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Two Hopf algebras are called monoidally Morita equivalent if
module categories over them are equivalent as linear monoidal
categories. We introduce monoidal Morita invariants for finite-
dimensional Hopf algebras based on certain braid group represen-
tations arising from the Drinfeld double construction. As an ap-
plication, we show, for any integer n, the number of elements of
order n is a monoidal Morita invariant for finite group algebras. We
also describe relations between our construction and invariants of
closed 3-manifolds due to Reshetikhin and Turaev.
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1. Introduction

Let H be a Hopf algebra over a field k, for example, a group algebra. As is well known, the category
of H-modules, denoted by Mod(H), is a k-linear monoidal category. We say that two Hopf algebras
H and L are monoidally Morita equivalent if Mod(H) and Mod(L) are equivalent as k-linear monoidal
categories. In this paper, we introduce monoidal Morita invariants of finite-dimensional Hopf algebras
and apply them to finite group algebras.

Following Etingof and Gelaki [1], we say that two finite groups G and G ′ are k-isocategorical if kG
and kG ′ are monoidally Morita equivalent. In the same paper, they classify all groups C-isocategorical
to a given finite group in group-theoretical terms. Following [1], we say that a finite group G is cate-
gorically rigid over k if any group k-isocategorical to G is isomorphic to G . As a direct consequence of
their classification, G is categorically rigid over C if G does not admit a normal abelian subgroup A of
order 22m [1, Corollary 1.4]. In general, it is difficult to know when two finite groups are isocategorical
even if we use the classification result. In this paper we show the following criterion, applying our
results to finite group algebras.
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Theorem 1.1. Let k be a field. If two finite groups G and G ′ are k-isocategorical, then for each positive integer n,
the number of elements of order n in G is equal to the number of elements of order n in G ′ .

Monoidal categories arise not only from algebra but also from low-dimensional topology such as
the theory of knots and braids. Our construction is based on certain braid group representations
arising from the Drinfeld double D(H) of a finite-dimensional Hopf algebra H . Considering D(H)

itself as a left D(H)-module via the left multiplication, we have a series of canonical representations

ρ
D(H)
n : Bn → AutD(H)

(
D(H)⊗n) (n = 2,3, . . .)

of braid groups Bn . We show a monoidal Morita invariant τ (b; H) is given by τ (b; H) = Tr(ρD(H)
n (b)),

b ∈ Bn . Theorem 1.1 is actually an application of these invariants associated with certain braids; see
Section 4.

When H is a finite-dimensional semisimple Hopf algebra over an algebraically closed field of
characteristic zero, we can relate our construction to the Reshetikhin–Turaev invariant [2] of closed
3-manifolds. This relation gives rise to the following theorem. For groups X and Y , denote by
Hom(X, Y ) the set of group homomorphisms from X to Y .

Theorem 1.2. Let k be a field. If finite groups G and G ′ are k-isocategorical, then for any oriented connected
closed 3-manifold M, we have

# Hom
(
π1(M), G

)= # Hom
(
π1(M), G ′)

where π1(M) is the fundamental group of M.

This paper is organized as follows. In Section 2, we introduce the notion of monoidal Morita in-
variance between Hopf algebras. We review Schauenburg’s results [3] and prove some lemmas for
latter sections. In Section 3, we define monoidal Morita invariants associated with braids and intro-
duce some basic properties of them. In Section 4, we apply our invariants to finite group algebras and
prove Theorem 1.1. In Section 5, we discuss relations between our invariants and the construction of
invariants of closed 3-manifolds due to Reshetikhin and Turaev. Theorem 1.2 will be proved in this
section. Section 6 is devoted to further examples and applications of our invariants.

In Appendix A, we argue similarity of permutation matrices and prove that two permutation ma-
trices of same size are similar if and only if they are conjugate as permutations (Theorem A.1). This
theorem is used in Section 4 as a part of the proof of Theorem 1.1.

Throughout this paper, the base field is denoted by k. Unless otherwise noted, vector spaces, alge-
bras, coalgebras, etc. are over k. For vector spaces V and W , V ⊗ W means V ⊗k W . Functors between
k-linear categories are always assumed to be k-linear. We use [5] as a main reference for general the-
ory of Hopf algebras. The comultiplication and counit of a bialgebra H are denoted by � : H → H ⊗ H
and ε : H → k, respectively. The antipode of a Hopf algebra is denoted by S . We use Sweedler’s sigma
notation

�(x) =
∑

x(1) ⊗ x(2)

to denote the comultiplication of an element x in a coalgebra.
For an algebra A, we denote by Aop the opposite algebra. Similarly, for a coalgebra C , we denote

by Ccop a coalgebra with the same underlying space with opposite comultiplication �cop given by
�cop(c) =∑ c(2) ⊗ c(1) for all c ∈ C (the opposite coalgebra). For a bialgebra H , bialgebras Hop and
Hcop are defined in an obvious way.
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2. Preliminaries

2.1. Bialgebras and monoidal categories

A monoidal category (or tensor category) is a category C equipped with a bifunctor ⊗ : C × C → C
and an object 1 ∈ C satisfying certain associativity and unit constraints. The bifunctor ⊗ is called the
tensor product and the object 1 is called the unit object. We refer the reader to Chapter XIII of Kassel
[6] for formal definitions of monoidal categories and monoidal functors.

The category of vector spaces, denoted by Vec(k), is a typical example of a k-linear monoidal cat-
egory. A monoidal category is called strict if its associativity and unit isomorphisms are all identities.
In this paper, we deal with mainly k-linear monoidal categories whose associativity and unit isomor-
phisms are “trivial” like Vec(k). Hence, although such categories are not strict, we treat them as if
they were strict. This is valid since every monoidal category is equivalent to a strict one (see, e.g.,
[6, XI.5]).

Let B be a bialgebra. Given left B-modules V and W , the tensor product V ⊗ W is a left B-module
by

x · (v ⊗ w) =
∑

x(1)v ⊗ x(2)w

for all x ∈ B , v ∈ V and w ∈ W . The category of left B-modules, denoted by Mod(B), is a k-linear
monoidal category with this tensor product. The unit object of Mod(B) is the trivial B-module 1 = k
given by x · 1 = ε(x)1 for all x ∈ B . The following proposition describes relations between monoidal
categories Mod(B), Mod(Bcop) and Mod(Bop). For a monoidal category C , we denote by C rev the
monoidal category with the underlying category C and the reverse tensor product ⊗rev given by
X ⊗rev Y = Y ⊗ X for all X, Y ∈ C .

Proposition 2.1. Let B be a bialgebra.

(a) Mod(Bcop) is monoidally equivalent to Mod(B)rev .
(b) Mod(Bop) is monoidally equivalent to Mod(B)rev if B has a bijective antipode.

