence showing the functional
assembly of V-ATPase V1VO-holocomplexes in response to the signaling
of EGFR/ErbB-receptors. It also revealed anunexpected role of V-ATPase
in the regulation of mTORC1 signaling and trafficking EGFR/ErbB-
receptors within the endosomal/lysosomal protein degradation path-
way (Fig. 6 A and B) [161,192]. However, in this scenario, the V-
ATPase is indirectly involved in the regulation of amino acid levels
and their sensing in the lysosomal lumen and cytosol. According to
this electrochemicalmechanism, the V-ATPase driven lysosomal acidifi-
cation may modulate the function of mammalian pH-dependent amino
acid transporters (PATs), which equilibrate the amino acid pools be-
tween cytosol and lysosomal lumen [185,207–209]. Thus, additional
studies are needed to clarify the differential direct and indirect roles
of V-ATPase in mTORC1 function promoted either by: i) modulation of
levels of amino acids [192] or ii) activation of EGFR/ErbB's signaling
pathway [161] (Fig. 6 A and B).

In summary, the lysosomal organelles play a central regulatory role
in cellular protein degradation and energy production using V-ATPase/
mTORC1 “sensing machinery” to monitor both lysosomal and cytosolic
amino acid content as indicator of nutritional status of the cell. This
important physiological information is further communicated to the nu-
cleus to activate the feedback gene expression programs allowing lyso-
somes to regulate their own function. This two-step mechanism
involves the transcription factor EB (TFEB) that acts as: i) a sensor of nu-
tritional status directly binding to mTORC1 on lysosomal membrane;
and ii) an effector of lysosomal function after its translocation to the nu-
cleus [210]. In addition, other functions of the lysosomes-dependent
mTOR signaling are the cellular clearance and removal of organelles
by autophagy. This quality control process declines over lifespan, con-
tributing to aging and age-associated diseases, and thus, is considered
as an important therapeutic drug target. During recent years extensive
studies in animalmodels and clinical trials have uncovered the beneficial
action of rapamycin, an FDA-approved mTOR inhibitor, for treatment
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of variety age-associated diseases including cancers and neurodegener-
ative disorders [185,187] (Fig. 6). Inhibition of mTOR by rapamycin is
also beneficial for treatment of kidney diseases including: i) renal cell
carcinoma, ii) diabetic nephropathy and ii) polycystic kidney disease
[188,189]. However, due to its side effects caused by the differential
action of rapamycin on both mTORC1 and mTORC2, there is growing
necessity for more specific and efficient targeting of these pathways
[185,187,191]. Therefore, specific targeting of amino acid-sensing
V-ATPase/Ragulator/Rag protein-protein interactions by small mole-
cules that will give rise to differential targeting of the mTORC1 and
mTORC2 super-complexes offers an attractive therapeutic approach to
control aberrant localization and function of mTORC1 and mTORC2 in
variety of age-related disease states [185,187].

4.1.7. V-ATPase, cytohesin-2/Arf's and EGFR/ErbB-receptors in modulation
of the macropinocytosis pathway

The clathrin-dependent endocytosis (CDE) pathway is the best stud-
ied pathway of endocytic uptake and trafficking receptors including
EGFR/ErbB's (Fig. 6A, B). However, various clathrin-independent endo-
cytosis (CIE) pathways have been also identified and include: i) Arf6-
dependent endocytosis and ii) macropinocytosis pathways [211,212].
The Arf6-dependent CIE pathway operates constitutively and intersects
in early endosomes with the CDE pathway [213,214]. This pathway is
involved in constitutive trafficking of a variety of proteins such as:
MHC1, β-integrins and GPI-anchored proteins in the “resting” state
of HeLa and COS cells. However, the modulation of Arf6-dependent sig-
naling quickly promotes the switch from a constitutive to a stimulated
uptake involving an elaborate interplay between cytohesin-2/EFA6
GEFs and Arf6/Arf1 small GTPases [213,214]. The cell specific macro-
pinocytosis also co-exists and cross-talks with the CDE endosomal/
lysosomal protein degradative pathway (Fig. 6). Its regulation depends
on particular cellular requirements and macropinocytosis is transiently
stimulated by signaling of c-Src or EGFR/ErbB-receptors [215,216]. For
example, while at low levels of EGF, the internalization of EGFR/ErbB's
takes place via endosomal/lysosomal dependent CDE pathway, at high
levels of EGF the internalization of EGFR/ErbB-receptors occurs via a vig-
orousmacropinocytosis pathway [217–219]. Thus, these studies uncov-
ered the EGF-ligand dependent activation of macropinocytosis and its
cross-talk between endocytic endosomal/lysosomal pathway in traf-
ficking of EGFR/ErbB-receptors [217–219]. Additional studies of this
phenomenon have shown that plasmamembrane NHE-exchanger driv-
en cytosolic acidification and Rac1/Cdc42 small GTPase dependent actin
cytoskeleton remodeling are downstream effectors of EGF-ligand de-
pendent activation of themacropinocytosis pathway [220]. Importantly,
the recent study reported that in Ras-transformed cancer cells macro-
pinocytosis represents an important route of nutrient uptake in tumors,
pointing to the possible exploitation of this process in the development
of anticancer therapies [221].

