ARTICLE

Genetic polymorphism detection of two α-Casein genes in three Egyptian sheep breeds

Othman E. Othmana,*, Samia A. El-Fikya, Nagwa A. Hassanb, Eman R. Mahfouza, Esraa A. Balabela

a Cell Biology Department, National Research Center, Dokki, Giza, Egypt
b Zoology Department, Ain Shams University, Cairo, Egypt

Received 8 March 2013; revised 19 April 2013; accepted 3 May 2013
Available online 2 June 2013

Abstract Sheep milk is an excellent raw material for the milk processing industry especially in cheese production. The protein content and composition of sheep milk are important in the cheese manufacturing. The casein fraction of ruminant milk proteins consists of four caseins, namely αs1, αs2, β and κ-Casein. Casein genetic polymorphisms are important due to their effects on quantitative traits and technological properties of milk.

This study aimed to detect the genetic polymorphism of αs1- and αs2-Casein genes in three native Egyptian sheep breeds; Rahmani, Barki and Ossimi. PCR-SSCP and PCR-RFLP were used to detect the genetic polymorphism of αs1-CN and αs2-CN genes, respectively.

A 223-bp fragment of αs1-CN gene was amplified by PCR and SSCP results recorded the presence of three different patterns; TT, TC and CC; in 87 tested sheep animals. The sequence analysis of two homologous patterns showed a single nucleotide polymorphism (SNP) (T → C) at position 170. The frequencies of three patterns in the tested sheep breeds were 43.33%, 50.00%, and 6.67% in Rahmani; 83.33%, 13.33%, and 3.33% in Ossimi and 74.07%, 22.22%, and 3.70% in Barki, respectively. Our nucleotide sequences of αs1-CN T and C alleles were submitted to GenBank with the accession numbers KF018339 and KF018340, respectively.

The restriction digestion of αs2-CN PCR product (1300-bp) by Tru1I endonuclease revealed three different genotypes; AA, AG and GG with frequencies of 66.67%, 30.00%, and 3.33% in Rahmani; 96.67%, 3.33%, and 0.00% in Ossimi and 96.15%, 3.85%, and 0.00% in Barki, respectively. The sequence analysis revealed the presence of a single nucleotide polymorphism (A → G) in intron 6 of αs2-CN gene. Our nucleotide sequence of αs2-CN gene was submitted to GenBank with the accession number JX080380.

© 2013 Production and hosting by Elsevier B.V. on behalf of Academy of Scientific Research & Technology.

1. Introduction

The richness of sheep milk and its important value in human health are the main reason for practicing sheep dairying alongside the cow milk industry [18]. The milk processing industry
focusing on sheep milk as an excellent raw material especially for cheese production [37]. Therefore, it has been suggested that it is better to shift the breeding of sheep from meat and wool to milk [16].

The physicochemical characteristics of sheep milk have unique properties as compared to goat and cow milk. Richness in vitamins A, B and E, calcium, phosphorus, potassium and magnesium is the main characteristic of sheep milk which makes it more nutritious [10], in addition to a higher proportion of short and medium chain fatty acids, which are of known important health benefits [19].

Four caseins, namely \(\alpha s1, \alpha s2, \beta \) and \(\kappa \)-Casein are the main components of the casein fraction of ruminant milk proteins. These four caseins compose 76–86% of total milk protein [36]. The relative amounts of these four casein fractions affect the physicochemical, nutritional and technological properties of ruminant milks [34]. These casein proteins are encoded by four clustered genes in a 250-kb genomic DNA fragment; \(\alpha s1 \) is very close to \(\beta \) followed by \(\alpha s2 \) and \(\kappa \)-Caseins [24]. These genes were assigned to ovine chromosome 6 (OAR6) [http://www.animalgenome.org/sheep/maps/; 12].

An important step for cheese curd formation is the presence of \(\alpha s1 \)-Casein (\(\alpha s1-CN \)) which is also a structural component of the casein micelle [39]. \(\alpha s1-CN \) constitutes 47.21% of whole ovine milk proteins and is genetically polymorphic due to silent amino acid substitutions or deletions in the triplet code [9,7].

