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In this paper, we determine the structure of complex linear groups G of degree 
at most IP( ~ 1, where P is a T.I. Sylow p-subgroup of G. ?‘ 1991 Academic Press. Inc. 

Let G be a finite complex linear group of degree m and P a Sylow p-sub- 
group of G. If the order of P is p and m d (2p + 1)/3, Brauer and Tuan 
determined the structure of G in the 1940s; see [l, 3, 41 for references. 
Since then, many group theorists have been involved in studying the sub- 
ject and various beautiful structure theorems on linear groups have been 
given. The classification of finite simple groups made the study develop 
quickly. In [20], Ferguson classified the linear groups of degree dp - 3 
and the author [ 111 determined the structure of linear groups G of degree 
at most p - 1. Under the assumption that P is a cyclic or T.I. subgroup, 
Blau [7] established some best-possible lower bounds for the degrees. The 
aim of the present paper is to generalize and extend the results of [7]. 

Throughout the paper, all groups are assumed to be finite and the nota- 
tion and terminology are standard and follow those of [ 131 and [ 151. 

LEMMA 1 (Weir [ 191). Let G he a classical group of order 

4 rIr= , (P’) -d,), where m(i) is an integer, dj= +l, q=rf, and r is the 
characteristic of G. If G has a cyclic Sylow p-subgroup P for some p # r, then 
there exists only one i such that 1 pi’ 1 (q”“’ - di). 

LEMMA 2. Let G be p-nilpotent with a T.I. Sylow p-subgroup P. If G has 
a faithful complex character x of degree < 1 PI - 1, then one of the following 
must hold: 

(1) P is normal in G. 

(2) P is generalized quaternion and x( 1) 2 1 PI/2 - 1. 
(3) P is cyclic; O,(G)= Z(G) QO f or some extra-special q-subgroup 

Q, and QoO,(Z(G)) E Syl,(O,(G)); x is irreducible of degree 1 PI - 1 = 
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IQ/Z(Q)1 “*i and one of the following holds: p = 2 and 1 PI = q + 1, or p = 3 
and 1 PI = 9, or p = 2” + 1 and 1 PJ = p. 

Proof: Suppose that the lemma is not true and let G be a counterexam- 
ple such that IGI + x( 1) is minimal. Since P is a T.I. set of G, O,(G) = 1 and 
P acts non-trivially on O,(G). Let Q be a P-invariant Sylow q-subgroup of 
O,,(G) such that O,(PQ)= 1. By [13, Theorem 5.3.111, there exists a 
characteristic subgroup A of Q such that 

(1) A/Z(A) is elementary abelian, 

(2) [Q, Al <Z(A)> 
(3) C,(A)<4 
(4) P acts on A nontrivially. 

Set A=A/Fr(A), where Fr(A) is the Frattini subgroup of A. Then P acts 
also nontrivially on A. By Maschke’s theorem, A = A i + A*, where 
A, = C,(P) and A, is P-invariant. Since P is a T.I. set of P& P acts on A, 
with no fixed points. Thus PA, is a Frobenius group and therefore P is 
either cyclic or generalized quaternion. If P is generalized quaternion, then 
x( 1) > 1 PI/2 - 1 by [7]. If P is cyclic, then XI PA is irreducible by the mini- 
mality of G and ,Y( 1) = IPI - 1 by Theorem 2 of [7]. Since P is cyclic and 
p 1 x( 1 ), ~1 A is irreducible. It follows that A’ # 1, C,(A) = Z(G) is cyclic, 
and x(l)‘= (A/Z(A)1 by [14, Theorem 2.311. Suppose (A/Z(A)1 = q2”; then 
1 PI - 1 = qr. If p = 2, then r = 1. If p # 2, then either I PI = 9 or I PI = p; see 
[lo] for reference. Since Z(A) < Z(G) is cyclic, A = Q by [2, Lemma 3A]. 
Now IPI - 1 = qr, P acts trivially on any other P-invariant Sylow t-sub- 
groups of O,,(G), t # q. So O,(G) = QC,( P). Since P acts irreducibly on 
A/Z(Q) and Z(Q) d Z(G), Q, := [TP, Ql is extra-special and Q = Z(Q) QO. 

Next we show that C,(P) = Px Z(G). Since O,(G) = QC,(P), this 
establishes O,(G) = Z(G) Q,. 

