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Abstract 

A general functional connective generator is proposed for the Hamacher family in 
this short study. The connective generator generates a variety of different families in 
which the original Hamacher family can be observed as a special case. Although the 
original additive connective generator that was proposed by Dombi is also capable of 
generating Hamacher norms, we show that there is yet another connective generator 
that uses simple, monotonic, and continuous functions that are both bounded in the 
domain and range of [0,1] in contrast to the properties of the functions that used in the 
additive connective generator. © 1998 Elsevier Science Inc. All rights reserved. 

Keywords: Triangular operators; T-norms; T-conorms; Connective generator; 
Hamacher family; Generalized Hamacher family 

1. Introduction 

Fuzzy systems have essential components  called triangular operators, often 
called t -operators  [14]. The t-operators are in fact Union, Intersection, and 
Complement  operators in fuzzy set theory which are symbolized by T-conorm 
( ~ ) ,  T-norm (T), and Negation (N), respectively. They have the same opera- 
tions as their counterparts in the Cantorian sets. I t  has been noticed that these 
operators play a dominant  role both in the formal theory and in applications. 
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The theory of t-operators has been under investigation for a considerable 
amount of time, even before the onset of fuzzy theory. Although it originated 
from the field of statistical metric spaces, a considerable effort in its develop- 
ment took place after the advent of fuzzy logic [22-25]. It is certainly an im- 
portant issue of discussion particularly in the framework of fuzzy inferencing 
and fuzzy decision making. It has been observed that a suitable choice of tri- 
angular operators on different applications can considerably enhance or dete- 
riorate the system's performance. 

Many t-operators have been proposed in literature [7,8,11,29] and have been 
used in variety of fuzzy systems. Among them there is a class of t-operators 
which Hamacher investigated in [12]. Hamacher showed that any representa- 
tion like P(x,y)/Q(x,y) where e(x,y) and Q(x,y) were polynomials of x and y 
would satisfy the properties of fuzzy connectives. Following those lines the 
functional connectives he derived are usually represented by the next pair of 
equations: 

T(x,y) = ~Y  
l - (1 - 2 ) ( x  + y  - x y ) '  ( 1 )  

T*(x,y) = 2(x + y )  +xy(1  - 2 4 )  
2 +xy(1 - 4) ' (2) 

where 2 >/0. 
Later, Dombi [6] was able to generalize Hamacher's connectives by using an 

additive connective generator, which we will discuss in Section 2. Fodor and 
Keresztfalvi [10] provided a simple characterization of the Hamacher family of 
t-norms with positive parameters. However, we did not find any significant 
improvement in those directions. In the third section we will examine the 
properties of the proposed connective generator for the generalized Hamacher 
family which is given by 

h(x,y : It) 
( ~2~-'(x)~-l(Y) ) 

= ~b ( # +  1 ) 4 -  ~ - (~ - 2)(q~-l(x) + ~b-l(y) - q~-l(x)q~-l(y)) ' 
(3) 

for any #, 2, ( ~ 0. In short, we will refer to the families generated by Eq. (3) as 
#-families, because # is the factor that would mainly decide the category of the 
family. Also, it has been realized that Hamacher norms is a special case of the 
above functional connective generator provided/~ = - 1 and ~ = 1. Along with 
this, we will also see some of the examples of t-operators of different families 
and can be thought as an extensions of the Hamacher class with respect to the 
proposed generator. We would like to refer to these families as generalized 
Hamacher families which are characterized by the choice of #. 
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2. T-operators and functional equations 
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2.1. Definitions o f  t-operators 

Zadeh used max and min operators in his seminal paper as T ~ and T [30]. 
Apart from Zadeh's max-min operator there are quite a few t-operators such 
as max-product etc. See Refs. [8,11], for a comprehensive survey on the topic. 
Klir and Folgers [14] have delineated four fundamental axioms related to ~ ,  T, 
and N. The axioms are often called axiomatic skeleton o f  fuzzy operation. For 
the sake of completeness we will add the definitions here in this study. 