The most highly phosphorylated of calcium sensitive caseins is \(\alpha s2 \)-Casein (\(\alpha s2-CN \)), it occurs in sheep milk in several forms and differs on the level of phosphorylation [14]. In bovine, the complete sequence of \(\alpha s2 \)-Casein gene is comprised of 18 exons ranging in size from 21 to 266 nucleotides, while in ovine it is not known yet [17].

\(\alpha s2 \)-Casein peptides have unique antibacterial properties [23]. Moreover, \(\alpha s2 \)-CN peptides with angiotensin-I enzyme inhibitor properties have been identified [38]. On the other hand, \(\alpha s2-CN \) peptides could serve to inhibit allergenic responses as suggested by in vitro experiments, in addition to the fact that \(\alpha s2-CN \)-enriched preparations may have impact in health-promoting or value-added dairy products [22].

This study aimed to detect the genetic polymorphism of \(\alpha s1 \)- and \(\alpha s2 \)-Casein genes in three native Egyptian sheep breeds. PCR-SSCP and PCR-RFLP were used to detect the genetic polymorphism of \(\alpha s1-CN \) and \(\alpha s2-CN \) genes, respectively.

2. Materials and methods

2.1. Animals

Whole blood samples were collected from sheep animals belonging to three main sheep breeds reared in Egypt. The blood samples were collected from different farms belonging to Animals Production Institute. The three breeds used in this study are, Rahmani (from Animal Breeding Research Station in Sero, Domiata), Barki (from Animal Breeding Research Station in Borg El-Arab, Alex) and Ossimi (Animal Breeding Research Station in Seds, Bani Swif). The samples were collected from both males and females at different ages.

2.2. DNA extraction

Genomic DNA was extracted from the whole blood according to the method described by Miller et al. [26] with minor modifications. Briefly, Blood samples were mixed with cold 2× sucrose-Triton and centrifuged at 5000 rpm for 15 min at 4 °C. The nuclear pellet was suspended in lysis buffer, sodium dodecyl sulfate and proteinase K and incubated overnight in a shaking bath at 37 °C. Nucleic acids were extracted with saturated NaCl solution. The DNA was picked up and washed in 70% ethanol. The DNA was dissolved in 1× TE buffer. DNA concentration was determined, using Nano Drop1000 Thermo Scientific spectrophotometer, and then diluted to the working concentration of 50 ng/μl, which is suitable for polymerase chain reaction.

2.3. Polymerase chain reaction (PCR)

The DNA fragments of the studied genes were amplified through polymerase chain reaction technique developed by Mullis et al. [27]. A PCR cocktail consists of 1.0 μM upper and lower primers (specific for tested genes) (Table 1), 0.2 mM dNTPs and 1.25 U of Taq polymerase. The cocktail was aliquoted into PCR tubes with 100 ng of sheep DNA. The reaction was cycled for 35 cycles according to the specific protocol suitable for each primer (Table 1). The amplification was verified by electrophoresis on 2% agarose gel (w/v) in 1× TBE buffer using GeneRuler™ 100-bp ladder as a molecular weight marker for confirmation of the length of the PCR products. The gel was stained with ethidium bromide (1 μg/μl) and visualized on UV trans-illuminator.

2.4. Single strand conformation polymorphism (SSCP)

SSCP technique was used to identify the genetic polymorphism of \(\alpha s1-CN \) gene in 87 animals belonging to the three tested breeds. PCR products were resolved by SSCP analysis according to the method of Orita et al. [28]. PCR product was diluted in denaturing solution, denatured at 94 °C for 5 min, chilled on ice and resolved on polyacrylamide (10%, AA 37:1) with 2% glycerol. The electrophoresis was carried out in a vertical unit in 1× TBE buffer at 200 V and 20 mA for 5 h at 4 °C, the gel

<table>
<thead>
<tr>
<th>Table 1</th>
<th>The sequences and information of primers used in this study.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene</td>
<td>Sequences 5′–3′</td>
</tr>
<tr>
<td>(\alpha s1-CN)</td>
<td>CAC TGT TGC TTT TTC AAT GGT C</td>
</tr>
<tr>
<td></td>
<td>AAG GCA ACA ATA TGC AGT CAT TT</td>
</tr>
<tr>
<td>(\alpha s2-CN)</td>
<td>GCC ATT CAT CCC AGA AAG</td>
</tr>
<tr>
<td></td>
<td>CTC TTC ATT TGC GTT CCT TA</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
was stained with silver staining [2], then visualized on light box and photographed by digital camera.