However, the involvement and cell biological role of V-ATPase in
the regulation of this an important endocytic pathway was largely
unknown. Thus, recently we addressed the potential implication of
V-ATPase and cytohesin-2/Arf small GTPase in modulation of the
macropinocytosis pathway [222]. We studied the cell biological action
of the novel V-ATPase derived cell permeable peptides that are potent
inhibitors of the cytohesin-2 GEF activity and modulators of Arf6/Arf1
signaling. It was shown that V-ATPase derived cell permeable peptides
could dramatically activate an uptake of albumin-Alexa555 and RITC-
dextran endocytic markers. Analysis of the early cell biological events
revealed that appearance of the V-ATPase derived anti-cytohesin-2
peptides promotes: i) cell shape remodeling, ii) formation of the large
vacuoles and iii) accelerated movement of early endosomal compart-
ments. These cell biological events are consistent with activation of
the cytohesin-2/Arf small GTPases dependent macropinocytosis path-
way, which was previously described in HeLa and COS cells
[211–214]. It was proposed that signaling between V-ATPase and
cytohesin-2/Arf small GTPases may serve as a regulatory switch in
cross-talk between macropinocytosis and receptor-mediated
endosomal/lysosomal protein degradative pathways in the regulation
of trafficking variety receptors including EGFR/ErbB's (Fig. 6) [222].
However, the exact cell biological and molecular events and down-
stream effectors underlying this novel regulatory mechanism need to
be clarified.

4.2. Functions of V-ATPase in the exocytotic pathway and its role in disease
states

Vesicular trafficking within the exocytotic pathway is involved in
communication between intracellular organelles (endoplasmic reticu-
lum, Golgi, lysosomes) and in delivery of newly synthesized receptors
and secretory proteins to the plasma membrane [223]. In the following
chapterwewill focus on the emerging role of V-ATPase in thefission/fu-
sion process and organelle biogenesis aswell as its role in protein glyco-
sylation, exocytosis from ER/Golgi, and trafficking to lysosomes and
plasma membrane.
4.2.1. Role of V-ATPase in modulation of fission/fusion process, organelle
biogenesis and exocytosis

Budding/fission of vesicles from exocytotic donor organelles and
their fusion with an acceptor compartment/membrane is a tightly con-
trolled process that is regulated by V-ATPase [1,224]. In particular, a di-
rect role of the c-subunits of the VO sector was implicated in membrane
fusion along this pathway and the molecular details of the fusion-
dependent conformational changes of the c-subunits were recently an-
alyzed [225]. In S. cerevisiae the fusion process is regulated by Vph1
(yeast homolog of a-subunit of V-ATPase) Rab-GTPase Ypt7 and
calmodulin [224,226,227]. The regulatory role of a-subunit isoforms of
V-ATPase was also uncovered in the exocytotic pathway of other
organisms. The direct interaction of the a1-soform with calmodulin is
involved in fusion of synaptic vesicle in Drosophila melanogaster synap-
ses [136,228], while secretion of Hedgehog-related proteins from
exosomes to the apical membrane depends upon the a-subunit in
Caenorhabditis elegans [229]. Inmammals, the V-ATPase controls exocy-
totic trafficking and secretion of hormones. The a3-subunit isoform of
V-ATPase is highly expressed in endocrine tissues including pituitary,
adrenal, parathyroid and thyroid glands. Thus, it was suggested that
the a3-isoform is commonly involved in the regulation of the exocytotic
pathway and secretion [1,230]. In particular, the a3-isoform is specifi-
cally targeted to the V-ATPase in secretory vesicles containing insulin
of mouse pancreatic β-cells [1]. Moreover, oc/oc-mice (a null mutant
of the a3-isoform gene) are defective in insulin exocytosis. This study
suggests that insulin secretion by mouse pancreatic β-cells specifically
requires intact a3-subunit isoform containing V-ATPase, that could not
be replaced by the a2-subunit isoform. The a3-subunit isoform is also
specifically targeted to the plasma membrane of vertebrate osteoclasts
[1,111]. In these cells, the V-ATPase is involved in the bone resorption
process by acidifying the “bone resorption lacuna”, an extracellular
space formed between the plasma membrane and the bone surface.
The V-ATPase dependent acidic environment of this space is necessary
for matrix protein degradation and for mineral dissolution. The a3-
isoform is also specifically targeted to lysosomes but upon differentia-
tion is exocytosed to the plasma membrane of the osteoclast-like
RAW264.7 cells [1,111]. Thus, the localization of the V-ATPase a3-
isoform is a dynamic trafficking and targeting process. In accordance
to the pivotal role of V-ATPase in bone homeostasis, multiple mutations
of the a3-isoform give rise to diseases of bone resorption and are asso-
ciated with osteopetrosis in both mice models [231] and in humans
[232,233]. In human osteoclasts the a3-subunit is specifically assembled
and functions with the d2-isoform of the V-ATPase holocomplex [234].
Accordingly, in the studies of d2-isoform knockout mice the direct role
of the d2-isoform in the fusion of osteoclast progenitors was suggested
[235].
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Numerous eukaryotic organelles, including mitochondria, endo-
somes, lysosomes and Golgi apparatus among others, change their
copy number, size and morphology in response to the cellular environ-
mental conditions and their nutrient status. This homeostasis of organ-
elles is controlled by the coordinated balance between fission and
fusion processes. As discussed above, whereas the fusion of membranes
was relatively well studied, the membrane fission and organelle frag-
mentation remains poorly understood. However, their differential
regulatory mechanisms were recently identified using purified yeast
vacuoles in cell-free reconstitution, fission/fragmentation and fusion
experiments [224,236]. These studies uncovered the dual function of
V-ATPase in the control of the vacuolar/lysosomal fusion and fission.
While vacuolar/lysosomal fusion requires physical interactions with
the VO sector of V-ATPase, the vacuolar/lysosomal fission process
depends upon proton pumping and acidification capacity of the intact
V-ATPase nano-motor. Importantly, these studies also revealed an un-
expected role of vacuole-associated TORC1 (the yeast analog of mam-
malian mTORC1 complex) in vacuolar/lysosomal membrane dynamics
in S. cerevisiae. Under nutrient restriction conditions, yeast TORC1 is
inactivated and promotes specific fusion but not fission of the vacuoles
[224,236]. Thus, these studies have uncovered a complex interplay
between V-ATPase and TORC1 complex in the regulation of vacuolar/
lysosomal dynamics via both direct involvement of V-ATPase and its
role as proton-pumping nano-motor.