Definition 1. T* : [0, 1] x [0, 1] ~ [0, 1] satisfies the following axioms and 
conditions: 
Axiom 1.1. T*(0,0) -- 0 and T*(1,0) -- T*(0, 1) = T*(1, 1) = 1, (Boundary 
conditions). 
Axiom 1.2. T* (x, y) = T* (y, x) (commutativity). 
Axiom 1.3. T* (T* (x, y), z) --- T* (x, T* (y, z)) (Associativity). 
Axiom 1.4. T* (x, y) ~< T* (x, z) if y ~< z (Monotonicity). 

Condition 1.1. T*(x, O) = x. 
A T ~ is said to be Archimedean if and only if the following two conditions 

are satisfied: 
Condition 1.2. T*(x,y) is continuous, (Continuity). 
Condition 1.3. T*(x,x) > x, for all x E [0, 1] (Condition of  strictness). 

Definition 2. T:  [0,1] x [0, 1] ~ [0,1] satisfies the following axioms and 
conditions: 
Axiom 2.1. T(0,0) = T(1,0) = T(0, 1) -- 0 and T(1, 1) -- 1, (Boundary condi- 
tions). 
Axiom 2.2. T(x,y) = T(y,x) (commutativity). 
Axiom 2.3. T(T(x,y), z ) =  T(x, T(y, z) ) (Associativity). 
Axiom 2.4. T(x,y) <~ T(x,z) i f y  ~< z (Monotonicity). 

Condition 2.1. T(x, 1) = x. 
A T is said to be Archimedean if and only if the following two conditions are 

satisfied: 
Condition 2.2. T(x,y) is continuous, (Continuity). 
Condition 2.3. T(x,x) < x, for all x E [0, 1] (Condition of strictness). 

Definition 3. N : [0, 1] --* [0, 1] satisfies the following axioms and conditions: 
Axiom 3.1. N(0) = 0, N(1) = 1 (Boundary conditions). 
Axiom 3.2. N(x) <~ N(y) for x/> y (Monotonicity). 
Axiom 3.3. N(N(x) ) = x (Involuteness). 

Condition 3.1. N(x) is continuous, (Continuity). 
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Condition 3.2. N(x) < N(y) given x > y for all x,y E [0, 1] (Condition of 
strictness). 

2.2. The nexus between functional equations and t-operators 

It was realized that these operators could be derived systematically by using 
connective generators which are in fact functional equations [1]. A connection 
between functional equations and multivalued logic was established on more 
concrete grounds by Schweizer and Sklar [23], Dombi [6], Weber [27] and 
others [18-20]. The approach of generating operators from functional equa- 
tions was initially suggested by Bellman and Giertz [3] and they were able to 
further justify the link with Zadeh's max-rain operators. 

As mentioned earlier t-operators originated from statistical metric spaces 
that were conceived by Menger [17]. Schweizer and Sklar [22-25] explained 
with clarity the role of probabilitic and statistical metric spaces and their 
connection with Menger's work. However, originally in [17] Menger proposed 
new distance measures satisling the four basic properties that later formed the 
definitions of triangular operators. Schweizer and Sklar's work on associative 
functions and transformation of abstract semigroups [22,23], and Ling's re- 
search on associative representation of the semigroups [15] gave a new impetus 
to the current research on t-operators. The details of classical semigroups are 
discussed in [5,16]. They also emphasized on a class of t-operators called strict 
operators, which satisfied the constraints of strictness that are reflected in the 
definitions. It is easily understood from the definitions that T and T' are in fact 
semigroup operators and also has been shown in [8]. 

Alsina et al. [2], Dombi [6], Klement [13], Silvert [26], Weber [27], Yager [28] 
and Zimmerman and Zysno [31], and Roychowdhury [18-20] has contributed 
and extended the connection between functionality and multivalued logic. 
Dubois and Prade [8] have presented a clear review on this topic of fuzzy ag- 
gregation connectives. Their paper contains an immense amount of informa- 
tion about the properties, like idempotency, nilpotency of these connectives 
apart from the skeleton axioms. 

