Homotopy and normalization properties for admissible maps

Ravi P. Agarwala,*, Donal O’Reganb

aDepartment of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
bDepartment of Mathematics, National University of Ireland, Galway, Ireland

Received 1 October 2001; accepted 1 November 2002

Abstract

New normalization and homotopy properties are presented for a subclass of the B^k-admissible maps of Park. In addition new random fixed point results are given.

© 2004 Elsevier Ltd. All rights reserved.

MSC: 47H10

Keywords: Normalization; Homotopy; B^k-admissible maps; Random fixed point theorems

1. Introduction

This paper presents an essential map approach for the B^k-admissible maps of Park. Our results improve considerably those in \cite{1} since we establish a new normalization property. Also in this paper we discuss briefly the existence of random fixed points for random operators of B^k type.

For the remainder of this section we present some definitions and known results. A nonempty subset W of a Hausdorff topological vector space E is said to be \textit{admissible} if for every compact subset K of W and every neighborhood V of 0, there exists a continuous map $h : K \to W$ with $x - h(x) \in V$ for all $x \in K$ and $h(K)$ is contained in a finite dimensional subspace of E. W is said to be \textit{q-admissible} if any nonempty compact convex subset Ω of W is admissible.

Let (E, d) be a pseudometric space. For $S \subseteq E$, let $B(S, \epsilon) = \{x \in E : d(x, S) \leq \epsilon\}$, $\epsilon > 0$, where $d(x, S) = \inf_{y \in Y} d(x, y)$. The measure of noncompactness of the set $M \subseteq E$ is defined by

* Corresponding author.

E-mail address: agarwal@fit.edu (R.P. Agarwal).

0893-9659/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.aml.2002.11.022
\[\alpha(M) = \inf Q(M) \text{ where} \]
\[Q(M) = \{ \epsilon > 0 : M \subseteq B(A, \epsilon) \text{ for some finite subset } A \text{ of } E \}. \]

Let \(E \) be a locally convex Hausdorff topological vector space, and let \(P \) be a defining system of seminorms on \(E \). Suppose \(F : S \to 2^E \); here \(S \subseteq E \). The map \(F \) is said to be a countably \(P \)-concentrative mapping if \(F(S) \) is bounded, and for \(p \in P \) for each countably bounded subset \(X \) of \(S \) we have \(\alpha_p(F(X)) \leq \alpha_p(X) \), and for \(p \in P \) for each countably bounded non-\(p \)-precompact subset \(X \) of \(S \) (i.e. \(X \) is not precompact in the pseudonormed space \((E, p)\)) we have \(\alpha_p(F(X)) < \alpha_p(X) \); here \(\alpha_p(.) \) denotes the measure of noncompactness in the pseudonormed space \((E, p)\).

Remark 1.1. In this paper we can remove the condition that for \(p \in P \) for each countably bounded subset \(X \) of \(S \) we have \(\alpha_p(F(X)) \leq \alpha_p(X) \) in the definition above provided we assume the map \(F \) (in Theorem 2.5 and Definition 2.7) maps relatively compact sets into relatively compact sets.

Let \(X \) be a nonempty, convex subset of a Hausdorff topological vector space \(E \) and \(Y \) a topological space. Recall a *polytope* \(P \) in \(X \) is any convex hull of a nonempty finite subset of \(X \).

Definition 1.1. We say \(G \in \mathcal{B}(X, Y) \) if \(G : X \to 2^Y \) (the nonempty subsets of \(Y \)) is such that for any polytope \(P \in X \) and any continuous function \(g : G(P) \to P \), the composition \(g(G|_P) : P \to 2^P \) has a fixed point.

Definition 1.2. \(F \in \mathcal{B}^k(X, Y) \) (i.e. \(F \) is \(\mathcal{B}^k \)-admissible) if \(F : X \to 2^Y \) is such that for any compact, convex subset \(K \) of \(X \), there exists a closed map \(G \in \mathcal{B}(K, Y) \) with \(G(x) \subseteq F(x) \) for each \(x \in K \).

We next present the fixed point results we will need in Section 2.

Theorem 1.1 ([6]). Let \(E \) be a Hausdorff topological vector space and \(X \) an admissible convex subset of \(E \). Then any compact map \(F \in \mathcal{B}^k(X, X) \) has a fixed point.