4.2.2. Role of V-ATPase in protein glycosylation and exocytosis from
ER/Golgi, and trafficking to lysosomes and the plasma membrane

The importance of the structural and functional integrity of the
a-subunit isoforms in V-ATPase function is strongly supported by a
variety of human genetic diseases associated with mutations in these
proteins [232,233,237]. Genetic defects in a-subunit V-ATPase genes
include mutations in the a3-subunit (ATP6V0A3), causative of infantile
malignant autosomal recessive osteopetrosis (ARO) [232], and a4-
subunit (ATP6V0A4), causative of recessive distal renal tubular acidosis
(dRTA) [237]. The pathophysiology of these human diseases was inten-
sively studied during the last decade and is reviewed elsewhere [1,4].
However, recently studied loss-of-function mutations in the V-ATPase
a2-subunit isoform (ATP6V0A2) were also identified as cause of an au-
tosomal recessive cutis laxa type II (ARCL II) or wrinkly skin syndrome
(WSS) [238]. To date, a total of 200 patients and 41 different mutations
were identified, of which 18 frame-shift and missense mutations were
located on the N-terminal cytosolic tail of the a2-subunit (a2N)(Fig. 1)
[239–242]. Importantly, one of the frame-shift mutations described in
these studies is involved in modification of integrity of the a2N1-17 epi-
tope, the structure and function of which was determined in our recent
study (see below). Cutis laxa is a rare inherited disease accompanied
with decreased elasticity of the skin and appearance ofwrinkles. Forma-
tion of laxed and wrinkled skin is a physiological process of normal
human aging caused by a degeneration of elastic fibers of the extracel-
lular matrix. Homeostasis of the extracellular matrix of the connective
tissue of the skin depends on very active post-translational glycosyla-
tion of proteins (e.g. collagen, fibronectin, and fibulins) in Golgi com-
plex and their secretion via exocytotic pathway. Thus, since ARCL II
patients frequently present with an aged appearance, this syndrome
at least in part may be related to human aging processes of the skin.
Indeed, at the molecular and cellular level, loss-of-function mutations
in the ATP6V0A2 gene give rise to loss of V-ATPase function and are
accompanied with: i) defects in Golgi acidification; ii) impaired N- and
O-glycosylation of proteins in Golgi complex; iii) impaired tropoelastin
secretion and aggregation in the Golgi and iv) increased apoptosis of
elastogenic cell [239–242]. Thus, the discovery of the cutis laxa related
mutations in the human gene encoding a2-subunit V-ATPase underlined
the crucial role of V-ATPase in the regulation of protein glycosylation
within the Golgi complex and their trafficking via exocytotic pathway.
However, further studies are necessary to elucidate the exact direct
and/or indirect/electrochemical role of V-ATPase in modulation of
Golgi function, defects of proteins glycosylation, pathogenesis of cutis
laxa disease and the potential role of these cellular events in normal
human aging processes.