Proof. (a) The identity functor together with the monoidal structures

T V ,W : V ⊗rev W = W ⊗ V → V ⊗ W , T V ,W (w ⊗ v) = v ⊗ w

gives a monoidal equivalence between Mod(B) and Mod(Bcop).
(b) Under this assumption, the antipode gives an isomorphism Bop ∼= Bcop of Hopf algebras. This

induces a monoidal equivalence between Mod(Bcop) and Mod(Bop). �
We use the sigma notation such as ρ(v) =∑ v(0) ⊗ v(1) for right comodule structures. Given right

B-comodules V and W , the tensor product V ⊗ W is also a right B-comodule with structure map
ρV ⊗W : V ⊗ W → V ⊗ W ⊗ B given by

ρV ⊗W (v ⊗ w) =
∑

v(0) ⊗ w(0) ⊗ v(1)w(1).

The category of right B-comodules is a monoidal category with this tensor product. We denote this
monoidal category by Com(B). We can prove the following proposition in a similar way as Proposi-
tion 2.1.

Proposition 2.2. Let B be a bialgebra.

(a) Com(Bop) is monoidally equivalent to Com(B)rev .
(b) Com(Bcop) is monoidally equivalent to Com(B)rev if B has a bijective antipode.
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2.2. Monoidal Morita theory

We introduce the following definition.

Definition 2.3. Two Hopf algebras H and L are monoidally Morita equivalent if Mod(H) and Mod(L)

are equivalent as (k-linear) monoidal categories.

Although we are interested in modules over Hopf algebras, for a while, we refer to Schauenburg’s
results [3] that deal with comodules over Hopf algebras. Let C be a coalgebra. The cotensor product
V �C W of a right C-comodule V and a left C-comodule W is defined to be the kernel of

ρV ⊗ idW − idV ⊗ λW : V ⊗ W → V ⊗ C ⊗ W

where ρV and λW are the structure maps of V and W , respectively. Let D be another coalgebra. If,
moreover, W is a (C, D)-bicomodule, the cotensor product V �C W is naturally a right D-comodule.

Let H be a Hopf algebra. For an H-comodule M , we let

Mco H = {m ∈ M
∣∣ ρM(m) = m ⊗ 1

}
denote the space of H-coinvariants. A right H-Galois object is a right H-comodule algebra A �= 0 such
that Aco H = k and the linear map A ⊗ A → A ⊗ H given by x ⊗ y �→∑

xy(0) ⊗ y(1) is bijective. A left
H-Galois object is defined by replacing “right” with “left”. For another Hopf algebra L, an (H, L)-bi-
Galois object [3, Definition 3.4] is a left H- and right L-Galois object such that the two comodule
structures make it an (H, L)-bicomodule. If A is an (H, L)-bi-Galois object, the cotensor product func-
tor

F A : Com(H) → Com(L), F A(V ) = V �H A

gives a monoidal equivalence together with the monoidal structures

J V ,W : (V �H A
)⊗ (W �H A

)→ (V ⊗ W )�H A,(∑
vi ⊗ xi

)
⊗
(∑

w j ⊗ y j

)
�→
∑

vi ⊗ w j ⊗ xi y j

and ϕ : k → k �H A, a �→ a ⊗ 1.

Theorem 2.4. (See Schauenburg [3, Corollary 5.7].) The above correspondence A �→ (F A, J ,ϕ) gives a bijection
between isomorphism classes of (H, L)-bi-Galois objects and isomorphism classes of monoidal equivalences
Com(H) → Com(L).

A right H-Galois object A is said to be cleft if there exists a convolution invertible H-colinear map
H → A where we consider H as a right H-comodule via the comultiplication. Note that A is cleft if
and only if A is isomorphic to H as a right H-comodule [7, Theorem 9]. The notion of cleft left H-Galois
objects is defined similarly. If H is finite-dimensional, all left H-Galois objects and all right H-Galois
objects are cleft. In the following lemma, we denote by U H the forgetful functor Com(H) → Vec(k).

Lemma 2.5. Let H and L be finite-dimensional Hopf algebras. For any monoidal equivalence F : Com(H) →
Com(L), the followings hold.

(a) F (H) is isomorphic to L in Com(L).
(b) U L ◦ F is isomorphic to U H as a k-linear functor.
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Proof. By Theorem 2.4, there exists an (H, L)-bi-Galois object A such that F is isomorphic to F A =
(−)�H A. Since H and L are finite-dimensional, A is cleft. In particular, A is isomorphic to H as a
left H-comodule and is isomorphic to L as a right L-comodule.

(a) We have F (H) ∼= H �H A ∼= A ∼= L as right L-comodules.
(b) It can be proved in a similar way as in (a). �
We now return to modules over Hopf algebras. Let H be a finite-dimensional Hopf algebra. Recall

that we can identify Mod(H) with Com(H∗) where H∗ is the dual Hopf algebra of H . In particular,
we consider a right H∗-comodule V as a left H-module by

x · v =
∑

v(0)〈v(1), x〉

for all x ∈ H and v ∈ V . In the following lemma, we denote by U ′
H : Mod(H) → Vec(k) the forgetful

functor.

Lemma 2.6. Let H and L be finite-dimensional Hopf algebras. For any monoidal equivalence F : Mod(H) →
Mod(L), the followings hold.

(a) F (H) is isomorphic to L in Mod(L).
(b) U ′

L ◦ F is isomorphic to U ′
H as a k-linear functor.

Proof. (a) Let F : Mod(H) → Mod(L) be an equivalence of monoidal categories. If we identify Mod(H)

and Mod(L) with Com(H∗) and Com(L∗) respectively, we have an equivalence F : Com(H∗) →
Com(L∗) of monoidal categories. By Lemma 2.5(a), F (H∗) ∼= L∗ in Com(L∗). Since H∗ ∈ Com(H∗)
is isomorphic to H as a left H-module (see [5, Chapter 5]), we have F (H) ∼= F (H∗) ∼= L∗ ∼= L as left
L-modules.

(b) This is obvious by Lemma 2.5(b). �
2.3. Braiding

A braiding in a (strict) monoidal category C is a natural isomorphism c X,Y : X ⊗ Y → Y ⊗ X (X, Y ∈
C ) satisfying equations c X⊗Y ,Z = (c X,Z ⊗ idY )(idX ⊗ cY ,Z ) and c X,Y ⊗Z = (idY ⊗ c X,Z )(c X,Y ⊗ idZ ) for
X, Y , Z ∈ C . A braided monoidal category (or braided tensor category) is a monoidal category equipped
with a braiding (see [6, Chapter XIII]).

Let C be a braided monoidal category with braiding c. Each object of C yields a series of represen-
tations of braid groups. We denote by Bn (n � 2) the braid group on n strands. As is well known, Bn
is generated by basic braids

σi = (i = 1,2, . . . ,n − 1)

with defining relations

σiσ j = σ jσi
(
if |i − j| > 1

)
,

σiσi+1σi = σi+1σiσi+1 (i = 1,2, . . . ,n − 2).

Fix an object X ∈ C . Then the morphism σ = c X,X is a solution of the Yang–Baxter equation (σ ⊗
idX )(idX ⊗ σ)(σ ⊗ idX ) = (idX ⊗ σ)(σ ⊗ idX )(idX ⊗σ) in AutC (X⊗3), and thus we have a series of
representations
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ρ X
n : Bn → AutC

(
X⊗n) (n = 2,3, . . .)

given by

ρ X
n (σi) = idX ⊗ · · · ⊗ idX︸ ︷︷ ︸

i−1

⊗ c X,X ⊗ idX ⊗ · · · ⊗ idX︸ ︷︷ ︸
n−i−1

.