Theorem 1.2 ([1]). Let \(\Omega \) be a nonempty closed convex bounded subset of a Fréchet space \(E \) (\(P \) a defining system of seminorms). Suppose \(F \in \mathcal{B}^k(\Omega, \Omega) \) is a countably \(P \)-concentrative map. Then \(F \) has a fixed point.

Theorem 1.3 ([5]). Let \(\Omega \) be a closed convex \(q \)-admissible subset of a Hausdorff topological vector space \(E \) with \(0 \in \Omega \). Suppose \(F \in \mathcal{B}^k(\Omega, \Omega) \) satisfies the following condition:
\[A \subseteq \Omega, \quad A = \overline{\operatorname{co}(\{0\} \cup F(A))} \implies A \text{ is compact}. \] (1.1)

Then \(F \) has a fixed point.

We will also discuss random operators in this paper. Let \((\Omega, \mathcal{A})\) be a measurable space and \(C \) a nonempty subset of a metric space \(X = (X, d) \). Let \(\mathcal{C}(C) \) be the family of all nonempty closed subsets of \(C \). A mapping \(G : \Omega \to 2^C \) is said to be measurable if
\[G^{-1}(U) = \{ w \in \Omega : G(w) \cap U \neq \emptyset \} \in \mathcal{A} \]
for each open subset \(U \) of \(C \). A mapping \(\xi : \Omega \to C \) is called a measurable selector of the measurable mapping \(G : \Omega \to 2^C \) if \(\xi \) is measurable and \(\xi(w) \in G(w) \) for each \(w \in \Omega \). A mapping \(F : \Omega \times C \to 2^X \) is called a random operator if, for any fixed \(x \in C \), the map \(F(., x) : \Omega \to 2^X \) is measurable. A measurable mapping \(\xi : \Omega \to C \) is said to be a random fixed point of a random operator \(F : \Omega \times C \to 2^X \) if \(\xi(w) \in F(w, \xi(w)) \) for each \(w \in \Omega \). Let \(P_b(X) \) be the bounded subsets of \(X \). The Kuratowskii
measure of noncompactness is the map \(\alpha : P_B(X) \to [0, \infty) \) defined by
\[
\alpha(A) = \inf \left\{ \epsilon > 0 : A \subseteq \bigcup_{i=1}^{n} X_i \text{ and } \text{diam}(X_i) \leq \epsilon \right\};
\]
here \(A \in P_B(X) \). Let \(S \) be a nonempty subset of \(X \), and for each \(x \in X \) define \(d(x, S) = \inf_{y \in S} d(x, y) \), and let \(B(S, r) = \{ x \in X : d(x, S) < r \}, r > 0 \). Let \(H : S \to 2^X \). \(H \) is called (i) countably \(k \)-set contractive \((k \geq 0) \) if \(H(S) \) is bounded and \(\alpha(H(Y)) \leq k \alpha(Y) \) for all countably bounded sets \(Y \) of \(S \); (ii) countably condensing if \(H(S) \) is bounded and \(\alpha(H(Y)) < \alpha(Y) \) for all countably bounded sets \(Y \) of \(S \) with \(\alpha(Y) \neq 0 \); (iii) hemicompact if each sequence \((x_n)_{n=1}^{\infty} \) in \(S \) has a convergent subsequence whenever \(d(x_n, H(x_n)) \to 0 \) as \(n \to \infty \).

A random operator \(F : \Omega \times C \to CD(X) \) is said to be continuous (countably \(k \)-set contractive etc.) if for each \(w \in \Omega \), the map \(F(w, .) : C \to CD(X) \) is continuous (countably \(k \)-set contractive etc.).

Next we state a well known result of Tan and Yuan [7].

Theorem 1.4. Let \((\Omega, A)\) be a measurable space and \(Z \) a nonempty separable complete subset of a metric space \(X = (X, d) \). Suppose the map \(F : \Omega \times Z \to CD(X) \) is a continuous, hemicompact random operator. If \(F \) has a deterministic fixed point then \(F \) has a random fixed point.

Remark 1.2. A single valued map \(\phi : \Omega \to X \) is said to be a deterministic fixed point of \(F \) if \(\phi(w) \in F(w, \phi(w)) \) for each \(w \in \Omega \).

In [2] we established the following convergence result.

Theorem 1.5. Let \((X, d)\) be a Fréchet space, \(D \) a closed subset of \(X \) and \(F : D \to 2^X \) a countably condensing map. Then \(F \) is hemicompact.

