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Abstract This paper deals with the influence of Hall and ion slip effects on the magneto-hydrodynamic
flow of a micropolar fluid past a non-conducting wedge. The analysis has beenmade by assuming that the
fluid is viscous, incompressible and electrically conducting. The partial differential equations governing
the flow and heat transfer are converted into highly non-linear ordinary differential equations by using the
similarity transformations. These equations are then solved numerically. The effects of various parameters
involved in the problem have been studied with the help of graphs and numerical values of skin friction
coefficients and Nusselt number are presented in tabular form. Favorable comparison with previously
published work on various special cases of the problem has been made. Results show that the local skin
friction coefficient due to translational motion increases with the angle of the wedge and Hall effect
parameter; hence heat transfer rate increases with these parameters. The result gets reversed with a
increase in material, ion slip and magnetic field parameters.

© 2013 Sharif University of Technology. Production and hosting by Elsevier B.V.
Open access under CC BY-NC-ND license.
1. Introduction

The study of magneto-micropolar fluid flow in a slip-flow
regimewith Hall and ion slip currents is very important consid-
ering its vast applications to many engineering problems such
as power generators, magneto-hydrodynamic accelerators, re-
frigeration coils, transmission lines, electric transformers and
heating elements. Also, many industrial applications involve
fluids as a working medium. In such applications unclean fluids
(i.e. clean fluid+ interspersed particles) are very common and
clean fluid is an exception. Therefore the classical Navier Stokes
equation is not suitable for modelling such types of problem.

Eringen [1,2] proposed a theory of micropolar fluids taking
into account the inertial characteristics of the substructure
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particles, which are allowed to undergo rotation. The concept
of micropolar fluids deals with a class of fluids that exhibit
certain microscopic effects arising from the local structure and
micro motions of fluid elements. These fluids contain dilute
suspensions of rigid macromolecules with individual motions
that support stress and body moments influenced by spin
inertia. The interaction of the macro velocity field and micro
rotation field can be described through newmaterial constants
in addition to those of classical Newtonian fluids. Eringen’s
micro polar fluid model includes the classical Navier–Stokes
equations for a viscous and incompressible fluid as a special
case. These micropolar fluids are suitable in modeling for
studying the flow of colloidal fluids, polymers, lubricants,
cerebro fluids, liquid crystals, animal blood, real fluids with
suspensions and ferro fluids etc., for which the classical
Navier–Stokes theory is inadequate. The equations governing
the flow of a micropolar fluid involve a microrotation vector
and a gyration parameter in addition to the classical vector field.
The micropolar fluid theory requires an additional transport
equation representing the principle of conservation of local
angular momentum. An extensive review of the theory and
applications of micropolar fluids can be found in [3,4].

In consideration of these things, various researchers worked
on micropolar fluids. Jena and Mathur [5] studied the laminar
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Nomenclature
−→
J Current density vector
Ec Eckert number
−→
E Electric field intensity
−→
H Magnetic field intensity
−→
B Magnetic Induction vector
−→
N Microrotation vector normal to xy-plane
−→
V Translational velocity vector
Cfx Local skin friction coefficient
Cfz Local skin friction coefficient
Cp Specific heat at constant pressure
I Inertial parameter
K Material parameter
k Thermal conductivity of the fluid
Nu Local Nusselt number
p Pressure
Pr Prandtl number
Re Reynolds number
T Temperature
u, v, w Components of velocity along x, y and z axes

respectively

Greek symbols

ψ Steam function
Θ Dissipation function
Ω Wedge angle
j Micro-inertia
β Hartree pressure gradient parameter
βe Hall effect parameter
βi Ion slip parameter
γ Spin gradient viscosity
η Non-dimensional distance
κ Vortex viscosity
µ Dynamic viscosity
ρ Density of the fluid
σ Electrical conductivity
τe Electron mean free time
τi Ion mean free time
ωe Electron cyclotron frequency
ωi Ion cyclotron frequency

Superscript
′ Derivative with respect to η

free convection boundary layer flow of a thermomicropolar
fluid past a non-isothermal vertical plate and found the
similarity solution for the flow. A numerical study ofmicropolar
convective heat and mass transfer in a non-Darcy porous
regime with Soret and Dufour diffusion effects has been done
by Beg et al. [6]. Norfifah [7] investigated the steady magneto-
hydrodynamic stagnation point flow of a micropolar fluid
past a vertical surface under different temperature conditions.
Recently, Pal and Chatterjee [8] developed a numerical model
to examine the combined effects of Soret and Dufour on mixed
convection magneto-hydrodynamic heat and mass transfer
in micropolar fluid saturated Darcian porous medium in the
presence of thermal radiation, non uniform heat source and
ohmic dissipation.