Remark 2.7. Let f : X → Y be a morphism in C . Since the braiding is natural, the diagram

X⊗n ρ X
n (b)−−−−→ X⊗n

f ⊗···⊗ f

⏐⏐� ⏐⏐� f ⊗···⊗ f

Y ⊗n −−−−→
ρY

n (b)

Y ⊗n

commutes for all b ∈ Bn . In particular, braid group representations ρ X
n and ρY

n are equivalent if X and
Y are isomorphic.

Remark 2.8. Let D be another braided monoidal category and F : C → D be a braided monoidal
functor. If we fix an object X ∈ C , we have representations

ρ ′
n : Bn → AutD

(
F (X)⊗n), ρ ′

n(b) = ρ
F (X)
n (b)

and

ρ ′′
n : Bn → AutD

(
F
(

X⊗n)), ρ ′′
n (b) = F

(
ρ X

n (b)
)
.

These representations are equivalent. In fact, the canonical isomorphism F (X)⊗n ∼= F (X⊗n) given by
the monoidal structures of F gives an intertwiner.

2.4. Quasitriangular Hopf algebras

We argue braidings in the category of modules over a Hopf algebra. If R =∑ si ⊗ ti ∈ A⊗2 is a
universal R-matrix [6, Definition VIII.2.2] of A, Mod(A) is a braided monoidal category with braiding
cR

V ,W : V ⊗ W → W ⊗ V given by

cR
V ,W (v ⊗ w) =

∑
ti w ⊗ si v

for v ∈ V and w ∈ W . It is known that this gives a one-to-one correspondence between braidings of
Mod(A) and universal R-matrices of A. We denote this braided monoidal category by Mod(A, R). We
often omit R and denote Mod(A, R) by Mod(A) if R is obvious.

A quasitriangular Hopf algebra is a pair (A, R) of a Hopf algebra A and a universal R-matrix of A.
We list basic properties of quasitriangular Hopf algebras.

Proposition 2.9. (See [8, §2], [6, Chapter VIII].) Let (A, R) be a quasitriangular Hopf algebra. Set u =∑ S(ti)si
where

∑
si ⊗ ti = R. Then the followings hold.

(a) u is invertible with inverse u−1 =∑ ti S2(si).
(b) The antipode S is bijective and we have S2(x) = uxu−1 for all x ∈ A.
(c) (ε ⊗ idA)(R) = 1 = (idA ⊗ ε)(R).
(d) (S ⊗ idA)(R) = R−1 = (idA ⊗ S−1)(R) and (S ⊗ S)(R) = R.
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The element u above is called the Drinfeld element of (A, R). Note that A is involutive, i.e., S2 = idA

if and only if u is central.
Let C be a braided monoidal category with braiding c. Then the reverse monoidal category C rev is

also a braided monoidal category with braiding crev
X,Y = cY ,X : X ⊗rev Y → Y ⊗rev X . C rev is equivalent

to C as a braided monoidal category. In fact, the identity functor together with monoidal structure
ϕV ,W = cW ,V : V ⊗rev W → V ⊗ W gives an equivalence.

Proposition 2.10. Let (A, R) be a quasitriangular Hopf algebra.

(a) (Acop, R21) is isomorphic to (Aop, R21) as a quasitriangular Hopf algebra.
(b) Mod(A, R), Mod(Acop, R21) and Mod(Aop, R21) are equivalent as braided monoidal categories.

Proof. (a) The antipode S : Acop → Aop gives an isomorphism of Hopf algebras. This preserves the
universal R-matrix since (S ⊗ S)(R) = R .

(b) The equivalence given in the proof of Proposition 2.1 induces an equivalence between braided
monoidal categories Mod(Acop, R21) and Mod(A, R)rev. The latter is equivalent to Mod(A, R) as we
remarked above. �
Lemma 2.11. Let (A, R) and (A′, R ′) be finite-dimensional quasitriangular Hopf algebras. If Mod(A, R) and
Mod(A′, R ′) are equivalent as braided monoidal categories, braid group representations ρ A

n and ρ A′
n are equiv-

alent for each n � 2.

Proof. Let F : Mod(A, R) → Mod(A′, R ′) be an equivalence of braided monoidal categories. By
Lemma 2.6, Remark 2.7 and Remark 2.8, we have isomorphisms ηn : A⊗n → F (A⊗n), η′

n : F (A⊗n) →
F (A)⊗n and η′′

n : F (A)⊗n → A′⊗n such that the diagram in Vec(k)

A⊗n ηn−−−−→ F (A⊗n)
η′

n−−−−→ F (A)⊗n η′′
n−−−−→ A′⊗n

ρ A
n (b)

⏐⏐� F (ρ A
n (b))

⏐⏐� ⏐⏐�ρ
F (A)
n (b)

⏐⏐�ρ A′
n (b)

A⊗n −−−−→
ηn

F (A⊗n) −−−−→
η′

n

F (A)⊗n −−−−→
η′′

n

A′⊗n

commutes for all b ∈ Bn . �
3. Invariants associated with braids

In this section, we define monoidal Morita invariants of finite-dimensional Hopf algebras associated
with braids. Our construction is based on braid group representations arising from quasitriangular
structures. A Hopf algebra does not always have universal R-matrices. We recall the Drinfeld double
construction [6, Chapter IX] which admits the canonical quasitriangular structure.

For a finite-dimensional Hopf algebra H , let D(H) be the Drinfeld double of H . Recall that D(H) =
H∗ cop ⊗ H as a coalgebra. To avoid confusion, we denote f ⊗ x ∈ D(H) by f � x. D(H) has a universal
R-matrix

R(H) =
n∑

i=1

ε�hi ⊗ h∗
i � 1 ∈ D(H) ⊗ D(H)

where {h1, . . . ,hn} is a basis of H and {h∗
1, . . . ,h∗

n} is the dual basis. R(H) is denoted by R if H is ob-
vious. Note that the braided monoidal category Mod(D(H), R) is characterized as the center, denoted
by Z(Mod(H)), of the monoidal category Mod(H) [6, XIII.5]. If finite-dimensional Hopf algebras H
and L are monoidally Morita equivalent, we have equivalences
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Mod
(

D(H), R
)≈ Z

(
Mod(H)

)≈ Z
(
Mod(L)

)≈ Mod
(

D(L), R
)

of braided monoidal categories. Applying Lemma 2.11, we have the following theorem.

Theorem 3.1. Let H and L be finite-dimensional Hopf algebras. If H and L are monoidally Morita equivalent,
then, for any integers n � 2, braid group representations

ρ
D(H)
n : Bn → Aut

(
D(H)⊗n) and ρ

D(L)
n : Bn → Aut

(
D(L)⊗n)

are equivalent.