2.5. Restriction fragment length polymorphism (RFLP)

RFLP technique was used to identify the genetic polymorphism of \(\alpha s2-CN \) gene in 86 animals belonging to the three tested breeds. The restriction mixture was prepared by adding 10 U of the restriction enzyme \(Tru\)I to 2.5 μl of restriction buffer and the volume was completed to 5 μl by sterile water. This restriction mixture was mixed with PCR product (20 μl) and incubated at 65 °C for 5 min. The digested PCR products were electrophoresed on a polyacrylamide gel containing ethidium bromide and visualized on UV trans-illuminator.

2.6. Sequence analysis

The PCR products of different genotype patterns of \(\alpha s1-CN \) and \(\alpha s2-CN \) genes, were purified and sequenced by Macrogen Incorporation (Seoul, South Korea) to identify the SNPs between these different genotype patterns. Sequence analysis and alignments were carried out using CLUSTAL-W [15]. The nucleotide sequences of \(\alpha s1-CN \)T, \(\alpha s1-CN \)C and \(\alpha s2-CN \)in Egyptian sheep were submitted to GenBank (NCBI, BankIt).

3. Results and discussion

The four caseins, namely \(\alpha s1, \alpha s2, \beta \), and \(\kappa - \)Casein are the main components of the casein fraction of ruminant milk proteins. These four caseins compose 76–86% of total milk protein [36]. The casein proteins include three main calcium-sensitive proteins which are \(\alpha s1- \), \(\alpha s2- \) and \(\beta \)-Caseins) that coalesce with \(\kappa - \)Casein, calcium and phosphate to form micelles [33]. The effects of casein genetic polymorphisms are important due to their impact on quantitative traits and technological properties of milk [5]. So, caseins have been proposed as polymorphic markers for the selection in order to improve yield and quality of cheese [4]. Globally, the research on polymorphism of ewes’ milk protein is not yet as extensive as in cows or goats [20].

3.1. \(\alpha s1- \)Casein (\(\alpha s1-CN \))

The ovine \(\alpha s1- \)Casein gene consists of 19 exons, these exons are small in size, ranging from 24 to 63 nucleotides with the exception of exon 17 and exon 19 which are 155 and 385 nucleotides, respectively, according to the ovine published sequence; GenBank: JN560175.1.

The present study used SSCP technique to study the polymorphism in exon 17 of the \(\alpha s1- \)Casein gene in three native Egyptian sheep breeds. A 223-bp fragment was amplified by polymerase chain reaction (Fig. 1). SSCP results recorded the presence of three different patterns; CC, TC and CC; in 87 tested sheep animals (Fig. 2). The sequence analysis of the two homologous patterns showed a single nucleotide polymorphism (SNP) \((T \rightarrow C) \) at position 170 (Fig. 3). Our nucleotide sequences of \(\alpha s1-CN \)T and C alleles were submitted to GenBank with the accession numbers KF018339 and KF018340, respectively.

The results showed the presence of pattern III (CC) with low frequency in all tested breeds whereas the pattern I (TT) was found with high frequency. The lowest (3.33%) and highest (83.33%) frequencies were recorded in Ossimi breed for patterns TT and CC, respectively. The frequencies of the three recorded patterns were 4.60%, 28.74% and 66.6% for patterns CC, CT and TT, respectively (Table 2). Ceriotti et al. [5] reported the presence of the same patterns; TT, TC and CC in three Italian sheep breeds under the same conditions used in the present study. These three different patterns resulted from a SNP \((T \rightarrow C) \) at position 663 which led to the exchange in amino acid Iso \(^{180} \rightarrow \) Thr \(^{180} \). Later on, Ceriotti et al. [6] examined the presence of the same SNP at exon 17 in five Italian sheep breeds and they recorded that \(T \) allele was present at higher frequency than \(C \). The \(T \) allele frequency was 0.65 in Gentile di Puglia and Massese, 0.73 in Comisana, 0.81 in Sopravissana and 0.89 in Sarda breed. This result agreed with our result where the frequencies of \(T \) and \(C \) alleles in the Egyptian sheep were 81.03% and 18.97%, respectively.