Also, magneto-hydrodynamic (MHD) boundary layer flow
over wedge shaped bodies is very common in many thermal
engineering applications such as geothermal systems, crude
oil extraction, ground water pollution, thermal insulation, heat
exchangers and the storage of nuclear waste etc. Lin and Lin
[9] found the similarity solutions for laminar forced convection
heat transfer from wedges to fluids of any Prandtl number.
Kim [10,11] have considered the steady boundary layer flow
of a micropolar fluid past a wedge with constant surface
temperature and constant surface heat flux, respectively. The
similarity variables found by Falkner and Skan [12] were
employed to reduce the governing partial differential equations
to ordinary differential equations. Kafoussias and Nanousis [13]
investigated the magneto-hydrodynamic laminar boundary
layer flow over a permeable wedge immersed in a Newtonain
fluid. The study of magneto-hydrodynamic forced convection
flow adjacent to a non-isothermal wedge is done by Yih [14].
This work is extended by Chamka et al. [15]. They considered
the thermal radiation effects onmagneto-hydrodynamic forced
convection flow adjacent to a non-isothermal wedge in the
presence of a heat source or sink. Paramjeet et al. [16]
considered time dependent free stream velocity and gave a
mathematical model for the unsteady mixed convection flow
of an incompressible viscous fluid over a vertical wedge with
constant suction/injection and analyzed the behavior of the
flow. The steady two-dimensional laminar forced convection
flow and heat transfer of a viscous, incompressible, electrically
conducting and heat generating fluid past a permeable wedge
embedded in a non-Darcy high porosity ambient medium with
uniform surface heat flux is studied by Rashad and Bakier [17].

In a magneto-hydrodynamic device using weakly ionized
gases Hall and ion-slip effects appear as the ratio of magnetic
field strength to gas density. A boundary layer analysis is used
to study the effects of Hall and ion-slip currents on steady
magneto-micropolar, incompressible, electrically conducting
and viscous fluid over a horizontal plate by Seddeek and
Abdelmeguid [18]. Hazem [19,20] investigated the Hall effect
on Couette flow with heat transfer of a dusty conducting
fluid by assuming uniform suction/injection and temperature
dependent physical properties, respectively. Ibrahim [21]
found the analytic solution of magneto-hydrodynamic mixed
convection heat and mass transfer over an isothermal, inclined
permeable stretching plate immersed in a uniform porous
medium in the presence of chemical reaction, internal heating,
Dufour effect andHall effects. Elgazery [22] also studied theHall
and ion slip effects on magneto-hydrodynamic flow along with
temperature dependent viscosity and thermal diffusivity.

Recently, Ishak et al. [23] studied the steady laminar
magneto-hydrodynamic boundary layer flow past a wedge
with constant surface heat flux immersed in an incompressible
micropolar fluid in the presence of a variable magnetic field.
They ignored, the Hall term and ion slip conditions in applying
Ohm’s law as it has no marked effect for small and moderate
values of the magnetic field. However, the current trend
for the application of magneto-hydrodynamics is towards a
strong magnetic field, so the influence of electromagnetic
fields is noticeable. Under these conditions, the Hall current
is important and it has a marked effect on the magnitude
and direction of current density and consequently on the
magnetic force. Therefore the objective of the present paper is
to study the magneto-hydrodynamic (MHD) flow past a wedge
by considering viscous dissipation, Joule heating, and Hall and
ion-slip effects.

2. Formulation

A steady viscous, incompressible, electrically conducting
and micro-polar fluid flowing past a non conducting wedge
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Figure 1: Physical Model and coordinate systemWedge shaped wick.

is considered. This flow can be considered as the flow past a
triangular or wedge shaped wick inside the heat pipe or heat
exchanger. The physical model and coordinate system of the
problem are shown in Figure 1.