Remark 3.2. The above theorem gives us various monoidal Morita invariants. For instance, the expo-
nent of finite-dimensional Hopf algebra H , which is defined to be the smallest integer n � 1 such that
the equation

∑
x(1) S−2(x(2)) · · · S−2n+2(x(n)) = ε(x)1H

holds for all x ∈ H , is equal to the order of ρ
D(H)
n (σ 2

1 ) (see [9, Theorem 2.5]).

We study the following type of invariants.

Definition 3.3. Let b ∈ Bn be a braid. We define a monoidal Morita invariant τ (b; H) associated with b
and a finite-dimensional Hopf algebra H by

τ (b; H) = Tr
(
ρ

D(H)
n (b)

)
.

Let us list some elementary properties of τ (b; H). For braids b1 ∈ Bn and b2 ∈ Bm , we denote by
b1 ⊗ b2 ∈ Bn+m the braid on n + m strands which is obtained by arranging b2 to the right of b1.

Proposition 3.4. Let H be a finite-dimensional Hopf algebra. Then:

(a) τ (1n; H) = dim(H)2n where 1n is the identity of Bn.
(b) τ (b1b2; H) = τ (b2b1; H) for all b1,b2 ∈ Bn.
(c) τ (b1 ⊗ b2; H) = τ (b1; H)τ (b2; H) for all b1 ∈ Bn and b2 ∈ Bm.
(d) If K/k is a field extension, τ (b; K ⊗k H) = τ (b; H).

Proof. Proofs are obvious from properties of trace. �
Our invariants cannot distinguish a finite-dimensional Hopf algebra and its dual since the con-

struction is based on the Drinfeld double.

Proposition 3.5. Let H be a finite-dimensional Hopf algebra. Mod(D(H), R) and Mod(D(H∗), R) are equiv-
alent as braided monoidal categories.

Proof. Recall that D(H) = H∗ ⊗ H as a vector space. Under the canonical identification H∗∗ ∼= H , a
linear map T : H∗ ⊗ H → H ⊗ H∗ given by T ( f ⊗ x) = x ⊗ f induces an isomorphism

T : (D(H), R(H)
)→ (

D
(

Hop cop∗)op
, R
(

Hop cop ∗) )

21
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Fig. 1. The braid bn ∈ Bn+1.

of quasitriangular Hopf algebras [10, Theorem 3]. Since H is finite-dimensional, H and Hop cop are
isomorphic as Hopf algebras via the antipode. Therefore, we have an isomorphism (D(H∗), R(H∗)) ∼=
(D(H)op, R(H)21) of quasitriangular Hopf algebras. Applying Proposition 2.10 completes the proof. �
Corollary 3.6. For each n � 2, braid group representations ρ

D(H)
n and ρ

D(H∗)
n are equivalent. In particular,

τ (b; H∗) = τ (b; H) for any braid b.

4. Application to group algebras

Our aim in this section is to prove Theorem 1.1. This will be done by calculating the monoidal
Morita invariant associated with braid

bn = σnσn−1 · · ·σ1 ∈ Bn+1 (n = 1,2, . . .)

which is illustrated as Fig. 1.

4.1. Reduction to characteristic zero

Let G be a finite group. As we prove later in Lemma 4.7, we have

τ (bn;kG) = |G| · #
{

g ∈ G | gn = 1
}

for each n. This equation holds in any characteristic. In characteristic zero, Theorem 1.1 follows easily
from it. The first step of the proof of Theorem 1.1 is to reduce the problem to the case when the
characteristic of k is zero. We have the following theorem.

Theorem 4.1.

(a) Let G be a finite group. Then, τ (b;CG) is a non-negative integer for any braid b ∈ Bn. For an arbitrary
field k, we have τ (b;CG) = τ (b;kG) in k.

(b) Let k be an arbitrary field. If two finite groups G and G ′ are k-isocategorical, we have τ (b;CG) =
τ (b;CG ′) for any braid b ∈ Bn.

In fact, the field C in Theorem 4.1(b) can be replaced by any field. There are two reasons why we
use C. First, C is an algebraically closed field of characteristic zero. Second, we desire to relate our
monoidal Morita invariants to certain theories of closed 3-manifolds; see Section 5.

We recall the structure of D(kG). For each g ∈ G , define eg ∈ (kG)∗ by 〈eg, x〉 = δx,g for all x ∈ G
where δ is the Kronecker delta. Then, the set {eg � x}g,x∈G is a basis of D(kG). The multiplication of
D(kG) is given by

(eg � x)(eh � y) = δg,xhx−1 eg �(xy)
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for all g,h, x, y ∈ G . The comultiplication � is given by

�(eg � x) =
∑
h∈G

(ehg�x) ⊗ (egh−1 � x)

for all g, x ∈ G . Set 1∗ =∑g∈G eg (this is the counit of kG). Then, the universal R-matrix of D(kG) is
given by

R(kG) =
∑
g∈G

(1∗ � g) ⊗ (eg �1).

The Drinfeld element u and its inverse are given respectively by

u =
∑
g∈G

eg � g−1 and u−1 =
∑
g∈G

eg � g.

The proof of Theorem 4.1 is based on the following observation: For all braid b ∈ Bn , ρ
D(kG)
n (b) is

represented by a permutation matrix in basis

eg1 � x1 ⊗ · · · ⊗ egn � xn (gi, xi ∈ G).

Note that this permutation is independent from the base field k. For a permutation matrix P , we
denote by Fix(P ) the number of fixed points of the corresponding permutation. The following lemma
is a direct consequence of Theorem A.1 in Appendix A.

Lemma 4.2. Let P and Q be permutation matrices of the same size. If P and Q are similar over k, we have
Fix(P ) = Fix(Q ).

If the characteristic of the base field k is zero, the proof is obvious since Tr(P ) = Fix(P ) in k.
Lemma 4.2 allows us to define Fix(P ) for an automorphism P on a finite-dimensional vector space
which is represented by a permutation matrix in some basis. Now we can prove Theorem 4.1.

Proof of Theorem 4.1. (a) Let b ∈ Bn be a braid. τ (b;CG) is a non-negative integer as the trace of a
permutation matrix. Since, as we remarked above, a permutation induced by ρ

D(kG)
n (b) is independent

from the choice of the base field k, we have

Fix
(
ρ

D(kG)
n (b)

)= Fix
(
ρ

D(CG)
n (b)

)= Tr
(
ρ

D(CG)
n (b)

)= τ (b;CG).

Thus, we have τ (b;kG) = τ (b;CG) in k.
(b) Assume that finite groups G and G ′ are k-isocategorical. Theorem 3.4 yields

Fix
(
ρ

D(kG)
n (b)

)= Fix
(
ρ

D(kG ′)
n (b)

)
for all b ∈ Bn . Thus, we have τ (b;CG) = τ (b;CG ′). �
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4.2. The number of elements of order n

Let (A, R) be a quasitriangular Hopf algebra and V be a finite-dimensional left A-module. Write
R =∑i si ⊗ ti . By the definition of ρV

n+1, we have

ρV
n+1(bn)(v0 ⊗ · · · ⊗ vn) =

∑
i1,...,in

ti1 v1 ⊗ · · · ⊗ tin vn ⊗ sin · · · si1 v0

for all v0, . . . , vn ∈ V . First, we give a description of the trace of ρV
n+1(bn) in terms of R and the

Drinfeld element u. For a ∈ A, we denote by TrV (a) the trace of the linear endomorphism on V given
by v �→ a · v (v ∈ V ).