The conventional generator found in Aczel [1], is popularly known as ad- 
ditive generator and is expressed as 

hA(X,y) = ~b(-l)(q~(X) + qb(y)), (4) 

where 

4-')(x) = / x [0,11, 

( 0 x e [1, oo]. 
The above generator was also used by Schweizer and Sklar [23] and Weber [27] 
in their research. 
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Moreover, Schweizer and Sklar were able to show the existence of  another 
connective generator called multiplicative generator. The multiplicative gener- 
ator is given below: 

hM(x,y) = × (5) 

where ~b(-l~(x) is the pseudoinverse. 
In the context of  associativity of  abstract semigroups, Frank [9] was able to 

point out an important functional association which is given as: 

T~(x,y) = x + y - TF(x,y), (6) 

where TF and ~ are Frank's T-norm and T-conorm. However, he used 
multiplicative generator (5) to generate his T-norms. 

Dombi [6] proposed another additive functional generator similar to the one 
given by Aczel [1]. However, in his case, the complete inverse of  a function is 
valid. He proposed the following generator: 

hD(X,y) = (~(~-l(x) --~ (~-l(y)). (7) 

He showed that his connective generator could generate the T and T* when 
4~ is a monotonically decreasing and a monotonically increasing function, re- 
spectively. Moreover, q~(x): R+--+ (0, 1], and q~-l(x): (0, 1]---, R + including 
the basic limit properties: (1) limx-~oo 4~(x)= 0 and 4)(0)= 1 for a T and 
limx~oo ~b(x) = 1 and (2) 4)(0) = 0 for a T*. These were the necessary and 
sufficient conditions to generate a class of  norms. 

Dombi [6] clearly showed that his additive generator could generate Ha- 
reacher norms for a specific function. When ~ b = e x / ( 2 + ( 1 - 2 ) e - X ) ,  it 
generates 

axy 
V(x,y) = 1 - (1 - 2 ) ( x + y - x y ) "  (8) 

When 4) = 2(1 - ex)/(2 + (1 - 2)e-X), it generates 

T*(x,y) 2 ( x + y )  +xy(1 - 2 2 )  
= 2 +xy(1 - 2) (9) 

Using the similar properties of  4> and its inverse as in the Dombi 's  generator, 
Roychowdhury and Wang [18] proposed another connective generator called 
additive-product generator which is given as follows: 

hRw(x,y) = ~b(~b-'(x) + q~-l(y) + ~b-,(x)~b-l(y)) (10) 

and they were able to show the existence of  exponential norms. 
In [19,20] Roychowdhury was able to show the existence of  a few more 

generators that generate triangular operators satisfying the skeleton axioms. It is 
surprising and yet motivating that one can still find many different operators and 
their generators. In the next section, we will discuss another proposed connective 
generator. This generator generalizes the Hamacher triangular operators. 
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3. The generalized Hamacher connective generator 

We will show an alternative connective generator  that can generate t-op- 
erators in the generalized Hamacher  class. The generator  is as follows: 

h(x,y : #) 

( /L~- I  (X) t~- 1 (Y) ) (11) 
= (~ (/./-'[- 1)2 -- ~ -'[- (( -- 2)(~-1 (X) -'[- ~-1 (y) _ t~-I (X)~-l(y)) 

for any #, 2, ( # 0. We observe that  in the above connective generator,  ~b can 
either monotonical ly  increasing or monotonical ly  decreasing function. De- 
pending on the properties and with a suitable choice of  ~b it is possible to 
generate either a T or a T*. The properties of  ~b are listed below: 
1. ~b : [0, l] -* [0, 1] is a continuous,  and strictly monotonical ly  increasing func- 

tion. Also, tk -1 : [0, 1] ~ [0, 1] exists, and is continuous,  strictly monotoni-  
cally increasing function. 

2. ~b(0) = ~b-l(0) = 0 and ~b(1) = ~b-l(1) -- 1. 
3. An  increasing function generates a T. 