The authors use rectangular Cartesian coordinates (x, y, z),
in which x, y and z are the distancesmeasured along thewedge,
normal to the surface of the wedge and along the leading
edge of the wedge respectively. A strong magnetic filed B(x) is
applied along the y-axis and the fluid is considered electrically
conducting. Thus, Hall and ion-slip currents affect the flow. This
effect give rise to force in the direction perpendicular to the
magnetic field, which induces a cross flow in that direction,
i.e. z-direction. For the steady, incompressible, magneto-
hydrodynamic flow of micropolar fluid with generalized Ohm’s
law, including Hall and ion-slip (see Sutton [24]) and under the
assumption that the fluid is non-magnetic, and neglecting the
thermoelectric effect the equations in vector form are:

Conservation of mass:

div
−→
V = 0. (1)

Conservation of translational momentum:

ρ(
−→
V .

−→
∇ )

−→
V = −(

−→
∇ p)+ (2µ+ κ)

−→
∇ (

−→
∇ .

−→
V )

− (µ+ κ)
−→
∇ ×


−→
∇ ×

−→
V


+ κ(

−→
∇ ×

−→
N )+

−→
J ×

−→
B . (2)

Conservation of angular momentum (micro-rotation):

ρ(
−→
N .

−→
∇ )

−→
N = γ

−→
∇ (

−→
∇ .

−→
N )+ κ


−→
∇ ×

−→
V


− γ

−→
∇ ×


−→
∇ ×

−→
N


− 2κ

−→
N . (3)

Current density vector:
−→
J = σ(

−→
E +

−→
V ×

−→
B )−

ωeτe

B


−→
J ×

−→
B


+
ωeτeωiτi

B2


−→
J ×

−→
B


×

−→
B . (4)

Maxwell’s equations:

div
−→
B = 0 (5a)

−→
∇ ×

−→
H =

−→
J (5b)

−→
∇ ×

−→
E = 0. (5c)

Energy equation:

ρCp(
−→
V .

−→
∇ )T = k∇2T +Θ. (6)

Θ is energy loss function due to viscosity and Joule heating.
To simplify the problem the authors assume that there is no
variation of flow and heat transfer quantities in the z-direction
as discussed by Rosenhead [25]. The equation of conservation
of electric charge∆.J = 0 gives Jy = constant. Since the wedge
is non-conducting, Jy = 0, everywhere in the flow. Also, Ex = 0
and Ez = 0 everywhere in the fluid. The authors assumed that
the induced magnetic field can be neglected in comparison to
the appliedmagnetic field, but the viscous dissipation and Joule
heating effects in the fluid are taken into account.

Under these assumptions the simplified equations in the
Cartesian system are:

Conservation of mass:

∂u
∂x

+
∂v

∂y
= 0. (7)

Conservation of translational momentum:

u
∂u
∂x

+ v
∂u
∂y

=


µ+ κ

ρ


∂2u
∂y2

+
κ

ρ

∂N
∂y

+
1
ρ


σB2

y
α2
e + β2

e

 {αe (U − u)− βew}


+ U

dU
dx

(8)

u
∂w

∂x
+ v

∂w

∂y
=


µ+ κ

ρ


∂2w

∂y2

−
1
ρ

σB2
y

α2
e + β2

e

 (αew − βeu) . (9)

Conservation of angular momentum (micro-rotation):

ρj

u
∂N
∂x

+ v
∂N
∂y


=

∂

∂y


γ
∂N
∂y


− κ


2N +

∂u
∂y


. (10)

Conservation of energy:

ρCp


u
∂T
∂x

+ v
∂T
∂y


= k

∂2T
∂y2

+ (µ+ κ)

×


∂u
∂y

2

+


∂w

∂y

2


+
σB2

y
α2
e + β2

e

 
u2

+ w2 (11)

where,αe = 1+βiβe and (u, v, w) are the velocity components
along (x, y, z) directions

The boundary conditions for the flow are:

u = v = w = 0 and N = −n
∂u
∂y

and

qw = −k
∂T
∂y

at y = 0,
(12)

u → U, w → 0, N → 0 and
T → T∞ as y → ∞.