Lemma 4.3. Notations are as above.

(a) For each n � 1, we have

Tr
(
ρV

n+1(bn)
)= ∑

i1,...,in

TrV (si1 · · · sin tin · · · ti1).

(b) If A is involutive, Tr(ρV
n+1(bn)) = TrV (u−n).

Proof. (a) Let f0, . . . , fn ∈ End(V ) be linear endomorphisms on V . Define a linear map f : V ⊗(n+1) →
V ⊗(n+1) by

f (v0 ⊗ · · · ⊗ vn) = f1(v1) ⊗ · · · ⊗ fn(vn) ⊗ f0(v0)

for all v0, . . . , vn ∈ V . Then we have Tr( f ) = Tr( f1 ◦ · · · ◦ fn ◦ f0) by direct calculation. Applying this
formula to ρV

n+1(bn) the assertion follows.
(b) Since A is involutive, u is central in A and its inverse is given by u−1 =∑i ti si (see Proposi-

tion 2.9). Thus we have

∑
i1,...,in

ti1 · · · tin sin · · · si1 = u−n.

This implies Tr(ρV
n+1(bn)) = TrV (u−n). �

Remark 4.4. We can avoid the large part of the calculation. The proof will be much easier if we use
Kauffman’s beads arguments [11] with suitable modification.

The order of the antipode of a finite-dimensional Hopf algebra H equals to the order of the an-
tipode of D(H). The following description of τ (bn; H) is a direct consequence of Lemma 4.3.

Lemma 4.5. For a finite-dimensional involutive Hopf algebra H, we have

τ (bn; H) = TrD(H)

(
u−n)

where u is the Drinfeld element of the Drinfeld double D(H).
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Remark 4.6. Similarly, we have τ (b−1
n ; H) = TrD(H)(un) under the same assumption as the above

lemma. If the characteristic of k is zero, dim(H)−1τ (b−1
n ; H) equals to νn(TrH ) where νn is the

n-th Frobenius–Schur indicator [12]. The following lemma is only a well-known property of higher
Frobenius–Schur indicators.

Lemma 4.7. Let G be a finite group. For each positive number n, we have

τ (bn;kG) = |G| · #
{

g ∈ G
∣∣ gn = 1

}
.

Proof. Let u be the Drinfeld element of D(kG). We calculate TrD(kG)(u−n) in view of Lemma 4.5. We
have u−n =∑g∈G eg � gn by induction on n. By the definition of the multiplication, we have

TrD(kG)(ex � g) = δg,1|G|

for all x, g ∈ G . Thus, we have

τ (bn;kG) = TrD(kG)

(
u−n)= |G| · #

{
g ∈ G

∣∣ gn = 1
}
. �

Proof of Theorem 1.1. Let on(G) be the number of elements of order n in G . By Lemma 4.7, we have

1

|G|τ (bn;CG) =
∑
d|n

od(G)

where the sum is taken over all positive integer d that divides n. Applying the Möbius inversion
formula to this equation, we have

on(G) = 1

|G|
∑
d|n

μ

(
n

d

)
τ (bd;CG)

where μ is the Möbius function. If G and G ′ are k-isocategorical finite groups, then τ (bd;CG) =
τ (bd;CG ′) by Theorem 4.1(b). Hence we have on(G) = on(G ′). �

Finally, we give some remarks on monoidal Morita invariants τ (bn;−) and τ (b−1
n ;−). Until the

end of this section, the base field k is assumed to be an algebraically closed field of characteristic
zero. For a finite-dimensional semisimple Hopf algebra H and an integer n, we set

ωn(H) = 1

dim(H)
TrD(H)

(
un)

where u is the Drinfeld element of the Drinfeld double (D(H), R). This is a monoidal Morita invariant
by Lemma 4.5 and Remark 4.6.

Let V be a finite-dimensional H-module with character χ . For a positive integer n, the n-th
Frobenius–Schur indicator of χ is the number

νn(χ) :=
∑

χ(Λ(1)Λ(2) · · ·Λ(n))

where Λ ∈ H is the integral such that ε(Λ) = 1. If χ̃ is the character of the induced module D(H)⊗H

V , νn(χ) = dim(H)−1χ̃ (un) [12]. In particular, ωn(H) = νn(χH ) where χH is the character of the
regular representation H . The following lemma is essentially given in [12].
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Lemma 4.8. ωr(H) = 1 if r is coprime to dim(H). In particular, ω±1(H) = 1.

Proof. We first prove the case when r = 1. Let λ ∈ H∗ be the integral on H such that 〈λ,Λ〉 = 1.
Then we have 〈λ,1〉 = dim(H), and hence χH = λ (see [5, Chapter 7]). Therefore, ω1(H) = ν1(χH ) =
〈λ,Λ〉 = 1.

Next, we prove the general case. Since H is semisimple, udim(H)3
= 1 [9, Theorem 4]. Let {V i}i∈I

be representatives of isomorphism classes of simple D(H)-modules. We denote dim(V i) by di . Since
u is central, u acts on V i as scalar. We denote this scalar by ui . ui ’s are dim(H)3-th root of unity. By
Artin–Wedderburn theorem, we have an isomorphism D(H) ∼= ⊕i∈I V ⊕di

i of left D(H)-modules. This
decomposition yields

TrD(H)

(
un)=∑

i∈I

un
i d2

i

for any integer n.
Let ζ be a primitive dim(H)3-th root of unity. Since r is coprime to dim(H), there exists σ ∈

Gal(Q[ζ ]/Q) such that σ(ζ ) = ζ r . Then, σ(ui) = ur
i for all i ∈ I . Thus,

TrD(H)

(
ur)=∑

i∈I

ur
i d2

i =
∑
i∈I

σ(ui)d
2
i = σ

(
dim(H)

)= dim(H).

This implies ωr(H) = 1. �
5. Relations to low-dimensional topology

We discuss relations between our invariants and the construction of invariants of closed
3-manifolds due to Reshetikhin and Turaev. Throughout this section, the base field k is assumed
to be algebraically closed of characteristic zero.

5.1. Ribbon categories

A ribbon category is a braided monoidal category with left duality and balancing isomorphism (see
[2, Chapter I] and [6, Chapter XIV]). The balancing isomorphism is denoted by θV : V → V . In this
section, we use the graphical calculus ([2, I.1.6], [6, Chapter XIV]) which is a pictorial technique to
represent morphisms in ribbon categories.

Let C be a ribbon category. We say that an oriented framed link is C -colored if each of its com-
ponent is labeled with an object of C . Every C -colored oriented framed link L defines a morphism
1 → 1 in C (see [2, Chapter I]). This morphism is called the operator valued invariant of L.