Remark 1.3. It is also possible to discuss in this paper operators random in the sense of Gorniewicz [3, p. 156].

2. Essential maps

Let \(E \) be a Hausdorff topological vector space, \(C \) a closed convex subset of \(E \), \(U \) an open subset of \(C \) with \(0 \in U \). We will consider a subclass \(A \) of the \(B_k \) maps.

Definition 2.1. We let \(F \in D(U, C) \) if \(F \in A(U, C) \) is a closed map with nonempty (closed) values and which satisfies condition \((C)\) (i.e. if \(A \subseteq \overline{U} \) and \(A \subseteq \overline{\partial f (\{0\} \cup F(A))} \) then \(\overline{f} \) is compact).

Definition 2.2. We let \(F \in D_{\partial U}(U, C) \) if \(F \in D(U, C) \) with \(x \notin F(x) \) for \(x \in \partial U \); here \(\partial U \) denotes the boundary of \(U \) in \(C \).

Definition 2.3. A map \(F \in D_{\partial U}(U, C) \) is essential in \(D_{\partial U}(U, C) \) if for every \(G \in D_{\partial U}(U, C) \) with \(G|_{\partial U} = F|_{\partial U} \) there exists \(x \in U \) with \(x \in G(x) \).

Theorem 2.1 (Homotopy). Let \(E \), \(C \) and \(U \) be as above. Suppose \(F \in D(U, C) \) and assume the following conditions hold:

\[
\text{the zero map is essential in } D_{\partial U}(U, C) \quad (2.1)
\]
\[
x \notin \lambda F x \text{ for every } x \in \partial U \text{ and } \lambda \in (0, 1] \quad (2.2)
\]
and
\[
\begin{cases}
\text{for any continuous function } \mu : C \to [0, 1] \text{ and } \\
\text{any map } H \in D(\overline{U}, C) \text{ we have } \mu H \in A(\overline{U}, C).
\end{cases}
\tag{2.3}
\]

Then \(F \) is essential in \(D_{\partial U}(\overline{U}, C) \).

Proof. Let \(H \in D_{\partial U}(\overline{U}, C) \) with \(H|_{\partial U} = F|_{\partial U} \). We must show \(H \) has a fixed point in \(U \). Let
\[
B = \{ x \in \overline{U} : x \in \lambda H(x) \text{ for some } \lambda \in [0, 1] \}.
\]

Now \(B \neq \emptyset \) is closed and in fact compact since \(B \subseteq co(\overline{H(B)} \cup \{0\}) \). In addition \(B \cap \partial U = \emptyset \) since (2.2) holds and \(H|_{\partial U} = F|_{\partial U} \) and \(0 \in U \). Thus there exists a continuous \(\mu : C \to [0, 1] \) with \(\mu(\partial U) = 0 \) and \(\mu(B) = 1 \). Define a map \(R \) by \(R(x) = \mu(x) H(x) \). Now \(R \in A(\overline{U}, C) \) by (2.3) and it is easy to check that \(R \in D(\overline{U}, C) \) (To see \(R \) satisfies condition (C), notice if \(A \subseteq \overline{U} \) and \(A \subseteq \overline{co}(\{0\} \cup R(\Lambda)) \) then \(A \subseteq \overline{co}(\{0\} \cup co(\{0\} \cup H(A))) = \overline{co}(\{0\} \cup H(A)) \)). Also note \(R|_{\partial U} = \{0\} \). Thus \(R \in D_{\partial U}(\overline{U}, C) \), \(R|_{\partial U} = \{0\} \) together with (2.1) implies that there exists \(x \in U \) with \(x \in R x \). Thus \(x \in B \) and so \(\mu(x) = 1 \). As a result \(x \in H(x) \). \(\Box \)

Next we discuss some normalization properties. We first discuss the case when \(E \) is locally convex and \(U \) is convex.

Theorem 2.2 (Normalization). Let \(E \) be a locally convex Hausdorff topological vector space, \(C \) a closed convex subset of \(E \) and \(U \subseteq C \) an open convex subset of \(E \) with \(0 \in U \). Also assume the following condition holds:
\[
\begin{cases}
\text{for any continuous map } r : E \to \overline{U} \text{ and any map } \\
\theta \in D(\overline{U}, C), \text{ the map } r|_C \theta \in B^k(\overline{U}, \overline{U}).
\end{cases}
\tag{2.4}
\]

Then the zero map is essential in \(D_{\partial U}(\overline{U}, C) \).