(13)

Following [12], the authors assume that the free stream
velocity is U = axm, wherem = β/(2 − β), and β corresponds
to β = Ω/π for angle Ω of the wedge, and a is a positive
constant. As discussed by [23], the authors assume that By =

B0x

m−1
2


, where 0 ≤ m ≤ 1 withm = 0 for the boundary layer

flow over a stationary flat plate andm = 1 for the flow near the
stagnation point on an infinite wall. In the boundary conditions
‘‘n’’ is a constant such that 0 ≤ n ≤ 1. In the case when n = 0 is
called strong concentration, which indicates N = 0 near the
wedge, this represents concentrated particle flow where the
micro-elements close to the wedge surface are unable to rotate
(see Jena et al., 1981). In the case when n = 1/2, this indicates
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the vanishing of the anti-symmetric part of the stress tensor
and denotes weak concentration, whereas n = 1 is used for the
modeling of turbulent boundary layer flow. Here the authors
took the case of n = 1/2. It is known that γ = (µ+ κ/2) j =

µ (1 + K/2) j, where K = κ/µ is the dimensionless viscosity
ratio and is called a material parameter.

The authors introduce the following similarity variables:

ψ = f (η)


2νxU
m + 1

−1/2

,

N = Uh (η)

(m + 1)U

2νx

−1/2

, w = Ug (η)

η =


(m + 1)U

2νx

−1/2

y,

θ (η) =
k (T − T∞)

qw


(m + 1)U

2νx

−1/2

, M =
2σB2

0

aρ (m + 1)
.

Eqs. (7)–(10) along with boundary conditions (1)–(4) reduce
to:

(1 + K) f ′′′
+ ff ′′

+


2m

m + 1

 
1 − f ′2


+ Kh′

+
M

α2
e + β2

e

 
αe


1 − f ′


− βeg


= 0 (14)

(1 + K) g ′′
+ g ′f −


2m

m + 1


gf ′

−
M

α2
e + β2

e

 
αeg − βef ′


= 0 (15)

1 +
K
2


h′′

−


3m − 1
m + 1


hf ′

− fh′


−

2K .I
m + 1


2h + f ′′


= 0 (16)

1
Pr
θ ′′

+ (m + 1) f θ ′
+


(m − 1) f ′

+ (1 + K) Ec

×


f ′′2

+ g ′2


+
Ec.M
α2
e + β2

e

 
f ′2

+ g2

θ = 0 (17)

where, (′) represents the derivativewith respect toη,ψ is steam
function. i.e. u =

∂ψ

∂y and v = −


∂ψ

∂x


, B =

ν2Re
JU2 , Ec =

U2

Cp(T−T∞)

(Eckert number) and Pr =
µCp
k (Prandtl number).

Boundary conditions in non dimensional form are:

f (0) = 0, f ′(0) = 0, g(0) = 0,

h(0) = −
1
2
f ′′(0), θ ′(0) = −1

(18)

f ′(∞) → 1, g(∞) → 0,
h(∞) → 0, θ(∞) → 0.

(19)

The quantities of physical interest are local skin friction
coefficients (Cfx and Cfz), local Nusselt number (Nu) and wall
couple stress (Cr ), which are defined as:

Cfx =
τw

1
2 ρU

2 , Cfz =
τz

1
2 ρU

2 , and Nu =
xqw

k(T−T∞)
respectively,

where τw =


(µ+ κ) ∂u

∂y + κN

y=0

, τz =


(µ+ κ) ∂w

∂y


y=0

,

qw = −k ∂T
∂y and Re =

Ux
ν
.

Table 1: Values of 1
2 CfxRe1/2 for various values of K , M and m at I = 0.5,

βi = 0.4, βe = 0 and Ec = 0.

K M m [14] [15] [23] Present result

0 0 0 0.332057 0.332206 0.3321 0.3466
0 0 1/3 0.757448 0.757586 0.7575 0.7586
0 0 1 1.232588 1.232710 1.2326 1.2328

Table 2: Values of Nu · Re1/2 for various values of Pr at I = 0.5, βi = 0.4,
βe = 0 and Ec = 0.