It is generally accepted that the V-ATPase dependent acidification of
Golgi complex is essential for synthesis and delivery of the lysosomal
hydrolases from ER/Golgi to lysosomes via the mannose-6-phosphate
receptor pathway [243,244]. However, the molecular mechanism in-
volved in the assembly of the V-ATPase complex itself in the ER/Golgi
followed by its trafficking and specific targeting to lysosomal compart-
ments remains elusive. Recent studies have suggested PS1 as a potential
chaperon for a1-subunit V-ATPase and the oligosaccharyl-transferase
(OST) during its N-glycosylation needed for proper folding and traffick-
ing to lysosomes [139]. However, this concept was recently disputed by
three laboratories (also see above) [140–143].

5. V-ATPase is a novel evolutionarily conserved pH-sensing and
cytohesin-2 signaling receptor

The primary physiological function of the V-ATPase nano-motor is
acidification of intracellular compartments and extracellular milieu.
However, recent studies uncovered that V-ATPase itself also operates
as a pH-sensing and cytohesin-2 signaling receptor (Fig. 7) [145]. This
function of the V-ATPase is evolutionarily conserved, and thus, may be
a universal attribute of eukaryotic cells from yeast to humans. The chap-
ter below describes the structural basis and functional insights of this
novel concept of V-ATPase function and will briefly discuss its potential
role in health and disease.

5.1. Function of V-ATPase as a putative pH-sensing receptor

Original studies from our laboratory and others have proposed the
presence of a hypothetical “pH-sensing protein” (PSP) that modulates
the recruitment of cytosolic proteins to external membrane outer-
leaflet of intracellular organelles in response to pH-levels of organelle
lumen [1,69,70]. In particular, work from the Schulz laboratory demon-
strated that the interaction of Arf GTP-binding proteins with purified
pancreatic microsomal vesicles depends upon their acidification
[245,246]. However, the specific members of the Arf-family and specific
compartments involved in this interaction remain obscure. Subsequent-
ly, Gruenberg and coworkers have proposed an involvement of a hypo-
thetical PSP in endosomes of baby hamster kidney (BHK) cells, based on
the finding of acidification-dependent recruitment of β-COP, ε-COP and
Arf1 proteins [247–249]. However, in these studies the pH-sensing
mechanism and importantly the origin of PSP were not determined.
On the other hand, in a search for unknown PSP, our laboratory focused
on studies of the functional interplay between V-ATPase and cytohesin-
2/Arf's in function of early endosomes of megalin/cubilin-receptor pro-
tein degradative pathway of the kidney proximal tubules (PT) epithelial
cells [250,251]. The Arf-family GTP-binding proteins belong to the Ras-
superfamily of small GTPases that are involved in the regulation of a
great variety of cellular pathways [252]. These regulatory proteins func-
tion as “molecular switches” and the transition between “on” and “off”
states of thismolecular device ismediated by aGDP/GTP cycle. In partic-
ular, activation of Arf's is accomplished by the cytohesin-subfamily of
guanine nucleotide exchange factors (GEFs). Cytohesin-family GEFs in-
cludes cytohesin-1, cytohesin-2 (ARNO), cytohesin-3 (or GRP1) and
cytohesin-4. It is important to underline that cytohesin-2 (CTH2) is
also generally known and was referred in our previous publications as
ARNO (ADP-ribosylation nucleotide-side opener) [69,251,253,254].
These are highly conserved proteins composed of four domains: i) an
N-terminal coiled-coil (CC); ii) a central Sec7 domain (Sec7); iii) a
pleckstrin homology (PH) domain; and iv) a C-terminal polybasic (PB)
domain (Fig. 8A, B) [255–257]. In particular, the Sec7 domain binds
and activates Arf's via catalysis of the GDP/GTP-exchange reaction. The
generally accepted functions of cytohesin/Arf proteins are regulation
of organelle biogenesis, modulation of vesicular trafficking and actin



Fig. 7. The V-ATPase nano-motor is a novel evolutionarily conserved pH-sensing and cytohesin-2 signaling receptor. Model of the novel role of V-ATPase nano-motor as a pH-sensing and
cytohesin-2 signaling receptor. Themolecular details of the interactions of V-ATPase with cytohesin-2 and Arf GTP-binding proteins at high (A) and low (B) levels of luminal acidification.
A) Schematic representation of the rotary proton-pumping eukaryotic V-ATPase, which does not interact with cytohesin-2 andmyristoylated Arf1/Arf6 GTP-binding proteins anchored on
the PIP2 containingmembrane. The structure of V-ATPase and subunit composition are shown as in Fig. 1. The position of epitope a-subunit isoforms formed by aN(1–17) and aN(35–49)
peptides that is involved in the interactionwith the Sec-7 domain of cytohesin-2 is also indicated. B) The V-ATPase is sensing low luminal pHwith its transmembrane aC part of a-subunit
isoform. This results in recruitment and interaction of cytohesin-2with the cytosolic aN part of a-subunit of V-ATPase. Themolecular details uncovered in our recent studies revealed that
this binding involves N-terminal epitope of V-ATPase a-subunits formed by aN(1–17) and aN(35–49) peptides and Sec7 domain of cytohesin-2 [145,266]. This interaction of the V-ATPase
with cytohesin-2 could modulate its signaling with Arf6 and Arf1 GTP-binding proteins and also may be involved in modulation of the function of V-ATPase itself. Structure of Sec7/Ar1
complex pdb code 1S9D. Adapted with permission from [145].
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cytoskeleton remodeling [255–257]. However, cytohesins have also re-
cently emerged as central modulators of signaling and trafficking of va-
riety plasmamembrane receptors including: i) integrin-; ii) EGFR/ErbB-
, iii) VEGFR2- and iv) insulin-receptors [200,201,258–264]. In particular,
cytohesin-1/2 have been identified as activators of EGFR/ErbB's that are
involved in oncogenesis [200,201]. Cytohesins are also crucial down-
stream effectors for the insulin-receptor signaling cascade involved in
development of insulin resistance and metabolic syndrome during dia-
betes [261–264].