Let (A, R) be a quasitriangular Hopf algebra. A central invertible element θ ∈ A is called a ribbon
element if we have S(θ) = θ and �(θ) = (R21 R)(θ ⊗ θ). A ribbon Hopf algebra is a quasitriangular Hopf
algebra equipped with a ribbon element. If (A, R, θ) is a ribbon Hopf algebra, finite-dimensional left
A-modules form a ribbon category with braiding cR and a balancing isomorphism given by θV : V →
V , v �→ θ · v (v ∈ V ). We denote this ribbon category by mod(A, R, θ), or simply by mod(A) if R and
θ are obvious.

The quantum trace [2, I.1.5] of an endomorphism f : V → V in a ribbon category is denoted
by trq( f ). For an object V of a ribbon category, the quantum dimension dimq(V ) is defined by
dimq(V ) = trq(idV ). We argue some properties of the quantum trace in mod(A).

Lemma 5.1. Notations are as above.

(a) Let f : V → V be a morphism in mod(A). Then, we have
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trq( f ) = Tr
(

v �→ uθ · f (v)
)

where u is the Drinfeld element of (A, R). Here, Tr means the usual trace of linear endomorphisms.
(b) Consider the commutative diagram of morphisms in mod(A)

0 −−−−→ V ′ i−−−−→ V
p−−−−→ V ′′ −−−−→ 0

f ′
⏐⏐� f

⏐⏐� ⏐⏐� f ′′

0 −−−−→ V ′ −−−−→
i

V −−−−→
p

V ′′ −−−−→ 0

with exact rows. We have trq( f ) = trq( f ′) + trq( f ′′).

Proof. (a) is well known, see for example [6, Proposition XIV.6.4]. (b) is obvious by (a) and usual
properties of the trace. �

Let C be a ribbon category, L an oriented framed link with components L1, . . . , Lm . If we color each
component Li with an object V i ∈ C , we obtain an element EndC (1) via the operator-valued invariant.
We denote this element by 〈L; V 1, . . . , Vm〉.

Lemma 5.2. Let L be an oriented framed link with m-components. 〈L;−, . . . ,−〉 is multiadditive in the fol-
lowing sense: Let V 1, . . . , Vm ∈ mod(A). If there exists an exact sequence

0 −−−−→ V ′
i −−−−→ V i −−−−→ V ′′

i −−−−→ 0

in mod(A) for some i, we have

〈L; V 1, . . . , Vm〉 = 〈L; V 1, . . . , V i−1, V ′
i , V i+1, . . . , Vm〉

+ 〈L; V 1, . . . , V i−1, V ′′
i , V i+1, . . . , Vm〉.

Proof. First, color each component L j with V j except for the i-th one. Then cut the i-th component
of L and form a partially colored ribbon graph T so that we can obtain L by closing T . For each
V ∈ mod(A), we obtain a morphism ηV : V → V in mod(A) by coloring the uncolored component
with V . By graphical calculus, we have

trq(ηV ) = 〈L; V 1, . . . , V i−1, V , V i+1, . . . , Vm〉.
The family η is a natural morphism in mod(A). Thus, we have

trq(ηV i
) = trq(ηV ′

i
) + trq(ηV ′′

i
)

by Lemma 5.1(b). This completes the proof. �
The following lemma is due to Etingof and Gelaki [13].

Lemma 5.3. Let (A, R) be a quasitriangular Hopf algebra with u the Drinfeld element. If A is finite-dimensional
semisimple and cosemisimple, u−1 is a ribbon element of (A, R).

In the ribbon category mod(A, R, u−1), the quantum trace and the quantum dimension reduce to
the usual trace and the dimension by Lemma 5.1(a).



K. Shimizu / Journal of Algebra 323 (2010) 397–418 411
5.2. Reshetikhin–Turaev invariant of closed 3-manifolds

By a “manifold” we mean an oriented connected topological manifold. A modular category
[4, Definition 3.1.1] is a semisimple ribbon category with a finite number of simple objects satisfying
a certain non-degeneracy condition. Reshetikhin and Turaev [14] introduced a method of constructing
an invariant of closed 3-manifold using a modular category. Let us briefly describe their construction
following [2] and [4].

Let C be a modular category with {V i}i∈I representatives of isomorphism classes of simple objects
of C . We denote by di the quantum dimension of V i . Since EndC (V i) = k by definition, we can define
θi ∈ k by θV i = θi · idV i for each i ∈ I . Set p± =∑i∈I θ±1

i d2
i and D =√p+ p− . Then the numbers p±

and D are nonzero [4, Theorem 3.1.7].
For a framed link L with components L1, . . . , Lm , we fix an arbitrary orientation of L and set

{L} =
∑

i1,...,im∈I

〈L; V i1 , . . . , V im 〉di1 · · ·dim .

The right-hand side does not depend on the numbering of components and the choice of orientation
of L.

Now we describe the Reshetikhin–Turaev invariant RTC of a closed 3-manifold associated with C .
Let M be a closed 3-manifold. By a classical result, any closed 3-manifold can be obtained by the so-
called Dehn surgery on S3 along a certain framed link. Fix a framed link L yielding M . Then, RTC (M)

is given by

RTC (M) = D−|L|−1
(

p+

p−

) 1
2 σ (L)

{L}

where |L| is the number of components of L and σ(L) is the so-called wreath number of L (see
[2, II.2.1] for its definition). The right-hand side does not depend on the choice of L and thus RTC (M)

is an invariant of the closed 3-manifold M .

Remark 5.4. We defined D to be
√

p+ p− . This exists since we work over an algebraically closed field
of characteristic zero. The definition of RTC depends on the choice of D , that is, the choice of square
roots of p+ p− . Therefore, we need to fix D to define RTC .

5.3. Modular categories arising from Hopf algebras

Let H be a finite-dimensional semisimple Hopf algebra and u the Drinfeld element for the Drinfeld
double D(H). Then mod(D(H), R, u−1) is a modular category [13, Lemma 1.1]. We denote by RTD(H)

the Reshetikhin–Turaev invariant associated to this modular category.
Let us describe the invariant RTD(H) . First, we compute numbers p± and D . Let {V i}i∈I be rep-

resentatives of isomorphism classes of irreducible D(H)-modules. By Artin–Wedderburn theorem, we
have an isomorphism D(H) ∼=⊕i∈I V ⊕di

i of left D(H)-modules. Note that θi is the unique eigenvalue
of the action of central element u−1 on V i . By Lemma 4.8, we have

p± =
∑
i∈I

θ±1
i d2

i = TrD(H)

(
u∓1)= dim(H).

This allows us to choose D =√p+ p− to be dim(H).
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Remark 5.5. ζ = (p+/p−)1/6 is known to be a root of unity in general. When the base field
is C, we can write ζ = exp(2πc

√−1/24) for some c. c is called the central charge for the theory
[4, Remark 3.1.20]. In our cases, we have p± = dim(H) as described above. This implies that the cen-
tral charge of mod(D(H)) is zero.

Next, we argue {L} where L is a framed link with m components. Note that every di is a positive
integer. By Lemma 5.2,

{L} =
∑

i1,...,im

〈
L; V

⊕di1
i1

, . . . , V
⊕dim
im

〉= 〈L; D(H), . . . , D(H)
〉
.

Summarizing, we have the following theorem.