K M m Ec Pr [9] [23] Present result

0 0 0 0 1 0.45897 0.4590 0.460439
0 0 0 0 10 0.99789 0.9980 1.00012
0 0 0 0 100 2.15197 2.1520 2.163009
0 0 0 0 1000 4.63674 4.6367 4.647032
0 0 0 0 10000 9.98965 9.9897 10.00013
0 0 0 0.1 1 – – 0.458130
0 0 0 0.5 1 – – 0.419986

Therefore Cfx =


2(m+1)

Re


1 +

K
2


f ′′ (0), Cfz =


2(m+1)

Re

(1 + K) g ′ (0) and Nu =


(m+1)Re

2
1
θ(0) respectively.

3. Method of solution

The non-linear ordinary differential equations (14)–(17)
subjected to boundary conditions (18) and (19) have been
solved using the Runge–Kutta Fehlberg method along with the
shooting method. This method is based on the discretization of
the problem domain and the calculation of unknown boundary
conditions.

The domain of the problem is discretized and the boundary
conditions for η = ∞ are replaced by f ′(ηmax) = 1, g(ηmax) =

1, h(ηmax) = 1 and θ(ηmax) = 0, where ηmax is a sufficiently
large value of η (corresponding to step size) at which the
boundary conditions (19) for f (η) are satisfied. The authors
ran the computer code written in MATLAB for different values
of ηmax and for different values of step size ∆η. They found
that there is no, or only a negligible, change in the quantities
of physical interest like Nusselt number and skin friction
coefficients for values of η greater than 3. Also, after η = 3 the
temperature is always zero. This means the numerical scheme
is consistent and stable. Therefore, in the present work the
authors have set ηmax = 3.0 and step size ∆η = 0.001
taking into account the consistency and stability criteria. To
solve the problem the non-linear equation (14)–(17) have been
first converted into nine first order linear ordinary differential
equations. There are five conditions at boundary η = 0 (values
of the function) and four conditions at boundary η = ∞.
To get the solution of the problem, one will need four more
conditions at η = 0. These conditions have been found by the
shooting technique. Finally the problem has been solved by the
Runge–Kutta Fehlberg method along with calculated boundary
conditions.

4. Results and discussion

In order to analyze the effects of various physical parameters
on the flow, a numerical computation has been performed.
To validate the results, the authors have compared the results
with published work [9,14,15,23]. These comparisons are given
in Tables 1 and 2. These results show that our resuts are in
very good agreement with previously published work. The
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Figure 2: Horizontal Velocity Profile f ′(η) for different values ofmwhenK = 0,
M = 0, βe = 0, βi = 0.4, I = Ec = 0.5 and Pr = 1.

Figure 3: Angular Velocity Profile h(η) for different values of m when K = 0,
M = 0, βe = 0, βi = 0.4, I = Ec = 0.5 and Pr = 1.

effects of various physical parameters on horizontal velocity,
transverse velocity, angular velocity profiles and temperature
distribution have been discussed and shown in Figures 2–
18. The effects of all these parameters on local skin friction
coefficients (due to horizontal velocity as well as transverse
velocity) and local Nusselt number have been given in
Tables 1–5.

The effect of m or Ω (the angle of wedge) on velocity
profiles and temperature distribution are shown in Figures 2–
4. It is depicted from Figure 2, that the horizontal velocity f ′(η)
increases with m and the momentum boundary layer thickness
decreases. This in turn increases the velocity gradient at the
surface (η = 0) and hence increases the skin friction coefficient.
The skin friction coefficient for m = 1 is largest. Thus, the skin
friction coefficient near the stagnation point of a plate is largest
in comparison to the flow past a horizontal plate (m = 0) and
the flow past a wedge (0 < m < 1). This results in an increase
in local Nusselt number as given in Table 3.

Figure 3 shows that aswemove away from the surface of the
wedge the absolute value of angular velocity |h(η)| decreases
continuously for small values of m. i.e. for m = 0 and m = 1/3
(wedge angle 90°). In case of m = 1, the absolute value of
Figure 4: Temperature distribution θ(η) for different values ofmwhen K = 0,
M = 0, βe = 0, βi = 0.4, I = Ec = 0.5 and Pr = 1.

Figure 5: Horizontal Velocity f ′(η) for different values of βe when K = 1,
M = 1,m = 1/3, βi = 0.4, I = 0.5, Ec = 0.5 and Pr = 1.