Studies from our laboratory have also revealed a central role of
cytohesin-2/Arf6 in function of the V-ATPase involved in the regulation
of megalin/cubilin-receptors mediated endosomal/lysosomal protein
degradative pathway. It was shown that cytohesin-2 and Arf6 are spe-
cifically targeted to early endosomes of this pathway and colocalized
with the endosomal V-ATPase in kidney PT in situ (Fig. 7) [251,253].
Moreover, in vitro reconstitution experiments with purified early
endosomes demonstrated that specific recruitment of both cytohesin-
2 andArf6 (but not Arf1) from the cytosol to endosomalmembranes de-
pends upon V-ATPase driven intra-endosomal acidification. Whereas
the existence of the unknown “pH-sensing protein” (PSP) and its direct
interaction with both cytohesoin-2 and Arf6 were suggested in these
studies, its nature and the mechanism of its pH-dependent interaction
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with cytohesin-2/Arf6 remained elusive [251]. However, subsequent
work revealed that V-ATPase itself is a long-sought after PSP or pH-
sensing receptor. In particular, it was shown that V-ATPase containing
transmembrane a2-subunit isoform is specifically targeting to early
endosomes of the kidney PT cells (Fig. 7). Importantly, the direct
interaction of a2-subunit with cytohesin-2 and c-subunit with Arf6
GTP-binding proteins was shown. These interactions are specific and
dependent upon the V-ATPase-driven acidification of the endosomal
lumen (Fig. 7). Thus, the a2-isoform containing endosomal V-ATPase
was identified as a putative pH-sensing receptor [69]. A model of this
novel V-ATPase function was also proposed, in which the histidine
amino acids residues in the a2-subunit of V-ATPase are involved in the
pH-sensing mechanism of the V-ATPase function [70]. These histidine
residues form a part of a transmembrane/luminal domain of a-subunit
(aC) that senses the intra-endosomal pH and transmits this information
through its conformational changes to the cytoplasmic domain (aN) of
the protein (Fig. 7) [70,145]. Therefore, according to this novel concept,
the eukaryotic V-ATPase nano-motor is not only responsible for proton
pumping and the generation of a pH gradient across the membranes. It
is also involved in sensing levels of acidification or measuring pH and
transmitting this information from one membrane side to another. In
summary, the function of V-ATPases as a putative pH-sensing receptor
would, therefore, add acidic pH to the growing list of signals that can
be transmitted via a still uncharacterized transmembrane signaling
mechanism (Fig. 7).

5.2. Function of V-ATPase as a cytohesin-2 signaling receptor

Original work from our laboratory uncovered V-ATPase as pH-
sensing receptor that recruits the cytosolic cytohesin-2 and Arf6 in an
Fig. 8. Identification of V-ATPase as a novel cytohesin-2 signaling receptor and characterization
mains and regulatory elements of cytohesin-2 (CTH2). These structures are indicated as follow
linker (LK) (242–261aa) inmagenta; iv) PH-domain (262–375aa) in green; v) PB-domain (376
ern blot analysis showing the interaction of cytohesin-2 with a2-subunit of V-ATPase via its Se
dolase via its PH-domain. C) The diagram shows the structure of the novel V-ATPase/CTH2/A
illustrates two binding sites for two cytohesin-2 (CTH2, in yellow) molecules with an N-termi
is shown on the left, which, via its Sec7-domain, is binding to the proximal lobe (PL) to the ep
2 molecule (CTH2p) is shown on the right, which, via its PH-domain, is binding to the dista
[145,266]. While binding of CTH2s to V-ATPase inhibits its GEF activity with Arf1 and Arf6, bin
binding of cytohesin-2 with aldolase (ALDO) as well as Arf6 with c-subunit of V-ATPase is al
a2N(1–402) and II) Sec7 domain with a2N(1–17) and III,IV) CTH2 with ALDO. As suggested in
but interaction-competent version of recombinant human aldolase [265].
acidification-dependent manner (Fig. 7) [69,70,251]. Moreover, it was
also shown that interaction with cytohesin-2 is not only restricted to
the a2-subunit isoform but also occurs with the three other a-subunit
isoforms (a1, a3 and a4) of the V-ATPase [265]. Taken together, these
data indicate that pH-sensing by V-ATPase and interaction with
cytohesin-2/Arf's is a general cell biological phenomenon, which may
take place in other acidic organelles of both the exocytotic and the
endocytic pathways (Fig. 6). However, the following questions remain
to be addressed: i) what are the molecular mechanism and cell biolog-
ical significance of the V-ATPase/cytohesin-2 interaction and ii) what
are other downstream effectors and pathways intertwined with this
cell biological event. Our recent studies have addressed these issues
and uncovered the molecular details of another unexpected function
of V-ATPase, as an evolutionarily conserved cytohesin-2 signaling re-
ceptor (Fig. 8).