When $ is monotonical ly  decreasing then the properties of  the function are: 
1. q9 : [0, 1] ~ [0, 1] is a continuous.  Also, ~b -l : [0, l] -* [0, l] exists, and is con- 

tinuous, strictly monotonical ly  decreasing function. 
2. ~b(0) = qs-l(0) = 1 and t#(1) = ~b-l(l) ---- 0. 
3. Such function generates a T*. 

Theorem 3.1. The t-operators generated by the proposed connective generator 
h(x,y : t~) satisfy the skeletal axioms. 

ProoL 
1. Commutat ivi ty:  

h(x,y : #) 

( ~/~b- 1 (X) ~ -  1 ('V) ) ( 1 2 )  
= f~ (~ "~ | )~  -- ~ -q- (~ -- 2) (~-l(x)  q- ~-1 (V) -- ~ - l (x )~- l (y ) )  ' 

= hCv, x :  ~). 03) 
2. Associativity: Let 

~b(x,y,z) = ( ( #  + 1)2 - ~)2 + ((p + 1)2 - ~)(~ - 2) (t]}-I (X) ,/,-l(.v) + 

+~-'(z) + (¢ - 2)=(~-'(x)~-'(y) + ¢,-~(x)g, - ' (z )g , - ' (y)g , - l (z) )  

-(~ - ,~)(~ - 2 + #2)4,-' (x)~-'  Cv)~-' (z)~., (14) 
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We can show after some computation that 
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( (.~.)2~-~ (x)O-' (y)O-' (~) 
h(h(x,y: t0,z: #) = ~b\ ~ ],  (15) 

3. Monotonicity: 
creasing function such that 

-1Cv) i> ~-l(z). 

From the above inequality it is clear that the reciprocal of Eq. (17) is, 

1 1 
~ - , ~ )  ~< ~-1(~).  

Multiply ((# + 1)4 - ~)/(p2~b(x)) to both sides of Eq. (18) and we have, 

= h(x, hO,,z: #):#). (16) 

Let us consider y<~z and q~-i be a monotonically de- 

(17) 

(18) 

( i t + l ) 2 - (  ~< ( p + l ) 2 - (  (19) 
~2~-,Cv)~-~(x) ~ - - y ( ~ )  • 

Add l/q~(x) again to both the sides of Eq. (18) and subtract 1 and followed by 
the multiplication of the factor (~ - 2)/g2. We get, 

~2 ~ ~-'(~) - i f -  0---~+ ,-'(x~ " 

Addition of Eq. (21) and Eq. (19) leads to the following: 

( # + 1 ) 2 - ~  1 - 2 (  1 1 ) 
~-~v(~-~?y) ~-/~- 0 - - ~  ~-'(x) 1 

, ) ( ~ + 1 ) 2 - ¢  + q 1 . 
~,2~-'(x)4-'(z) W ~ 4-'(x) 

Reciprocate Eq. (21) in order to have 

(21) 

(~ + 1)a - ¢ + (¢ - 2 )¢ - ' (x )  + 4 - ' ( y )  - 4 - ' ( x ) 4 - '  Lv) 

~,~4-~ (x)¢ -1 (z) 
(22) 

/> 
(]A + 1)/~ --  ~ "~- (~ --  ~ )q~- l (x )  -~- ~ - 1  (Z) --  (~-1 (x)(b-1 (y)  " 
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Since 4~ is decreasing we have 

( #2q~-' (x)q~-I (Y) ) 

(23) ( ~-l(x)~-l(z) ) 
~ (# "Jv 1)~ -- ¢ -[- (¢ -- ~--)--~1 ~ ~ ~-'---1(Z) -- ~-I  (X)~-lo?) " 

Thus, we have 

h(x ,y  : #) <. h(x ,z  : #). (24) 

Following similar steps we can prove the rest for an increasing function 
which is rather trival. 