Figure 6: Transverse Velocity g(η) for different values of βe when K = 1,
M = 1,m = 1/3, βi = 0.4, I = 0.5, Ec = 0.5 and Pr = 1.
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Table 3: Values of 1/2CfxRe1/2, 1/2CfzRe1/2 and Nu.Re−1/2 for various values of m and M .

I = 0.5, βi = 0.4, βe = 0, M = 0, K = 0, Pr = 1 and Ec = 0.5 M = 1, m = 1/3, βi = 0.4, βe = 2, I = 0.5, Pr = 1 and Ec = 0.5

m 1
2 CfxRe1/2 Nu.Re−1/2 1

2 CfzRe1/2 K 1
2 CfxRe1/2 Nu.Re−1/2 1

2 CfzRe1/2

0 0.3466 0.4200 – 0 0.8425 0.4726 0.1225
1/3 0.7586 0.4845 – 0.5 0.8386 0.4244 0.1295
1 1.2328 0.5297 – 1 0.4672 0.3999 0.1150
Figure 7: Transverse Velocity g(η) for different values of βi when K = 1,
M = 1, m = 1/3, βe = 5, I = 0.5, Ec = 0.5 and Pr = 1.

Figure 8: Horizontal Velocity Profile for different values of βi when K = 1,
M = 1, m = 1/3, βe = 5, I = 0.5, Ec = 0.5 and Pr = 1.

angular velocity first increases, but after a certain distance from
the surface of thewedge it decreases. This figure also shows that
the gradient of angular velocity near the surface increases with
the increase in m and thus the shear stress increases with the
increase in the angle of wedge.

Figure 4 depicts the effect of m on temperature distribution.
The value of temperature at the surface increases slightly with
the increase in the value ofm, but atm = 1 it increases rapidly.
However, as we move away from the surface the effect is just
reversed. i.e. temperature decreaseswith the increase inm from
0 to 1. From the graph it is also clear that, the thermal boundary
layer thickness decreases with the increase in m. Thus the heat
transfer rate for the wedge with large angles is higher.
Figure 9: Angular Velocity h(η) for different values of βe when K = 1, M = 1,
m = 1/3, βi = 0.4, I = 0.5, Ec = 0.5 and Pr = 1.

Figure 10: Angular Velocity Profile for different values of βi when K = 1,
M = 1, m = 1/3, βe = 5, I = 0.5, Ec = 0.5 and Pr = 1.

Figures 5–8 depict the effect of βe and β i on velocities
and temperature distribution. Figure 5 depicts that with the
increase in βe horizontal velocity f ′(η) increases slightly near
the surface of the wedge, but after a certain distance it
decreases. This means the Hall current at the surface of the
wedge enhances the fluid velocity slightly. This is because of
the increase in Lorentz force near the surface of the wedge. This
increases the velocity gradient near the wall and results in an
increase in local skin friction coefficient CfxRe1/2.

The values of skin friction coefficients for various values ofβe
andβ i are given in Table 4. The effect of Hall current and ion slip
on the transverse component of velocity is shown in Figures 6
and 7. Due to the increase in Hall and ion slip currents, the force
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Table 4: Values of 1/2CfxRe1/2, 1/2CfzRe1/2 and Nu.Re−1/2 for various values of βe and βi .

M = 1,m = 1/3, βi = 0.4, K = 1, I = 0.5, Pr = 1 and Ec = 0.5 M = 1, m = 1/3, βe = 5, I = 0.5, K = 1, Pr = 1 and Ec = 0.5

βe
1
2 CfxRe1/2 Nu.Re−1/2 1

2 CfzRe1/2 βi
1
2 CfxRe1/2 Nu.Re−1/2 1

2 CfzRe1/2

2 0.4672 0.3999 0.1150 0 0.5330 0.4055 0.0882
4 0.5090 0.4050 0.0799 0.2 0.5233 0.4056 0.0781
5 0.5162 0.4058 0.0660 0.4 0.5162 0.4058 0.0660
Table 5: Values of 1/2CfxRe1/2, 1/2CfzRe1/2 and Nu.Re−1/2 for various values of M and B.