First, we focused on the molecular mechanism of interaction be-
tween cytosolic tail of a2-subunit V-ATPase (a2N) and cytohesin-2
(CTH2) [254]. The interaction sites between these two proteins were
mapped using the combination of recombinant proteins/synthetic pep-
tides pull-down experiments. In particular, recombinant protein pull-
down experiments demonstrated that a2N recombinant protein inter-
acts strongly with the Sec7-domain of one molecule of cytohesin-2
(CTH2s). In these experiments the weak interaction of another mole-
cule of cytohesin-2 (CTH2p) via its PH-domain was also detected
(Fig. 8A, B, and C). On the other hand, using a synthetic peptide pull-
down approach, we identified the N-terminal epitope of the a2N as a
major interacting site with CTH2s. This epitope corresponds to the pep-
tide a2N1–17, which is formed by the first seventeen amino acids
(MGSLFRSESMCLAQLFL) of the a2-subunit isoform of V-ATPase. More-
over, additional surface plasmon resonance (SPR) experiments also
of V-ATPase/cytohesin-2/aldolase/Arf's super-complex. A) Schematic representation of do-
s: i) CC-domain (1–60aa) in orange; ii) Sec7-domain (61–242aa) in yellow; iii) Sec-7-PH-
–400aa) in blue. Boundaries of the domains are indicated as amino acid numbers. B)West-
c7 and PH-domains. Western blot analysis showing the interaction of cytohesin-2 with al-
LDO/ Arf's super-complex (Complex 1, EE) localized on endosomal membrane (Fig. 6). It
nal tail of a2-subunit (a2N, in green) of V-ATPase. The first cytohesin-2 molecule (CTH2s)
itope formed by the peptides a2N(1–17) and a2N(35–49) of a2N. The second cytohesin-
l lobe (DL) of epitope formed by the peptides a2N(198–214) and a2N(215–230) of a2N
ding of CTH2p might have stimulatory action on its GEF activity with Arf1 and Arf6. The
so shown. Roman numbers indicate interfaces and affinities of interaction: I) CTH2 with
our original study, two aldolase bands represent the full length and a partially translated
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confirmed that these structural elements are major binding sites be-
tween a2N of V-ATPase and CTH2s. In particular, this analysis revealed
a strong binding affinity between this a2N1–17 peptide and the Sec7-
domain of CTH2s, with a dissociation constant of KD = 3.44 × 10−7 M,
Fig. 9. Structural basis and molecular mechanism of signaling between V-ATPase and
cytohesin-2/Arf's. A) Determination of interaction-competent amino acids and the inter-
action surface plane of a2N(1–17) peptide involved in bindingwith Sec7 domain. Location
of the four amino acids F5, M10, Q14 (in red) and E8 (in magenta) that were determined
byNMR to be involved in the interaction of a2N(1–17) peptidewith Sec7 domain. B) Iden-
tification of the interaction surface plane formed by amino acids F5, M10, Q14 (shown in
red square) that is involved in binding of a2N(1–17)with Sec7 domain. C) In silico docking
experiments revealed the binding site of a2N(1–17) peptide near the catalytic site of the
Sec7 domain with Arf1 and Arf6 GTP-binding proteins. D) The binding of the a2N(1–17)
peptide on the Sec7 domain involves the αG, αH and αI helixes, which are crucial for its
catalytic activity with Arf1 and Arf6 GTP-binding proteins. Spatial structure of Sec7 do-
main and Arf1 was taken from the crystal structure of the complex of Sec7/Arf1 with
brefeldin A as a stabilization agent (pdb code 1S9D). The atomic coordinates and structure
factors of peptide a2N(1–17) (pdb code 2LX4) have been deposited in the Protein Data
Bank (http://wwpdb.org/). Adapted with permission from [145].
similar to the binding affinity KD = 3.13 × 10−7 M between full-
length a2N(1–402) and CTH2 proteins (Fig. 8C, interfaces I and II). Based
on these real-time kinetic experiments, we suggested that this V-
ATPase epitope-forming a2N1-17 peptide is crucial for V-ATPase/CTH2s
signaling, and could be involved in the regulation of cytohesin-2 enzy-
matic Arf-GEF activity by V-ATPase. To test this hypothesis a combina-
tion of enzymatic and structural approaches were applied [145].
Indeed, these studies revealed that a2N1–17 peptide is a potent inhibitor
of the enzymatic GDP/GTP-exchange activity of wild-type CTH2s, that is
acting via its direct interaction with the catalytic Sec7 domain. The α-
helical structure of a2N1–17 and its residues F5, M10, Q14 binding with
the Sec7 domain were also identified by NMR spectroscopy analysis
(Fig. 9A, B). In silico docking studies have shown that a2N1–17 epitope
of V-ATPase competes with the switch-2 region of Arf's for binding to
the Sec7 domain of CTH2s (Fig. 9C, D). Together, these experiments re-
vealed the structural basis and molecular details of a novel mechanism
of signaling between the V-ATPase V1VO-holocomplex and CTH2/Arf's
GTP-binding proteins (Fig. 9). Sequence alignment of the N-terminal
epitope of all four a1-, a2-, a3- and a4-subunit isoforms has shown
that the V-ATPase amino acids involved in the interactionwith Sec7 do-
main are highly conserved in all eukaryotes from yeast to humans, and
these peptides are also efficient inhibitors of CTH2s [145]. Finally, the
conserved character of this signaling eventwas also confirmed in exper-
iments showing binding of human CTH2 to the purified intact yeast V-
ATPase V1VO-holocomplex (Fig. 1)[145]. In summary, these studies
have uncovered an unexpected function of the V-ATPase as a novel
cytohesin-2 signaling receptor (Fig. 8C). However, the downstream ef-
fectors and pathways that are regulated by this signaling event remain
obscure.