Proof. Let \(\theta \in D_{\partial U}(\overline{U}, C) \) with \(\theta|_{\partial U} = \{0\} \). We must show there exists \(x \in U \) with \(x \in \theta(x) \). Let \(\mu \) be the Minkowski functional on \(\overline{U} \) and let \(r : E \to \overline{U} \) be given by
\[
r(x) = \frac{x}{\max\{1, \mu(x)\}} \quad \text{for } x \in E.
\]

Consider \(G = r|_C \theta \). Now (2.4) guarantees that \(G \in B^k(\overline{U}, \overline{U}) \). Next we claim \(G \) satisfies condition (C). To see this let \(A \subseteq \overline{U} \) with \(A \subseteq \overline{co}(\{0\} \cup G(\Lambda)) \). Then since \(r(B) \subseteq co(B \cup \{0\}) \) for any subset \(B \) of \(E \), we have
\[
A \subseteq \overline{co}(\{0\} \cup co(\theta(\Lambda) \cup \{0\})) = \overline{co}(\{0\} \cup \theta(\Lambda)).
\]

Thus \(\overline{A} \) is compact since \(\theta \in D(\overline{U}, C) \). Theorem 1.3 guarantees that there exists \(x \in \overline{U} \) with \(x \in G(x) = r\theta(x) \). Thus \(x = r(y) \) for some \(y \in Fx \); here \(x \in \overline{U} = U \cup \partial U \) (note \(int_C U = U \) since \(U \) is also open in \(C \)). Suppose \(x \in \partial U \). Then \(\mu(x) = 1 \) and so
\[
1 = \mu(x) = \mu(r(y)) = \frac{\mu(y)}{\max\{1, \mu(y)\}} \quad \text{since} \quad r(y) = \frac{y}{\max\{1, \mu(y)\}}.
\]

Thus \(\mu(y) \geq 1 \) and so \(x = r(y) = \frac{y}{\mu(y)} \). This implies
\[
x \in \lambda \theta(x) = \{0\} \quad \text{since} \quad \theta|_{\partial U} = \{0\}; \quad \text{here} \quad \lambda = \frac{1}{\mu(y)}.
\]
This is a contradiction since $0 \in U$. As a result $x \in U$. This implies $\mu(x) < 1$. Consequently

$$1 > \mu(x) = \mu(r(y)) = \frac{\mu(y)}{\max\{1, \mu(y)\}},$$

and so $\mu(y) < 1$. Thus $r(y) = y$, so $x = y \in \theta(x)$ and we are finished. \square

Combining Theorems 2.1 and 2.2 yields the following nonlinear alternative of Leray–Schauder type for D maps.

Theorem 2.3. Let E be a locally convex Hausdorff topological vector space, C a closed convex subset of E and $U \subseteq C$ an open convex subset of E with $0 \in U$. Suppose $F \in D(U, C)$ and assume (2.2)–(2.4) hold. Then F is essential in $D_{\partial U}(U, C)$.

Remark 2.1. It is possible to relax condition (C) in Definition 2.1 if we use the results in [5] in place of Theorem 1.3.

It is also possible to obtain a normalization property when E is not locally convex. To show what is possible we restrict ourselves to compact maps. Let E be a Hausdorff topological vector space, C a convex admissible subset of E and U an open subset of C with $0 \in U$. Also we assume that there exists a retraction $r : C \to \overline{U}$.

Definition 2.4. We let $F \in D^*(\overline{U}, C)$ if $F \in A(\overline{U}, C)$ is a closed, compact map with nonempty (closed) values.

Definition 2.5. We let $F \in D^*_{\partial U}(\overline{U}, C)$ if $F \in D^*(\overline{U}, C)$ with $x \notin F(x)$ for $x \in \partial U$.

Definition 2.6. A map $F \in D^*_{\partial U}(\overline{U}, C)$ is essential in $D^*_{\partial U}(\overline{U}, C)$ if for every $G \in D^*_{\partial U}(\overline{U}, C)$ with $G|_{\partial U} = F|_{\partial U}$ there exists $x \in U$ with $x \in G(x)$.

The analogue of Theorem 2.1 is immediate for D^* maps. Instead we will concentrate on the normalization property.