Let B be the p-block of x. G p-nilpotent and P a T.I. set imply that 
N := N,(P) = N&Q,(P)) = C,(sZ,(P)) = C,(P) and hence that the inertial 
index of B is 1. Note that N = P x V for some p’-group V such that 
Z(G) < I’. By [S, VII. 1.5, VII. 2.4, VII. 2.141, as a Brauer character 
~1 N = dqn, where cp is some irreducible Brauer’ character of N (and so an 
ordinary irreducible character of V), and d = 1 or I PI - 1. If d = 1, then 
~1 N = ;lq, where 1, is a linear character of P and both R and cp are inflated 
to characters of N. So xlp = x( 1) 2. Then x faithful implies P < Z(G), a 
contradiction. So d= I PI - 1, cp( 1) = 1, and x faithful yields I’= Z(G). 
The lemma is now proved. 

Since the linear groups of degree less than 8 have been determined, in the 
following, we assume that P is of order at least 8 for convenience only. 
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THEOREM 3. Let G be a finite group with a T.I. Sylow p-subgroup P of 
order at least 8. Set H= OP’(G). If G has a faithful complex character x of 
degree at most IPI - 1, then one of the following is true: 

(1) P is normal in G. 

(2) P is generalized quaternion, G is solvable, and x( 1) > (PJ/2 - 1. 

(3) P is cyclic; x is irreducible of degree I PI - 1; O,(G) = Z(G)Q, 
where Q is an extra-special q-subgroup of order q2’+ ’ and Z(Q) = Q n Z(G); 
and IPI = 1 +qr (hence r= 1 zfp=2 and IPI =9 orp if q=2). Furthermore, 
tf G is not solvable, then q = 2, I PI = 1 + 2’, and H/O,(H) = PSP(2n, 2”‘) 
PSO ~ (2n, 2”)‘, or PSL(2, p), where r = nm. 

(4) lPI =p= 1 +2”, n33; G%SL(2,2”)xZ(G); andz(l)2. 

(5) x is irreducible of degree I PI - 1; H/Z(H) is isomorphic to 
PSL(3,4) for IPI =9 or Aut(Sz(32)) for IPI = 125. 

(6) 1 is irreducible of degree I PI - 1; P is cyclic; H/Z(H) is isomorphic 
to PSL(n, q) with n 3 3 and IPI = (q” - l)/(q - 1); PSU(n, q) with n odd; 
and(PI=(q”+l)/(q+t)or PSP(2n,q) with lPl=(q”+1)/2. 

(7) H/Z(H) is isomorphic to PSL(2, q) with /PI = (q + 1)/(2, q - 1 ), q, 
or q+l and X(l)b(q-1)/(2,9-l); PSU(3,q) with IPI=q3, q>2, and 
x(l)>q(q-1); ‘G,(q) with IPI=q3 and x(1)3q2-q+ 1; ‘B,(q) with 
IPI =q2, q=22m+l, and x(l)3&%(q-l) or MC with IPI = 125 and 
x(1)322. 

(8) IP( = p; x is irreducible of degree p - 1; H/Z(H) is isomorphic to 
Ml,? M,,, or M,, for p= 11; G,(4) or Suz for p= 13; J, for p= 19; M,, 
for p = 23; and Ru for p = 29 or A,. 

Proof Suppose the theorem is not true and let G be a counterexample 
of minimal order. We argue toward a contradiction. 

(I) O,(G) = 1. Obviously. 