I = 0.5, βi = 0.4, βe = 5,m = 1/3, K = 1, Pr = 1 and Ec = 0.5 M = 1, m = 1/3, βi = 0.4, βe = 2, K = 1, Pr = 1 and Ec = 0.5

M 1
2 CfxRe1/2 Nu.Re−1/2 1

2 CfzRe1/2 I 1
2 CfxRe1/2 Nu.Re−1/2 1

2 CfzRe1/2

0.5 0.5286 0.4070 0.0336 0.5 0.4672 0.3999 0.1150
2 0.4937 0.4027 0.1266 2 1.0672 0.3636 0.1413
5 0.4473 0.3889 0.2779 4 1.0570 0.3675 0.1395
Figure 11: Temperature distribution for different values of βe when K = 1,
M = 1,m = 1/3, βi = 0.4, I = 0.5, Ec = 0.5 and Pr = 1.

Figure 12: Temperature distribution θ(η) for different values ofβi whenK = 1,
M = 1,m = 1/3, βe = 5, I = 0.5, Ec = 0.5 and Pr = 1.

in the direction of z-decreases,which caused the decrease in the
transverse velocity of the fluid, as shown in Figures 6 and 7.

Since the magnitude of transverse velocity component is
very small, there is a very small increase in the horizontal
Figure 13: Horizontal Velocity Profile f ′(η) for different values of K when
M = 1, m = 1/3, βe = 2, βi = 0.4, I = 0.5, Ec = 0.5 and Pr = 1.

Figure 14: Transverse Velocity Profile g(η) for different values of K when
M = 1,m = 1/3, βe = 2, βi = 0.4, I = 0.5, Ec = 0.5 and Pr = 1.

velocity component with the change in β i. This effect of ion slip
on the horizontal velocity profile is shown in Figure 8, and from
Table 4 it is observed that there is a slight decrease in the value
of local skin friction coefficient CfxRe1/2 with the increase in β i.
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Figure 15: Angular Velocity Profile h(η) for different values of K whenM = 1,
m = 1/3, βe = 2, βi = 0.4, I = 0.5, Ec = 0.5 and Pr = 1.

Figure 16: Temperature Distribution θ(η) for different values of K when M =

1, m = 1/3, βe = 2, βi = 0.4, I = 0.5, Ec = 0.5 and Pr = 1.

The angular velocity of the particles in fluid depends upon
the velocity of the fluid. Therefore, the effect of Hall currents
directly affects the angular velocity of the particles. Since the
transverse velocity of the fluid decreases with the increase in
Hall current, the angular velocity of the particles increases in
the opposite direction. From Figure 9, it is observed that the
angular velocity of the particles increases in opposite direction
to the increase in Hall current, i.e. the magnitude of angular
velocity decreases with the increase in βe. This causes the
decrease in angular velocity gradient near the wall and, results
in decreased wall couple stress. Figure 10 shows that the
magnitude of angular velocity increases with the increase in β i
which therefore increases wall couple stress.

It is clear from Figures 11 and 12 that the temperature
decreases slightlywith the increase inβe while there is no effect
of ion slip parameter on the temperature. The temperature
distribution in the fluid depends upon the stream of fluid and
the velocity gradients of the fluid. In the present case, the
change in horizontal velocity is very small or negligible with
the change in βe and β i. Therefore, the change in temperature
Figure 17: Temperature Distribution θ(η) for different values of Ec when K =

1, M = 1, m = 1/3, βe = 2, βi = 0.4, I = 0.5 and Pr = 10.

Figure 18: Temperature Distribution θ(η) for different values of Pr when K =

1, M = 1, m = 1/3, βe = 2, βi = 0.4, I = 0.5 and Ec = 0.

mainly depends upon the transverse velocity. The decrease in
transverse velocity with the increase in βe and β i causes the
decrease in temperature. But the value of transverse velocity is
very small. Therefore, there is a small change in temperature
with the increase in βe and a negligible change with the
increase in β i. This effect of βe and β i concludes that the local
Nusselt number i.e. heat transfer rate increases slightlywith the
increase inβe, but there is no effect ofβ i on theNusselt number,
as given in Table 4.