Considering the effect of \(\alpha s1- \)Casein polymorphism on the milk quality, Chianese [8] found that B variant has been related to milk yield whereas \(\alpha s1- \)Casein D variant was related to milk protein percentage [35,1]. Pirisi [32] assessed the effects of \(\alpha s1- \)Casein CC, CD and DD genotypes on milk composition and cheese yield. They reported that \(\alpha s1- \)Casein CC milk had better cheese making characteristics than DD milk while CD milk had intermediate characteristics. This effect was confirmed by Martini et al. [25] who pointed that; C allele of \(\alpha s1- \)Casein is most favorable for cheese making.
3.2. \(\alpha s2\)-Casein (\(\alpha s2\)-CN)

One of the most highly phosphorylated of calcium sensitive caseins is \(\alpha s2\)-CN, it occurs in milk in several forms and differs on the level of phosphorylation [14]. The complete sequence of ovine \(\alpha s2\)-Casein gene is not known yet, while in bovine; it is comprised of 18 exons ranging in size from 21 to 266 nucleotides [17].

In the present study; PCR-RFLP technique was used to detect the polymorphism within sheep \(\alpha s2\)-Casein gene. Polymerase chain reaction amplified a 1300-bp fragment (Fig. 4).

The digestion of the PCR fragments by \(\text{Tru}1\) I endonuclease enabled us to differentiate between three different genotypes; AA, AG and GG. The sizes of digested fragments were not previously recorded, so we used FastPCR program (http://primerdigital.com/fastpcr.html) on the sequences of PCR products of the two different alleles A and G to detect the restriction sites and determine the fragment sizes. The restriction site for \(\text{Tru}1\) I enzyme was found to be (T\(^T\)AA) and the results of \textit{in silico} RFLP showed that the two alleles A and G have four common fragments with sizes of 268-, 213-, 109- and 98-bp (Fig. 5), in addition to some small fragments (they did not show in the figure).

Allele G has a specific fragment at size of 196-bp whereas allele A has a specific fragment with size of 166-bp and another small fragment at size 30-bp. These specific fragments were detected due to the presence of a single nucleotide polymorphism (G/A) in allele A, at position 600 of the sequenced fragment, which led to the presence of an additional restriction site in this allele (Fig. 6). Our sequence of \(\alpha s2\)-CN gene was submitted to GenBank with the accession number JX080380.

Table 3 reported the genotype and allele frequencies of \(\alpha s1\)-Casein gene. The results showed the predominance of AA genotype in all tested breeds over GG genotype which was completely absent in both Barki and Ossimi breeds. AG genotype was present with different frequencies ranging from 3.33% in Ossimi to 3.85% in Barki and 30.00% in Rahmani

<table>
<thead>
<tr>
<th>Breeds</th>
<th>No. of animal</th>
<th>Pattern I (TT)</th>
<th>Pattern II (CT)</th>
<th>Pattern III (CC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of animals</td>
<td>Freq. (%)</td>
<td>No. of animals</td>
<td>Freq. (%)</td>
</tr>
<tr>
<td>Barki</td>
<td>27</td>
<td>20</td>
<td>74.07</td>
<td>6</td>
</tr>
<tr>
<td>Rahmani</td>
<td>30</td>
<td>13</td>
<td>43.33</td>
<td>15</td>
</tr>
<tr>
<td>Ossimi</td>
<td>30</td>
<td>25</td>
<td>83.33</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>87</td>
<td>58</td>
<td>66.67</td>
<td>25</td>
</tr>
</tbody>
</table>

![Figure 4](image-url) Agarose gel stained with ethidium bromide showing PCR product of \(\alpha s2\)-Casein gene. M: 100-bp plus ladder. Lanes 1–4: 1300-bp PCR product of \(\alpha s2\)-Casein gene.