4. Boundedness: It is sufficient to show the following two cases. At y = 1, we 
have 

h(x ,y  : I~) 

( #~¢-'(x)~-'(1) ) ( 2 5 )  
= ~ (~ + 1)4 - ¢ + (¢ - ~)(~-'(x) + ~-'(1) - ~-'(x)~-'(1)) ' 
= q~(~b -~ (x)), (26) 

= x. (27) 

When 4~ is monotonically increasing then we know q~-l(1) = 1. 
At y = 0, we have ~b -1 (1) = 0 when q~ is monotonically decreasing function. 

h(x, 1: /2) 

( #~-'(x)~-'(1) ) ,  (28) 
= ~b (/~ + 1)2 - ¢ + (~ - 2)(~b-'(x) + q~-'(1) - ~-'(x)~b-'(1)) 

= ~b(O), (29) 

= 0. [] (30) 

One of the fundamental  properties is De-Morgan's  operation in the context 
of t-operators, 

N(T*(x , y ) )  = T ( N ( x ) , N ( y ) ) ,  (31) 

when N ( x ) =  ~b(-0(4~(1)- q~(x)), where q~i(x) and ~bd(X ) are increasing and 
decreasing functions respectively. 

Theorem 3.2. De-Morgan's  identity is satisfied even by this fami ly  provided we 
have ~bi(x ) = N(q~d(X)). 

Proof. The proof  is obvious. We will only mention that  the class provides 
t~? 1 (x) = N(~bd 1 (x)). 



S. Roychowdhury, B.-H. Wang I Internat. J. Approx. Reason. 19 (1998) 419-439 427 

hi(x,y : #) 

( l,,~?' (x)~?' (y) ).(32) 
= 6~ (~ + 1)4 - ~ + (¢ - ~ + ~ - ~ ( y )  - ~?l(x)~?~(y) 

hd(x,y: ~) 

= N  (~i (t/_~. 1),~ _ ( ..1_ ((  __ ~,)(~-1 (X) q_ 1~-1 (y) __ (~-1 (X)(~-I (y) , 

(33) 

= N(hi (x ,y :  ~t)). (34) 

4. The new families 

In the previous section we have seen that the proposed connective generator 
is capable of  generating different families of  connectives generators, depending 
on the different choices of  #. Here we will look at the Hamacher family, as well 
as other families. It should be noted that # is the only significant factor that 
differentiates between the classes, whereas the other parameters do not render 
substanstial effects. 

4.1. The p_l-family: Hamacher operators 

When # = - 1, the connective generator generates the Hamacher family of  t- 
operators. Using ~ = 1 and 2 t> 0, the connective generator (3) reduces to 

( 2q~-' (x)~b-' (y) ) . ( 3 5 )  
h(x,y,  : - 1 )  = ~b 1 - (1 - 2 ) q ~ - ~ - ) ~ )  (~-l(x)tk-l(y) 

Example 1. Consider the following functions, let ~b(x) = x ~ be an increasing 
function and the decreasing function be ~b(x) = 1 - x  l/~ in the domain of  [0,1]. 
Thus we get the following t-operators by using Eq. (37): 

N(x) = 1 - x, (36) 

( ) 2(xy) '/~ 
T(x,y)  (37) 

1 - (1 - 2) (x'/* + y'/" - (xy) '/') 

T*(x,y) 

( = 1 - 2((1 - x ) ( 1  - y ) ) ' / ~  , (38) 
1 - (1 - 2)((1 - x)T~ ; ' ( i  - y77;--- ~(1 - x)(1 - y))'/~) 
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where ~ E R--. I f  c~ = 1 and lim 2 ~ cx~ then the operators  reduce to 

_ x y  (39) 
T(x , y )  x + y -  x y '  

r ,  Cx, y ) _ x + y - 2xy (40) 
1 - x y  

On the other  hand,  if we allow e = 1 and 2 = 1 then the operators  get modified 
to (see Figs. 1 and 2) 

T ( x , y )  = xy,  (41) 
T* (x, y)  = x + y - xy. (42) 

4.2. The p l - fami ly  

Let/~ = 1, then the connective genera tor  generates another  class o f  t-oper-  
ators. Fo r  our  convenience, we fix ( = 1 and 2 >/0.  Wi th  these parameters  the 
connective generator  (3) reduces to 

( + ix/+ ) 
h ( x , y :  1) = ~ 2,l - 1 + (1 - 2)(q~-~(x) + q~-~(y) - 4~-l(x)4~-t(y)) " 

(43) 

Example 2. Again  consider the same functions that  we considered in our  
previous example; let ~b(x) - - x  ~ be an increasing function and the deceasing 

0 . |  ,3. 