(II) P is not generalized quaternion and PO,(G) = P x O,,(G). Set 
T= PO,(G). If P is not normal in T then O,(T) = 1. Now Lemma 2 holds 
for T. If P is generalized quaternion, then x(1) > IPl/2- 1. By the 
Feit-Thompson theorem and Suzuki’s theorem [22, Theorem 31, G is 
solvable. This shows that case (2) of the theorem is true for G, contrary to 
the assumption on G. If G is solvable, then case (3) of the theorem holds 
for G by Lemma 2, which is a contradiction. Therefore G is not solvable, 
I PI = 1 + 2’, and P is cyclic. It follows that D := H/O,(H) is nonabelian 
simple. Set R(D)=min{m)D is contained in PGL(m, C)} and M(D)= 
min{m 1 a finite extension of D is contained in PGL(m, C)}, where @ is 
the field of complex numbers. Let Q be a Sylow 2-subgroup of O,,(G); 
then P acts irreducibly on Q/Z(Q) and Q/Z(Q) is a symplectic space of 
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dimension 2r over the field of two elements. Hence D is contained in 
SP(2r, 2) and M(D) <2’ by [23]. If M(D) = R(D), R(D) < 2’~ IPI - 1. 
Thus D is isomorphic to a group listed in (4))(8) of Theorem 3 (see the 
proof of (VI) below). Let u be a power of a prime. It is easy to verify that 
(ok-l)/(u-1)#1+2’ (k>3), (uk+1)/(u+1)#1+2’ (k33), and 
(uk + 1)/2 = 1 + 2’ implies that k = 1 and u = 17 (note that r> 3 and 
IPI = 1 +2’). Since P is cyclic, D z SL(2, 2’), PSL(2, p), A,, PSL(2, 17) 
(r = 3), or PSL(3,4) (Y = 3). By the assumption on G and since 
SL(2,2’) % PSP(2,2’), D is not isomorphic to SL(2,2’) or PSL(2, p). 
Since PSL(2, 17) and PSL(3,4) are not contained in SP(6, 2), D z A,. 
Hence ((1+2’)!),.=(p!),,=[A,12s<ISP(2r,2)l,f=n;=, (2’-1)(2’+1)< 
((1 + 2r)!)2,, a contradiction. So M(D) <R(D). Then D is isomorphic to 
PSP(2n, 2”‘) or PSO-(2n, 2”‘)’ with r =nm by [23], which is again a 
contradiction. 

(III) G=H=P’:=(P-‘IxEG). It is clear that H=PG. If H is a 
proper subgroup of G, then the theorem is true for H by the minimality of 
G. By (I) and (II), O,.(H)=Z(H). Since OP’(H)= H, H/Z(H) is 
isomorphic to a group listed in (4)-(8) of the theorem. This implies that 
Theorem 3 is true for G, contrary to the assumption on G. 

(IV) G/Z(G) is nonabelian simple. Now O,,.(G) = Z(G). Set 
G = G/Z(G). Then P is a T.I. set of G with O,(G) = 1. Let M be a normal 
subgroup of G such that Z(G) d A4 and M is a minimal normal subgroup 
of G. It follows that R is a direct product of isomorphic nonabelian simple 
groups. Clearly p I I&?1 and is n &? is a T.I. set of M. So A is nonabelian 
simple. By the Frattini argument, G = NG(B n M)&& Since P is normalized -- 
by NG(P n ii-i), PA4 is normal in G. By (III), G = PM. If P < M then G is 
nonabelian simple. If P is not cointained in M, then p = 3 and 
G z Aut(PSL(2, 8)) or p = 5 and G % Aut(Sz(32)) by [12]. By the 
atlas [15], (5) of the theorem is true for G if p = 5. So p = 3. Since 
Aut(PSL(2,8)) % *G,(3), (7) of the theorem is true for G, which 
contradicts the assumption on G. 

(V) P is cyclic. If P is not cyclic, by [9], G is isomorphic to one of 
the following groups: 

(a) PSL(2, p”), n 3 2, PSU(3, p”). 

(b) *B,(q), q=22m+1, p=2. 

(c) *GAq)> q= 32m+‘, m 3 1, PSL(3,4), or M,, for p = 3. 

(d) *P4(2)’ or MC for p = 5. 

(e) J,forp=ll. 

If GM PSL(2, p”), then IP( = pn, x( 1) > (IPI - 1)/2. If G% PSU(3, p”), 
then (PI = p3”, x(l)>p”(p”-1) C163. If G=*&(q), IPI=q*, x(l)> 
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&$(4-l). If Gz *G,(q), then IPI =q3, x(l)aq(q- l)+ 1. If GzMc, 
then 1 PI = 125, x( 1) 3 22. If G z PSL(3,4), then IP( = 9, x is irreducible of 
degree 8. These show that the theorem is true for G, contrary to the 
assumption on G. If G c M,, with IPI = 9, by the atlas [ 151, x( 1) 3 10. 
Then 8 = 9 - 1 3 x( 1) 3 10. It is absurd. If Gz *F4(2) with p = 5, then 
IPI = 2.5, x( 1) 2 26. But IP\ > I( 1); this is absurd. Therefore Gz J4 with 
p=ll, lPl=l13. By the atlas, ~(1)>1333, ll’-1=1330>~(1)>1333, a 
contradiction. The contradiction proves that P is cyclic. 