Theorem 5.6. The Reshetikhin–Turaev invariant RTD(H) is given as follows: If a closed 3-manifold M is ob-

tained by surgery on S3 along a framed link L,

RTD(H)(M) = dim(H)−|L|−1〈L; D(H), . . . , D(H)
〉
.

For a braid b ∈ Bn , we denote by b̂ the framed link obtained by closing b. A graphical calculus
gives the equation

Tr
(
ρ

D(H)
n (b)

)= 〈 b̂; D(H), . . . , D(H)
〉
.

Thus, if a closed 3-manifold M is obtained by surgery along b̂, we have

RTD(H)(M) = dim(H)−|̂b|−1τ (b; H).

Note that any framed link can be obtained by closing a certain braid (for ordinary links, this fact is
known as Alexander’s theorem). Thus, any closed 3-manifold can be obtained by surgery along b̂ for
some braid b. Let H and L be finite-dimensional semisimple Hopf algebras. If H and L are monoidally
Morita equivalent, we have dim(H) = dim(L) by Lemma 2.6. Summarizing, we have the following
theorem.

Theorem 5.7. H and L are as above. Then we have RTD(H) = RTD(L) .

Let G be a finite group and ω : G × G × G → C× a normalized 3-cocycle. Dijkgraaf and Witten [15]
introduced a method of constructing an invariant of closed 3-manifolds using a pair (G,ω) (see also
[16]). Let us denote this invariant by ZG,ω . When ω is the trivial 3-cocycle, by definition, we have

ZG,1(M) = 1

|G|# Hom
(
π1(M), G

)
where π1(M) is the fundamental group of M .

On the other hand, Altsüler and Coste [17] introduced a method of constructing an invariant of
3-manifolds using the modular category of finite-dimensional modules over the quasi-Hopf algebra
Dω(G), which is defined to be a certain deformation of D(CG). When ω is the trivial 3-cocycle, this
invariant is equal to RTD(CG) . Altsüler and Coste conjectured in [17] and Sato and Wakui proved in
[18, Corollary 5.5] that Altsüler-Coste invariant is equal to the Dijkgraaf–Witten invariant ZG,ω . Thus
we have
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RTD(CG)(M) = ZG,1(M) = 1

|G|# Hom
(
π1(M), G

)

for all closed 3-manifold M . This gives rise to the following theorem.

Theorem 5.8. Let b be a braid, m the number of components of b̂ and M the closed 3-manifold obtained by
surgery along b̂. Then we have

τ (b;CG) = |G|m# Hom
(
π1(M), G

)
.

Combining Theorem 4.1 and this theorem, we have Theorem 1.2. Note that Lemma 4.7 is a special
case of the above theorem when M is the lens space L(n,1) whose fundamental group is the cyclic
group of order n. In fact, it is well known in the theory of surgery that framed link b̂n yields L(n,1).
(̂bn is isotopic to the trivial knot with the framing +n.)

6. Examples

6.1. Numbers of homomorphisms from quaternion groups

For an integer m � 2, set Q 4m = 〈x, y | x2m = 1, y2 = xm, yxy−1 = x−1〉. Q 8 is the quaternion
group. In general, Q 4m is called the generalized quaternion group of order 4m. The following theorem
is an example of our monoidal Morita invariants.

Theorem 6.1. Set b = σ 4
1 ∈ B2 . Then, for any finite group G, we have

τ (b;CG) = |G|2# Hom(Q 8, G).

Proof. For simplicity, we write D(CG) by D(G). Let R be the universal R-matrix of D(G). Then, in a
similar way to the proof of Lemma 4.7, we have

τ (b;CG) = TrD(G)⊗D(G)

(
(R21 R)2)

=
∑

g,h∈G

TrD(G)

(
eg�g−1hgh

)
TrD(G)

(
eghg−1�gh−1 gh

)

= |G|2#
{
(g,h) ∈ G × G | g−1hgh = 1, gh−1 gh = 1

}
= |G|2# Hom(Q , G)

where Q is the group defined by generators g and h with relations g−1hgh = gh−1 gh = 1. Q is
isomorphic to Q 8 via a map Q 8 → Q given by x �→ g , y �→ h. �
Remark 6.2. The list of all finite subgroups of SO(4) which can act freely on S3 is known (see, e.g.,
[19, §6]) and contains Q 4m for all m � 2. If Γ is such a finite group, the quotient space S3/Γ is
an orientable closed 3-manifold with fundamental group Γ (spherical manifolds). Thus, in view of
Theorem 5.8, there exists a braid b such that τ (b;CG) = |G|m# Hom(Γ, G) where m is the number
of components of b̂. The above theorem may be considered as a special case of this fact. However,
the author does not know whether the closed 3-manifold S3/Q 8 is obtained by surgery along b̂ with
b = σ 4

1 .
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6.2. Categorical rigidity of finite groups of small order

In this subsection, we argue categorical rigidity of finite groups of small order and prove the
following theorem.

Theorem 6.3. All finite groups of orders less than 32 are categorically rigid.

Proof. We first note that all finite abelian groups are categorically rigid over an arbitrary field. In fact,
if H is a finite-dimensional commutative Hopf algebra, every finite-dimensional Hopf algebra which
is monoidally Morita equivalent to H is isomorphic to H (see [3, Remark 3.8]). Therefore, we consider
non-abelian finite groups.

By using Theorem 1.1 and the above-mentioned fact, we can conclude that all finite groups of
orders less than 32 except for 16 are categorically rigid over an arbitrary field. However, this theorem
is not sufficient to give the complete classification of groups of order 16.

Let us argue categorical rigidity of groups of order 16. As is well known, there are exactly nine
non-abelian groups of order 16 up to isomorphism. Using Theorem 1.1, we conclude that five of
them are categorically rigid over an arbitrary field. The rest of them consists of two pairs for which
Theorem 1.1 fails to work. The first pair consists of

G1 = Q 8 × Z2 and G2 = 〈x, y
∣∣ x4 = y4 = 1, yxy−1 = x−1〉.

They are not isomorphic, but, for each positive integer n, the number of elements of order n in them
are equal. We conclude that G1 and G2 are not isocategorical by using Theorem 6.1. In fact, we have

# Hom(Q 8, G1) = 112 and # Hom(Q 8, G2) = 16.

The second pair (F1, F2) is given as follows. Set

F = 〈x, y
∣∣ x4 = y2 = 1, xy = yx

〉
and C2 = 〈s ∣∣ s2 = 1

〉
,

and define automorphisms f1 and f2 on F respectively by

f1(x) = x, f1(y) = x2 y and f2(x) = xy, f2(y) = y.

F1 and F2 are semidirect products F � C2 where s ∈ C2 acts on F respectively by f1 and f2. They are
not isomorphic since their abelianizations are different:

F ab
1

∼= Z2 ⊕ Z2 ⊕ Z2 and F ab
2

∼= Z2 ⊕ Z4.