Theorem 2.4 (Normalization). Let E be a Hausdorff topological vector space, C a convex admissible subset of E and U an open subset of C with $0 \in U$. Suppose there exists a retraction (continuous) $r : C \to \overline{U}$. Also assume the following two conditions hold:

$$\begin{align*}
\text{for any continuous map } \mu : C & \to [0, 1] \text{ and any} \\
\text{map } H & \in D^*(C, C), \text{ the map } \mu H \in B^k(C, C)
\end{align*}$$

and

$$\begin{align*}
\text{for any map } \theta & \in D^*(\overline{U}, C), \text{ the map } \theta r \in A(C, C).
\end{align*}$$

Then the zero map is essential in $D^*_{\partial U}(\overline{U}, C)$.

Proof. Let $\theta \in D^*_{\partial U}(\overline{U}, C)$ with $\theta|_{\partial U} = \{0\}$. Next let

$$A = \{x \in \overline{U} : x \in \lambda \theta(x) \text{ for some } \lambda \in [0, 1]\}.$$

Now $A \neq \emptyset$ is closed and in fact compact. Also $A \subseteq U$ since $\theta|_{\partial U} = \{0\}$ and $0 \in U$. Thus there exists a continuous function $\mu : C \to [0, 1]$ with $\mu(A) = 1$ and $\mu(C \setminus U) = 0$. Define a map J by

$$J(x) = \mu(x) \theta(r(x))$$

for $x \in C$.

Now (2.6) implies \(\theta \circ r \in A(C, C) \). In addition it is easy to check that \(\theta \circ r \) is a closed, compact map, so as a result \(\theta \circ r \in D^*(C, C) \). This together with (2.5) yields \(J \in B^k(C, C) \). Theorem 1.1 implies that there exists \(x \in C \) with \(x \in \mu(x) \theta(r(x)) \). If \(x \in C \setminus U \) then \(\mu(x) = 0 \), a contradiction since \(0 \in U \). Thus \(x \in U \) and so \(x \in \mu(x) \theta(x) \). As a result \(x \in A \), so \(\mu(x) = 1 \). Thus \(x \in \theta(x) \). \(\square \)

Next we discuss countably \(P \)-concentrative maps. Let \(E \) be a Fréchet space (\(P \) a defining system of seminorms), \(C \) a closed convex subset of \(E \) and \(U \) an open subset of \(C \) with \(0 \in U \).

Definition 2.7. We let \(F \in M(\overline{U}, C) \) if \(F \in A(\overline{U}, C) \) is a closed countably \(P \)-concentrative map with nonempty (closed) values.

Definition 2.8. We let \(F \in M_{\partial U}(\overline{U}, C) \) if \(F \in M(\overline{U}, C) \) with \(x \notin F(x) \) for \(x \in \partial U \).

Definition 2.9. A map \(F \in M_{\partial U}(\overline{U}, C) \) is essential in \(M_{\partial U}(\overline{U}, C) \) if for every \(G \in M_{\partial U}(\overline{U}, C) \) with \(G|_{\partial U} = F|_{\partial U} \) there exists \(x \in U \) with \(x \in G(x) \).

Theorem 2.5 (Homotopy). Let \(E, C \) and \(U \) be as above. Suppose \(F \in M(\overline{U}, C) \) satisfies (2.2) and assume the following conditions hold:

- the zero map is essential in \(M_{\partial U}(\overline{U}, C) \) \hspace{1cm} (2.7)
- for any continuous function \(\mu : C \to [0, 1] \) and any map \(H \in M(\overline{U}, C) \) we have \(\mu H \in A(\overline{U}, C) \). \hspace{1cm} (2.8)

Then \(F \) is essential in \(M_{\partial U}(\overline{U}, C) \).

Proof. Let \(H \) and \(B \) be as in Theorem 2.1. Now \(B \neq \emptyset \) is closed (in fact \(H \) countably \(P \)-concentrative implies \(B \) is sequentially compact so compact). Essentially the same argument as in Theorem 2.1 establishes the result. \(\square \)

Theorem 2.6 (Normalization). Let \(E \) be a Fréchet space (\(P \) a defining system of seminorms), \(C \) a closed convex subset of \(E \) and \(U \subseteq C \) an open bounded convex subset of \(E \) with \(0 \in U \). In addition assume the following condition is satisfied:

- for any continuous map \(r : E \to \overline{U} \) and any map \(\theta \in M(\overline{U}, C) \), the map \(r|_{\partial U} \in B^k(\overline{U}, C) \). \hspace{1cm} (2.9)

Then the zero map is essential in \(M_{\partial U}(\overline{U}, C) \).