(VI) Last contradiction. Now P is cyclic. If x is reducible or of 
degree less than IPI - 1, then x=Cix,, where x,~Irr(G), xi(l)< IPI - 1. 
Since G/Z(G) is nonabelian simple, there exists xi such that ker x, < Z(G). 
By [7], G * SL(2,2”) x Z(G) with IPI = p = 2” + 1 or X(2,8) x Z(G) with 
IPI = 9 or PSL(2, p), where G = G/ker xi. This shows that (4) or (7) of the 
theorem holds for G, a contradiction! Hence we may assume that x is 
irreducible of degree IPI - 1. 

In the following, we set G = G/Z(G). 
If G is isomorphic to A,, with n 3 5, then IZ = p by [ 173 and [ 181. If G 

is a sporadic simple group. G z M,, , M,,, or M,, for p = 11; Suz for 
p= 13; J, for p= 19; M,, for p=23; or Ru for p=29 by [15], which is a 
contradiction. So G is isomorphic to a simple group of Lie type by the 
classification of finite simple groups. 

Suppose G is of characteristic r. By the atlas [ 151 and the assumption 
on G, G is not isomorphic to any one of the following groups: 

PSL(2,4), PSL(2,9), PSL(3,2), PSL(3,4), PSP(6,2), PSU(4,2), 

PSU(4, 3), PSG’(8, 2) PW7, 3), F,(2), S;(8), G,(4), G,(3). 

If p = r, then G z PSL(2, p) since P is cyclic; see [6] for reference. Then 
our minimality assumption is contradicted. So p # r. Set q = r’. If 
G%PSL(2,q), by [16], x(l)aq-l/d, d=(2,q-1). Then IPI - 1 > 
q - l/d IPI 3 q + l/d. It follows that lPI 1 q + 1 and IPI = q + l/d, x( 1) > 
q - l/2, contrary to the assumption on G. 

If G%PSL(n,q), 1223, by [16], X(1)3qnp’-l, IPI3q”-‘. Then 
1 PI 1 (q” - 1) by Lemma 1. It follows that I PI = q” - l/(q - 1 ), which 
contradicts the assumption on G. 

If GzPSP(2n,q), then by [16], x(1)>(q-l)(q”-1-l)q”-1/2 for q 
even or q” - l/2 for q odd. If q is even, IPI > x( 1) + 1 > q” + 1. By 
Lemma 1, p J lG\, contrary to the assumption on G and P. If q is odd, 
x(l)Bq”- l/2, IPl 3q”+ l/2, IP( [(q”+ 1). Therefore IPI =q”+ l/2, 
another contradiction! 

If GzPSU(n,q) then x(l)>q(q”p’-l)/(q+l) for n odd or 
(q’*-l)/(q+l) for n even by [16]. If ~(l)>q(q”~‘-l)/(q+l), then 
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IPl>q(q”-‘--l)/(q+1)+1=(q”+l)/(q+1).ByLemma1, IPI=(q”+l)/ 
(q + 1). We again have a contradiction. If x( 1) > (q” - 1 )/(q + 1) with 
n even, then IPI 3 q(q”- ’ + l)/(q + 1). Since the r’-part of IPSU(n, q)l is 
(q2-l)(q3+1)...(qnp’+l)(qn-l), lPl1(q’fl)forsomeintegeri<n-1 
by Lemma 1. Hence IfYeP+w(q+u q(q”~‘+lY(q+1)< 
(q”-l+ l)/(q + 1). It is absurd. 

If ~7 z PSO’(2n, q)’ (n 2 4) or PSO(2n + 1, q)’ (n > 3 and q is odd), 
then X(l)>q”+l by [16]. So IPJ>q”+2. By Lemma 1, p[IGI, a 
contradiction. 