O.Z / 0 . , I  
, +  

0.8 ~ 
.1. 

Fig. I. (#_l-family): T-norm generated from Eq. (39) which is xy/(x + y -  xy). 
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- l -  1 

0 .$  
0. t ;  .1. 

O. 

"' ,.,->---, I /  
0 . t  

. t  

0.8 ~ 
0 1 

Fig. 2. (p_l-family): T-conorm generated from Eq. (40) which is (x + y  - 2xy)/(1 - xy). 

f u n c t i o n  be  q~(x) = 1 - x 1/~ in the  d o m a i n  o f  [0, 1]. T h u s  we ge t  the  f o l l o w i n g  
n o r m s :  

N ( x )  = 1 - x,  (44)  

r(x,y) = (2,~- 
r*(x,y) 

= 1 -  

~(xY)'/~ ) 
ct 

1 + (1 - ~)(xl / .  + y,/~ _ (xy)' / ' )  
(45) 

( ) 2((1 - x)(1 - -  y ) ) l /~  

22 - 1 + (1 - A)( (1  - X) l/°t + (1 -- y ) ' /~  -- ((1 -- X)(1 -- y ) ) l /~ )  ' 

(46) 

w h e r e  ~ E ~+.  I f  c~ = 1 a n d  l i m 2  ~ oc then  the o p e r a t o r s  r educe  to  

T ( x , y )  = x y  
2 - x - y + x y '  (47) 

x + y (48) 
T * ( x , y )  - 1 + xy"  

A l s o  i f  we  a l l o w  a = 1 a n d  2 --  1 t hen  we o b se rv e  B a n d l e r  a n d  K o h o u t ' s  n o r m s  
[4] (see F igs .  3 a n d  4). 
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°~ 
0,1; 1 

0. 

O.t  / 0 . 5  

0 . 5  O.t  
.Z 

0 1 

Fig. 3. (/~l-family): T-norm generated from Eq. (47) which is (xy)/(2 - x - y  + xy). 

°~, 
0 . |  2. 

O. 
O. 

0 . v .70.6 

o.,->...., t /  O . t  

0 . 8  ~ 
O .1. 

Fig. 4. (/~t-family): T-conorm generated from Eq. (48) which is (x +y)/(1 + xy). 
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T(x ,y )  = xy, (49) 

r * ( x , y )  = x + y - xy. (50) 

4.3. The #,,-family 

When # = n ~> 0, the connective generator generates the Hamacher  family of  
t-operators. We note that  ( = 1 and 2 >t 0. Thus the connective generator (3) 
reduces to 

h(x ,y  : n) 

( n2~b-I (x)~b-I (Y) ) . ( 5 1 )  
= 4~ (n + 1)2 - 1 + (I - - 2 - ~ ( - ~ + ~ - l ( y )  - ~b-l(x)~b-l(y) 

Example 3. Consider the following functions, let q~(x) = x ~ be an increasing 
function and the decreasing function be ~b(x) = 1 - x  1/~ in the domain of  [0,1]. 
Thus we get the following norms: 

N(x)  = 1 - x, (52) 

n,~(xy) 1/~ 

T ( x , y ) =  ( n _ t _ l ) 2 _ l _ t _ ( l _ ~ . ) ( x l / ~ + y l / ~ _ ( x y ) l / ~ )  , (53) 

r * ( x , y )  = 

1 - .2 ((1 - x )  ( 1 ;  y)) 1/__2~ 
(n + 1)~ - 1 + (1 - ~) ( (1  - x)~/~ + (1 - y)~/~ - ((1 - x ) (1  - y ) ) l /~ )  

(54) 

where ~ E •+. If  ~ = 1 and lim2 --~ o~ then the operators reduce to 

T ( x , y )  = ' ~Y  
n + 1 - ( x + y - x y ) '  (55) 

T*(x,y) = nx + ny + (1 - n)xy (56) 
n + x y  

Also if we allow ct -- 1 and 2 = 1 then the operators get reduced to Eq. (51) and 
Eq. (52), respectively. 