Second, to address these questions the structural model of the com-
plete N-terminal cytosolic tail of a2-subunit (a2N1–402) was generated
using a combination of homology modeling and NMR structural analysis
[266]. The complete molecular model of a2N1–402 revealed that all
six a2N-derive and CTH2-interacting peptides are clustered into just
two binding sites, in the proximal lobe (PL) and distal lobe (DL) sub-
domains of a2N1–402 (Fig. 8C). These data suggest that while the PL sub-
domain is themajor interacting sitewith the Sec7 domain of thefirstmol-
ecule of cytohesin-2 (CTH2s), the DL sub-domain most likely interacts
with the PH-domain of the second molecule of cytohesin-2 (CTH2p)
(Fig. 8C). Moreover, further analysis of this model revealed, that binding
sites of both cytohesin-2 molecules (CTH2s and CTH2p) are located in a
close proximity to binding sites of S1 and S2 EG-heterodimers with a-
subunit, which form the peripheral stalks in the V1VO-holocomplex of
V-ATPases (Figs. 1 and 8C). These data indicate that pH-dependent
binding and signaling between V-ATPase and CTH2 may modulate the
interaction of a-subunit isoforms with the S1 and S2 EG-heterodimer
peripheral stalks (Figs. 1B and 3), and consequently modulate the re-
versible association/dissociation of the V1 and VO sectors of the V-
ATPase holocomplex (Fig. 8C). In conclusion, it is tempting to hypothe-
size that an evolutionarily acquired by eukaryotes function of V-ATPase,
as a pH-sensing and cytohesin-2/Arf6-signaling receptor, might be an
integral part of the self-regulation mechanism of the primary V-
ATPase function as a proton-pumping rotary nano-motor.

Third, in search for downstream effectors of the signaling between
V-ATPase and cytohesin-2/Arf the potential role of aldolase in this func-
tion was recently explored [265]. The role of fructose bisphosphate al-
dolase (ALDO) as a central regulatory enzyme of glycolysis is well
studied and generally accepted. However, recent identification of addi-
tional aldolase protein-protein interactions has pointed out its alterna-
tive function as a scaffolder protein. Aldolase was implicated in the
regulation of: i) cytoskeleton rearrangement and cell motility; ii) traf-
ficking and recycling of membrane proteins; iii) signal transduction
during endocytosis and iv) modulation of V-ATPase function [265].
Indeed, in S. cerevisiae the reversible association/dissociation of V1VO

sectors of the V-ATPase is modulated by levels of glucose [21–23]. It
was proposed that in yeast this glucose-dependent mechanism is