If G%FF,(q) with q>2, x(1)aq4(q6- 1) if q is odd or q7(q3- l)(q- I)/2 
if q is even by [16]. So IPI aq9 + 1, Since lP4(q)l =q24(q’2 - 1) 
(q* - 1 )(q6 - 1 )(q* - 1) and P is cyclic, p j (q* - 1). Let e be the smallest 
positive integer such that p I (qe - 1). Then e = 3,4, 6, 8, or 12. If e = 3 or 6, 
IPI d (q2 +q+ 1)2 < q6, contrary to that IP( 3 q9 + 1. If e= 4, 8, or 12, 
I PI d (q2 + 1 )2 < q6, which is again a contradiction. 

IfGz2 E6(q),thenX(l)~q8(q4+l)(q3-1)forq>2or3.29forq=2by 
[16]. If q>2, IP( >q14+ 1. Since 12E6(q)I =q36(q’2- l)(q9+ l)(q*- 1) 
(q6 - 1 )(q5 + 1). (q2 - 1) and P is cyclic, p [ (q2 - 1). Let e be the number 
defined as above; then e= 3,4,6,8, 10, 12, or 18. If e = 8, 10, 12, or 18, 
IPIdq6+l. This is impossible since IPIaq’4+1. If e=3,4,6, then 
IPI d(q2+q+ 1)3<q9. This is again impossible. So q = 2. Then 
IPI~(2+l)6/(3,2+1)=35.Itfollowsthat3.29~~(1)~IPI-l~35.Itis 
absurd. 

Similar arguments yield that c is not isomorphic to E,(q), i = 6, 7, or 8. 
If GzG,(q) with q<4, then q=3 or 4. By the atlas [ls], q=4 and 

p = 13. This contradicts the assumption on G. If G z G,(q) with q > 4, then 
x(l)>q(q2- 1) by [16]. IPI 3q3-q+ 1. Since the order of G,(q) is 
q6(q6- l)(q*- l), IPJ <3(q+ 1)2 if pl(q*- 1) and IPI <q’+q+ 1 if 
p j (q* - 1). Then q3 - q + 1 < 3(q + 1)‘. But this implies that q < 4, 
contrary to that q > 4. 

If Ge3 D,(q), then x(1)aq3(q2-1) by [16]. IPI >q’-q3+1. The 
order of ‘D,(q) is q1*(q8 +q4 + 1)(q6- 1)(q2- 1). Then IPI <9(q+ 1)2 for 
PI (q2-1),(q2+q+1)*f0rp~(q2~q+1),0rq4-q2+1f0rp~(q4-q2+1). 
So qs - q3 + 1 < 9(q + 1)2, (q2 + q + l)*, or q4 - q* + 1. The inequalities 
imply q = 2. By the character table of 3D4(q) [ 151, this is impossible. 

If G is isomorphic to *G,(q) (q = 3*“+ ’ with m 2 I), then x( 1) 2 q(q - 1) 
by [16]. Therefore (PI kq(q- I)+ 1 =q2-q+ 1. Since 1*G2(q)l = 
q3(q3+l)(q-l), IP11(q2-q+l), q+l, or q-l. So IPj=q*-q+l. But 
q2 - q + 1 = (q - fi + l)(q + fi + l), which is a contradiction. 

If GzSS,(q), q=22m+‘, m>2, then x(l)>Jq/2(q-1) by [16]. 
IP( >@(q- l)+ 1. Since the order of S;(q) is q2(q2+ l)(q- 1) and 

q2+1=(q-J24+1)(q+J2g+1), IPIdq+&+l, &i&1)+1< 



ON LINEARGROUPSOFDEGREEATMOST IPI - 1 313 

q+fiq+l. q-N&+2, 22”+1<2m+1+3. So 2”+‘(2”‘-1)<3. It 
follows that m = 0, which is a contradiction. 

If C? z 2F4(2)‘, then x( 1) > 26 and p = 13 by the atlas [ 151. It follows that 
266JPI-1 612. It is absurd! If Gz2F,(q), q=2*“‘+‘, m~zl, then 
x( 1) > a q4(q - 1). Since the order of 2F,(q) is q12(q6 + l)(q4 - 1) 

(s3+1Nq-I), lpId(q2+1)*. Then it follows that Jq/2 q4(q - 1) < 
lPI - 1 d (q2 + l)‘- 1. This implies that 3q2 6 2. This is impossible. The 
contradictions prove the theorem. 
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