Proof. Let \(\theta \in M_{\partial U}(\overline{U}, C) \) with \(\theta|_{\partial U} = [0] \). Let \(\mu \) and \(r \) be as in Theorem 2.2 and \(G = r|_{\partial \theta} \). Notice \(G \in B^k(\overline{U}, C) \) is closed and countably \(P \)-concentrative. To see that \(G \) is countably \(P \)-concentrative consider \(p \in P \) and a countably bounded non-\(p \)-precompact subset \(\Omega \) of \(\overline{U} \). Then since

\[
G(\Omega) \subseteq co (\theta(\Omega) \cup [0]),
\]
we have \(\alpha_p(G(\Omega)) \leq \alpha_p(\theta(\Omega)) < \alpha_p(\Omega) \). Theorem 1.2 guarantees that there exists \(x \in \overline{U} \) with \(x \in G(x) = r \theta(x) \). An argument similar to that in Theorem 2.2 finishes the proof. \(\square \)

Next we present a normalization property without assuming \(U \) is bounded.
Theorem 2.7 (Normalization). Let E be a Fréchet space (P a defining system of seminorms) and U an open convex subset of E with $0 \in U$. In addition assume the following condition is satisfied:

\[
\begin{align*}
&\text{for any continuous map } r : E \to \overline{U} \text{ and any continuous} \\
&\text{map } \mu : E \to [0, 1]\text{ and any map } \theta \in M(\overline{U}, E), \text{ the} \\
&\text{map } \mu \theta r \in \mathcal{B}^k(C, C); \text{ here } C = \overline{\sigma(\theta(U) \cup \{0\})}.
\end{align*}
\]

(2.10)

Then the zero map is essential in $\mathcal{M}_{au}(U, E)$.

Proof. Let $\theta \in \mathcal{M}_{au}(U, E)$ with $\theta |_{au} = \{0\}$. Next let

\[A = \{x \in U : x \in \lambda \theta(x) \text{ for some } \lambda \in [0, 1]\}.
\]

As in Theorem 2.4, $A \subset U$ and there exists a continuous function $\mu : E \to [0, 1]$ with $\mu(A) = 1$ and $\mu(E \setminus U) = 0$. Let $r : E \to \overline{U}$ be given by

\[r(x) = \frac{x}{\max\{1, g(x)\}}
\]

where g is the Minkowski functional on \overline{U}. Let $C = \overline{\sigma(\theta(U) \cup \{0\})}$ (which is bounded) and define a map J by $J(x) = \mu(x) \theta(r(x))$. From (2.10) we have $J \in \mathcal{B}^k(C, C)$ and it is also immediate that J is countably P-concentrative. Theorem 1.2 implies that there exists $x \in C$ with $x \in \mu(x) \theta(r(x))$. If $x \notin U$ then $\mu(x) = 0$, a contradiction. Thus $x \in U$ and so $x \in \mu(x) \theta(x)$. As a result $x \in A$, so $\mu(x) = 1$. \[\square\]

In view of Theorems 1.4 and 1.5 it is easy to use our fixed point theory for \mathcal{B}^k maps to establish random fixed point theory. We will present here a new and very general result which includes all well known random fixed point theory in the literature [4,7,8].

Theorem 2.8. Let (Ω, A) be a measurable space and X a nonempty closed convex bounded subset of a separable Banach space E. Suppose $F : \Omega \times X \to CD(X)$ is a random continuous, countably condensing operator with $F(w, \cdot) \in \mathcal{B}^k(X, X)$ for each $w \in \Omega$. Then F has a random fixed point.

Remark 2.2. (i) If F is a random condensing operator then the assumption that X is bounded can be removed in the statement of Theorem 2.7.

(ii) It is possible to consider operators random in the sense of Gorniewicz [3, p. 156]. We leave the details to the reader.

Proof. Theorem 1.5 guarantees that $F : \Omega \times X \to CD(X)$ is hemicompact. Fix $w \in \Omega$. Now Theorem 1.2 guarantees that $F(w, \cdot)$ has a fixed point. As a result F has a deterministic fixed point, so Theorem 1.4 guarantees that F has a random fixed point. \[\square\]

References

[8] H.K. Xu, Some random fixed point theorems for condensing and nonexpansive operators, Proc. Amer. Math. Soc. 110 (1990) 495–500.