http://wwpdb.org/)
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controlled by the direct interaction of V-ATPase with aldolase that plays
a role as a cytosolic glucose-sensor [153–155]. Three different subunits of
the V-ATPase are involved in direct interaction of aldolase with yeast V-
ATPase including a-subunit of the VO sector and E- and B-subunits of the
V1-sector (Fig. 1) [1]. Thus, itwas suggested that sinceV-ATPase interacts
with both cytohesin-2 and aldolase, these two proteins could in turn in-
teract with each other and coordinate the regulation of V-ATPase func-
tion. Indeed, using recombinant protein pull-down assay the direct
interaction of aldolase with cytohesin-2 was shown and its binding
via the PH-domain was mapped (Fig. 8A, B) [265]. The kinetics of
aldolase-binding with CTH2 was further studied in surface plasmon
resonance (SPR) experiments, showing a two-step binding (KD1 =
1.1 × 10−4 M and KD2 = 2.7 × 10−6 M) between these two proteins
(Fig. 8C, interfaces III, IV). Moreover, cell fractionation experiments
have confirmed the formation of V-ATPase/CTH2/ALDO/Arf's super-
complex located on the early endosomes of the endosoma/
lysosomal protein degradative pathway (Figs. 6 and 8) [265]. In conclu-
sion, recent studies have uncovered V-ATPase as a novel pH-sensing
and cytohesin-2 signaling receptor. This V-ATPase function takes
place as an integral part of V-ATPase/CTH2/ALDO/Arf's super-complex
that may be involved in: i) formation of multivesicular bodies (MVB)
and control trafficking between early and late endosomes, and there-
fore, ii) regulation of trafficking and signaling of insulin- and EGFR/
ErbB-receptors among others (Fig. 6). These findings have also clearly
shown that signaling between V-ATPase a-subunit isoforms and
cytohesin-2/Arf's is a general and evolutionarily conserved cell biolog-
ical phenomenon. Thus, taking into consideration that a-isoforms tar-
get the V-ATPase to different cellular compartments, this signaling
phenomenon may also play an important role in function of other or-
ganelles (lysosomes, Golgi, secretory vesicles and plasma membrane
among others) along both endocytic and exocytic pathways of eukary-
otic cell.

6. Future prospects in studies of eukaryotic V-ATPase

6.1. Future prospects for structural studies

The hybrid approach of combining cryo-EM with X-ray crystallogra-
phy is likely to yield significant insight into the structure and function of
the eukaryotic V-ATPase. Continued improvements in cryo-EMmethods
promise to deliver substantially improved resolutions for cryo-EMmaps
of the V-ATPase. On the other hand, crystallographic studies of the A-ATP
synthase from thermophilic sources suggest that crystallography of the
V1 region of the eukaryotic enzyme should be feasible, once a sufficiently
abundant source for this region of the complex can be established.While
crystallization of the intact V1VO-holocomplex of V-ATPase may be also
possible, inherent instabilities in the complex, heterogeneity due to
subunit isoforms, and scarcity of the enzyme from natural sources offer
significant barriers to this goal. To overcome these experimental limita-
tions, S. cerevisiae offers a valuable source for cryo-EM and X-ray studies
of the V-ATPase V1VO-holocomplex because, unlike most higher organ-
isms, it only posses two isoforms for the a-subunit, which are encoded
by the VPH1 and STV1 genes. Thus, as was recently performed, the het-
erogeneity of the S. cerevisiae enzyme could be eliminated by creating a
yeast strain that lacks the less abundant subunit isoforms [30].

6.2. Future prospects for functional studies

The primary role of eukaryotic V-ATPase as a rotary proton-pumping
nano-motor remains unchanged from the time of invention of this de-
sign by Nature billions of years ago and its implementation in archaea
A-ATP synthase andmitochondrial F-ATP synthase. However, in eukary-
otic cells this function of the V-ATPase requires a tight and efficient reg-
ulation in response to changes of cellular homeostasis, signaling of
multiple specific receptors andmicro-environment of variety intracellu-
lar compartments of both endocytic and exocytic pathways. Therefore,
during an evolution the eukaryotic V-ATPases have acquired a unique
regulatory mechanism of regulation of proton-pumping activity by re-
versible assembly/disassembly of V1 and VO sectors of V-ATPase V1VO-
holocomplex. Moreover, the eukaryotic V-ATPases has also acquired
the following alternative roles: i) as a receptor, capable of sensing and
transmembrane signaling as well as, ii) direct and indirect modulator
of trafficking and signaling of other cellular receptors. Importantly,
since these alternative roles of V-ATPase are functionally related, it is
tempting to hypothesize that these evolutionarily acquired secondary
functions of V-ATPase are also intertwined with the cell biological
mechanisms of their regulation. Undoubtedly, future functional studies
will shed light on the molecular mechanisms and cell biological
significance of these functions of eukaryotic V-ATPases. Finally, eukary-
otic V-ATPase are also emerging as an important drug targets, useful
to control signaling and trafficking of EGFR/ErbB, Fz/LRP6, Notch and
insulin-receptors among others. Moreover, modulation of V-ATPase
function by small molecules may be also useful in the regulation of
cross-talks between these receptors with endosomal V-ATPase/CTH2/
ALDO/Arf's and lysosomal V-ATPase/Ragulator/Rag/mTORC1/Rheb
super-complexes. Therefore, the successful combination of structural
and functional studies reviewed here, will very likely open an avenue
to identify novel targets, which will lead to a generation of new drugs
useful for the treatment of a variety of human diseases including cancer
and diabetes as well as neurodegenerative and kidney disorders.
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