Exam01e 4. Here we will use some log functions and their inverses to generate 
another  set of  t-operators. Let us consider a decreasing function, 
~b(x) = log~(1 + ( a -  1)x) and its inverse ~b-l(x)= (a x - 1 ) / ( a -  1). The de- 
creasing function generates T, whereas the increasing function which is 
~b(x) = a/(log~(1 + (a - 1)x)) and its inverse ~b-l(x) = (a (l-x) - 1)/(a - 1) 
generates a T* (see Figs. 5-8). 
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0 . |  "1" 

O.t / 0 . 4  
0 .4  1.4  

.Z 

0.0 ~ 
0 

1 

Fig. 5. (#.-family): T-norm generated from Eq. (55) which is (nxy)/(n + 1 - x  - y  + xy); n = 20. 

01,1 
0.6 1 

0 .4  0.$ 
O.Z 

I/o., 
0o,---.... f / , . ,  

0-° ~ 
° 

1 

Fig. 6. (#.-family): T-conorm generated from Eq. (56) which is (nx + ny+  ( 1 -  n)xy)/(n +xy); 
n = 20. 
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0 . ~ q .  J f T - - A . / x / x K V  ' . '  0.+1 ~ . t  

0 .0  

.1. u 
Fig. 7. Difference of T-conorrns given by Eq. (56) generated with n = 20 and n --- 2. 

O. 0.1. 

o - '  ~ J/'7".¢,../"/,. K V " '  

0.6 0. i ~ ~ ~ 0  ''~ 

Fig. 8. Difference of T-conorms given by Eq. (56) generated with n = 2, 2 = 2, and e = 20 and 
n = 2 ,  2 = 2 ,  and e =  1. 



434 S. Roychowdhury, 13.-_I-1, Wang I lnternat. J. Approx. Reason. 19 (1998) 419-439 

U(x) = 1 - x, (57) 

( n~(a- , ) (~ -  , )(a ' -  ~) ) 
T(x,y) = log~ 1-~ ( ( n +  1 ) 2 -  1 ) ( a - l ~ T i i  - - - 2 - ~ - a ~ - ~  2 " -  (a x - 1)(ay - 1)] ' 

(58) 

( ° / T*(x,y) = log. n3. (a l2- f f -1 ) (a l_y_l  ) . 
1 -Jr- ((n+l)i_l)(a_l)Z+(l_X)[(al_X+al_r_2)(a_l)_(al_X_l)(al_y_l)] ] 

(59) 

5. A comparative evaluation of new t-operators in fuzzy inference 

An extensive research has been done on the topic of fuzzy inference, and 
numerous comments and criticisms have appeared from time to time [14,21]. 
Yet, it still remains an important topic to contemplate and research, as we need 
fuzzy inference engines in many fuzzy systems. Here we study the effect of 
generalized Hamacher triangular operators on fuzzy inference. Our focus is to 
perform a comparative evaluation of various fuzzy set operations with respect 
to generalized Hamacher triangular operators on the Compositional Rule of 
Inference (CRI). 

The CRI is given by the following equation: 

Y ' (y )  = T * ( X ' ( x )  o T ( x , y ) ) ) ,  (60) 

where Y'(y) and X'(x) are the inferred fuzzy set and the input fuzzy set re- 
spectively. Other fuzzy inference schemes have been proposed in [21], however 
we will limit the scope of our discussion to CRI. Alternatively, the CRI can 
also be rewritten in terms of an increasing function ~b i and a decreasing 
function ~b d using the proposed operator generator, and is given below: 

r'(y) 

( #24dl(X)4~a'(T(x'Y)) ) 
= 4~a (# + 1)2 - ( + (( - 2)(~bdl(X) + d f ~ l ( T ( x , y ) )  - ~ d l ( x ) d p ~ l ( T ( x , y ) ) )  ' 

where, 

r(x,y) 