The increase in the vortex viscosity (κ) of fluid particles
increases the overall viscosity of the fluid. Thus, the increase
in material parameter K (K = κ/µ dimensionless viscosity
ratio), simply implies the increase in the resultant viscosity of
the fluid. With the increase in material parameter K (K = κ/µ
dimensionless viscosity ratio), horizontal velocity decreases
and after a fixed distance away from the surface it increases. It
shows that the effect of vortex viscosity near the surface of the
wedge is greater as compared to its effect in free stream. The
transverse velocity shows a uniform decreasing pattern with
the increase in the value of K as depicted in Figures 13 and
14. It is also clear from the figures that the velocity gradients
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near the surface decrease, hence producing a decrease in skin
friction coefficient. Thus micropolar fluids show a reduction in
local skin drag as compared to Newtonian fluids. The numerical
values of skin friction coefficients for various values of K are
given in Table 3.

The effect of vortex viscosity is greater near the surface
of the wedge as compared to the free stream. Therefore, the
absolute value of angular velocity near the surface decreases
with the increase in the value of material parameter, and as we
move away from the wedge this value increases as depicted in
Figure 15. These changes result an increase in the rotation of the
particles near the surface and hence an increase in wall couple
stress. Thus the increase in material parameter is to accelerate
the particle rotation near the surface.

The increased material parameter increases the resultant
viscosity of the fluid and generates more heat due to the in-
creased viscous forces. Therefore, the temperature as well as
thermal boundary layer thickness increases with the increasing
value of K as seen in Figure 16. Due to the increased tempera-
ture and thickening of thermal boundary layer, the local Nusselt
number decreases with the increasing value of material param-
eter. The variation of Nusselt number is shown in Table 4. This
table also signifies that an increase in skin friction, increases the
heat transfer rate.

Physically the Eckert number (Ec) is the measure of vis-
cous dissipation. Therefore, increasing the value of Ec implies
more dissipation, i.e. an increase in the temperature of the fluid.
Figure 17 depicts that the temperature at the surface of the
wedge, as well as the thermal boundary layer thickness in-
creases with the increase in Ec. This causes a decrease in heat
transfer rate.

Figure 18 shows that increasing the value of Prandtl number
(Pr)decreases the thermal boundary layer thickness and results
in a decreasing heat transfer rate. This effect is very obvious
from the physical meaning of Pr , i.e. the ratio of kinematic
viscosity to thermal. These variations are also presented in
Table 2.

The effects of other parameters on local skin friction coeffi-
cients and local Nusselt number are given in Table 5. From this
table it is concluded that the increasing value of magnetic field
M decreases skin friction coefficients and increases heat trans-
fer rate. Further, the inertial parameter shows an increase in
skin friction coefficients upto a fixed value of the parameter, but
after this value the trend gets reversed. Similarly the local Nus-
selt number decreases with the increase in material parameter,
but after the same fixed value of the parameter it decreases.

5. Conclusions

The authors have theoretically studied the problem, and
found the numerical results for local Nusselt number and local
skin friction coefficients. They analyzed the effect of Hall and
ion slip along with material properties, on the fluid flow be-
havior and heat transfer characteristics. From the results it is
shown that the findings of the present problem are in very good
agreement with previously published work, for some particu-
lar cases. From the numerical calculations of Nusselt number
and skin friction coefficients it is concluded that in a micro po-
lar fluid, the Hall effect enhances the heat transfer rate (Nusselt
number) significantly, but there is a negligible effect of ion slip
on heat transfer rate. On the other hand for particular values of
Hall and ion slip parameters an increase in magnetic field de-
creases the heat transfer rate at the surface. It is also concluded
that increasing magnetic field reduces skin friction coefficient
due to the translational motion of the fluid whereas, it increase
skin friction due to rotational motion. For a particular value of
magnetic field, there is deterioration in the local skin friction
coefficient due to the rotational motion of the fluid with the in-
crease in Hall parameter aswell as ion slip parameter. However,
the effect is just opposite for the local skin friction coefficient
due to translational motion. The authors also found that the
heat transfer rate at the surface increase very fast with the in-
crease in the value of Prandtl number (Pr), and there is no effect
of Prandtl number on the skin friction coefficients in the present
problem. Therefore, in heat transfer applications the micropo-
lar fluid with high Prandtl number can be used. Therefore the
authors concluded that the use of waste industrial fluid could
be a good option for cooling applications with the same config-
uration as discussed in this paper. In future studies, the effect
of radiation along with the case of heat generation/absorption
will be considered for the heat transfer flow of micropolar flu-
ids past wedge shaped bodies, and we will examine the ability
of the perturbation method in solving problem.
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