![Figure 5](image-url) Agarose gel stained with ethidium bromide showing three different genotypes of \(\alpha s2\)-Casein gene after digestion of PCR products with \(\text{Tru}1\) I restriction enzyme. (The small fragments did not show in figure). M: 100-bp plus ladder. Lanes 1: genotype AG. Lanes 2 and 3: genotype AA. Lane 4: genotype GG.
breeds. These genotype frequencies declared the presence of allele A with a high frequency (92.44%) in all tested breeds whereas the allele G showed low frequency (7.56%).

Restriction fragment length polymorphism in ovine α_2-CN locus was studied by Di Gregorio et al. [13] and Leveziel et al. [21]. They used EcoRV endonuclease digestion of genomic DNA and hybridization with a bovine α_2-Casein cDNA probe and they detected a three-allele polymorphism. On the other hand, Phua et al. [30] observed two allelic EcoRI- α_2-CN fragments in sheep.

Boisnard et al. [3] reported two genetic variants depending on two amino acid exchanges: Asp49 → Asp49 and Ly500 → Asp500. Recently, Picariello et al. [31] studied the genetic variants at amino acid level in Italian sheep. They observed that B variant differed from the most common variant A with two amino acid exchanges: Asp75 → Tyr75 and Iso105 → Val105. The first one, resulting in a loss of a negative charge, is responsible for the higher isoelectric point of B protein variant which modifies the protein electric charge and maybe effects on milk properties.

The PCR amplified fragments in the present study included intron 5, exon 6 and intron 6 of α_2-Casein gene. TruI digestion of α_2-Casein amplified fragments differentiated between two alleles A and G. These two alleles have common fragments at sizes of 268, 213, 109, 98, 59, 32, and 30-bp. Allele G has a specific fragment at 196-bp which was further digested into two bands at 166- and 30-bp for allele A (Fig. 5). The sequence analysis of amplified fragments for the two different alleles declared that the difference between these two alleles was due to one SNP (A → G). The site of this SNP is equivalent to nucleotide base No. 7886 in the bovine α_2-Casein gene (GenBank: M94327.1) found in intron 6.

Our results for ovine α_2-Casein genetic polymorphism were different from goat, where Cosenza et al. [11] and

<table>
<thead>
<tr>
<th>Allele</th>
<th>Sequence</th>
<th>Length (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allele A</td>
<td>TAACTGAGAAGGGTGGAGTTTCTCCACTCTTACTCTTAACTATAGAAATTCCTCAGGAAAGCTTCCGAC</td>
<td>60</td>
</tr>
<tr>
<td>Allele G</td>
<td>TCAAAAGAAGGGTGGAGTTTCTCCACTCTTACTCTTAACTATAGAAATTCCTCAGGAAAGCTTCCGAC</td>
<td>60</td>
</tr>
</tbody>
</table>

Figure 6 A part of PCR product sequences of two different alleles in Egyptian sheep α_2-Casein gene showing the SNP (G/A) at position 600 of the sequenced fragment (alignment by ClustalW2).
Othman and Ahmed [29] used the same primer to amplify goat \(\alpha_2\)-Casein gene and digested the amplified fragments with \(MseI\) endonuclease which had the same restriction site of \(TruI\) (T'\(\text{TAA}\)). They detected two different alleles with common fragments at sizes of 270- and 230-bp. The allele A had a specific band at 300-bp whereas the specific band for allele B was at 400-bp.

Table 3 Genotype and allele frequencies of the \(\alpha_2\)-Casein gene in three tested Egyptian sheep breeds.

<table>
<thead>
<tr>
<th>Breed</th>
<th>No. of animals</th>
<th>Genotype frequencies</th>
<th>Allele frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AA</td>
<td>No. of animals</td>
</tr>
<tr>
<td>Barki</td>
<td>26</td>
<td>25</td>
<td>96.15</td>
</tr>
<tr>
<td>Rahmani</td>
<td>30</td>
<td>20</td>
<td>66.67</td>
</tr>
<tr>
<td>Ossimi</td>
<td>30</td>
<td>29</td>
<td>96.67</td>
</tr>
<tr>
<td>Total</td>
<td>86</td>
<td>74</td>
<td>86.05</td>
</tr>
</tbody>
</table>

References

Me., Lugo, Santiago de Compostela, Spain, 2006.