= ~ (z + 1)~ - ¢ + (¢ - ~)(~?'(x) + ~?l(y) _ 4V~(~)4~?,(y))  • 

(61) 

(62) 
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Let us consider a hypothetical fuzzy SISO rule for linear expansion of heat: 
IF gTemp=(-20, O, 20)°C THEN gLen--(-20,0,20) lam. The antecedent 
variable gTemp denotes the temperature that is equal to a triangular fuzzy set 
(-20, 0, 20)°C. And on the other hand, the consequent variable gLen has tri- 
angular fuzzy set (-20, 0, 20) ~tm. The universe of discourse of both variables is 
(-50, 50). The quantization of fuzzy sets in this case is equal to 20. The rule is 
encoded using the T-norms. Specifically, in Fig. 9 we used the min operator to 
encode the above rule. However, during the other simulation runs we used 

Zll 

Fig. 9. Rule encoding with min operator. 

Hmbe rJhip  

1 

11.1 

de.6 

0 .4  

O.t 

-4+ -l(m 111 IO 

Fig. 10. Input fuzzy set to the rule; triangular fuzzy set (5, 10, 20). 
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different T-norms. The input 6Temp fuzzy set is given by a triangular mem- 
bership function (5, 10, 15)°C as shown in Fig. 10. 

Figs. 11-14 show different output fuzzy sets that are inferred from the above 
rule by various combinations of T-norm-T-conorms. Fig. 11 shows the output 
fuzzy set derived by using max-min operators. Fig. 12, the output fuzzy set is 
an output of the CRI which used xy and x + y - xy t-operators. Among the new 
triangular operators we have used T ( x , y ) :  e x p ( 1 -  ( 1 -  ln(x))(1-In(y)))  
and T*(x,y) = 1 - exp(1 - (1 - In(1 - x))(1 - ln(1 - y))) which is discussed in 
[18], and is shown Fig. 13. The following figure, Fig. 14, is due to T(x,y) given 
by Eq. (55) and T*(x,y) given by Eq. (56) of the # : family  with n --- 2, 2 = 2, 
and ~ = 2. Note the differences of the T-conorms with the change of free pa- 
rameters. 

Hee~be r J h i p  

l 

0.$ 

0.1; 

0 .2  

- t 0  -~'0 tO 
. . . . .  Rar~ge 

t0  

Fig. 11. Ou tpu t  fuzzy set; T(x,y) = min and T*(x,y) = max. 

Nee~e r J h i p  

I . $  

O. |  

-40 -tO t$  511 

Fig. 1 2. Ou tpu t  fuzzy set; T(x,y) = xy and T* (x,y) = x + y - xy. 
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Hembersbip 

1 

0 .8  

| i a | 

-,,I0 *;It:O 20 ,I0 

Fig. 13. O u t p u t  fuzzy set; T(x,y) = e x p ( 1 - ( 1 - 1 n ( x ) ) ( 1 - l n ( y ) ) )  and  
1 - e x p ( 1 -  (1 - ln(1 - x))(1 - ln(1 - y))).  

T*(x,y) = 

Hembershtp 

e.$ 

* . i  

- t 0  -tO I0 10 

Fig. 14. O u t p u t  fuzzy set genera ted  f rom generalized H a m a c h e r  t r iangular  operator ;  T -conorm (56) 
and  T - n o r m  (55). 

It should be noted that we have compared the output results of fuzzy in- 
ference based on CRI that used a diverse set of families of triangular operators. 
Furthermore, we believe that these four triangular operator combinations 
provide a sufficient representation of most of the known classes of t-operators 
from a practical viewpoint. 

6. Concluding remarks 

We have proposed an alternative connective generator that generalizes the 
Hamacher family of triangular operators. In the proposed generator, the 
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suitable choice of  # decides the category of  a family. Interestingly,  when 
p = - 1  we get the original  Hamacher  norms.  

Given  ~t # 0, it is easy to create new classes of  no rms  for further studies. We 
have also shown some of  logari thmic operators  that  belong to the generalized 

Hamacher  class. A brief  compara t ive  study of  t r iangular  operators  was re- 
ported in this study. 
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