This pair is an example for which both Theorem 1.1 and Theorem 6.1 fail to work. In fact, they have
an equal number of elements of order n for each positive integer n, and, moreover,

# Hom(Q 8, F1) = # Hom(Q 8, F2) = 64.

If k is an algebraically closed field of char(k) �= 2, F1 and F2 are not k-isocategorical since their
Grothendieck rings are different. If char(k) = 2, kF1 and kF2 are not even Morita equivalent. This
can be proved as follows. First, we note that every irreducible representation of a finite p-group in
characteristic p is isomorphic to the trivial one. Therefore, if they are Morita equivalent, there is an
isomorphism

Ext1
kF (k,k) ∼= Ext1

kF (k,k).

1 2
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Now we recall that there is an isomorphism Ext1
kG(k,k) ∼= Hom(Gab,k) for every group G . We have

Ext1
kF1

(k,k) ∼= k3 and Ext1
kF2

(k,k) ∼= k2.

This is a contradiction. Therefore, all finite groups of order 16 are categorically rigid over an arbitrary
field. �
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Appendix A. Similarity between permutation matrices

We denote by Sn the symmetric group of degree n. For σ ∈ Sn , we denote by Pσ the n ×n matrix
whose (i, j)-entry is δσ(i), j where δ is Kronecker’s delta. We prove the following theorem.

Theorem A.1. Pσ and Pτ are similar if and only if σ and τ are conjugate.

The “if” part is clear since the map σ �→ Pσ is a group homomorphism. Let us prove the “only if”
part. As a first step, we characterize linear automorphisms of a finite-dimensional vector space which
are represented by permutation matrices in some basis. Let A = k[X, X−1] be the Laurent polynomial
ring with an indeterminate X . For a vector space V and a linear automorphism P on V , we denote
by P V the A-module with the underlying space V and the action given by X · v = P (v) for v ∈ V . Set

M(n) = k
[

X, X−1]/(Xn − 1
)

(n = 1,2, . . .).

Lemma A.2. Let V be a finite-dimensional vector space and P be a linear automorphism on V . P is represented
by a permutation matrix in some basis if and only if the A-module P V is isomorphic to a direct sum of M(i)’s.

Proof. The “if” part is clear since the action of X on M(i) is represented by a permutation matrix in
basis {1, X, . . . , Xi−1}. We prove the “only if” part. Set n = dim(V ). Assume that P is represented by
the permutation matrix Pσ for some σ ∈ Sn in basis {e1, . . . , en}. Let

{1,2, . . . ,n} = O1 � · · · � Or (A.1)

be the σ -orbit decomposition. V i = spank{es | s ∈ Oi} is an A-submodule of P V isomorphic to
M(#Oi). Thus, we have an isomorphism

V = V 1 ⊕ · · · ⊕ Vr ∼= M(#O1) ⊕ · · · ⊕ M(#Or)

of A-modules. �
Actually, the σ -orbit decomposition (A.1) gives a cycle decomposition of the permutation σ . We

say that a finite-dimensional A-module M admits a cycle decomposition if M is isomorphic to a direct
sum of M(i)’s.

Set V = kn . Note that two invertible n × n-matrices P and Q are similar if and only if P V and Q V
are isomorphic as A-modules. As we observed above, if P = Pσ (σ ∈ Sn) is a permutation matrix, P V
admits a cycle decomposition

P V ∼= M(1)⊕c1(σ ) ⊕ · · · ⊕ M(n)⊕cn(σ )
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where cr(σ ) is the number of cyclic permutations of length r which appear in the cyclic decomposi-
tion of σ . If another permutation matrix Q = Pτ (τ ∈ Sn) is similar to P , P V admits another cycle
decomposition

P V ∼= M(1)⊕c1(τ ) ⊕ · · · ⊕ M(n)⊕cn(τ ).

Recall that σ and τ are conjugate if and only if their cycle shape are same, i.e., cr(σ ) = cr(τ ) for all r.
Theorem A.1 turns into the following statement: If

M(1)⊕d1 ⊕ · · · ⊕ M(n)⊕dn ∼= M(1)⊕e1 ⊕ · · · ⊕ M(n)⊕en

as A-modules, then di = ei for all i.
Note that A has a Hopf algebra structure as a group algebra of an infinite cyclic group generated

by X ∈ A. Thus, we can consider tensor products and dual modules of A-modules.

Lemma A.3.

(a) M(n) ⊗ M(m) ∼= M(mn/d)⊕d as an A-module where d = gcd(n,m) is the greatest common divisor of n
and m.

(b) M(n)∗ ∼= M(n) as an A-module.

Proof. (a) The action of X permutes {Xi ⊗ X j} ⊂ M(n) ⊗ M(m). Easy combinatorial arguments com-
pletes the proof.

(b) Define X∗
i ∈ M(n)∗ by X∗

i (X j) = δi,n− j . Then the linear map M(n) → M(n)∗ given by Xi �→ X∗
i

gives an isomorphism of A-modules. �
Lemma A.4. dim HomA(M(n), M(m)) = gcd(n,m).

Proof. First, we prove the case when n = 1. Let f : M(1) → M(m) be an A-linear map. If f (1) =∑m−1
i=0 ci X i (ci ∈ k), we have c0 = · · · = cm−1 by A-linearity of f . Thus, we have dim HomA(M(1),

M(m)) = 1.
Now we prove the general case. By Lemma A.3, we have isomorphisms

HomA
(
M(n), M(m)

)∼= HomA
(
M(1), M(m) ⊗ M(n)∗

)
∼= HomA

(
M(1), M(l)

)⊕d

where d = gcd(n,m) and l = mn/d. Therefore, we have

dim HomA
(
M(n), M(m)

)= d · dim HomA
(
M(1), M(l)

)= d. �
Proof of Theorem A.1. Suppose that

V := M(1)⊕e1 ⊕ · · · ⊕ M(n)⊕en ∼= M(1)⊕ f1 ⊕ · · · ⊕ M(n)⊕ fn

as A-modules. Our aim is to prove ei = f i for each i. Set di = dim HomA(M(i), V ). By Lemma A.4, we
have equations

di =
m∑

j=1

gcd(i, j)e j and di =
m∑

j=1

gcd(i, j) f j.



K. Shimizu / Journal of Algebra 323 (2010) 397–418 417
Thus, we have a linear equation

Φm

⎛
⎜⎝

e1
...

en

⎞
⎟⎠= Φm

⎛
⎜⎝

f1
...

fn

⎞
⎟⎠

where Φm is an m × m matrix whose (i, j)-entry is gcd(i, j). The determinant of Φm , which is known
as Smith’s determinant (see, e.g., [20]), equals ϕ(1) · · ·ϕ(n) where ϕ is Euler’s totient function. In
particular, Φm is invertible, and thus we have ei = f i for each i. �
Notes added in proof

After this paper was accepted for publication, I received from Ng the following comments which
show that Theorem 1.1 follows from his results joint with Schauenburg under the assumption that the
base field k is an algebraically closed field of characteristic zero. I thank Ng for his valuable comments.

In [21], Ng and Schauenburg defined higher Frobenius–Schur indicators for pivotal monoidal cate-
gories and proved that these indicators are invariants under equivalences of such categories. Let H and
L be finite-dimensional semisimple quasi-Hopf algebras. If F : Mod(H) → Mod(L) is an equivalence of
monoidal categories, by [22, Proposition 3.2], we have νm(V ) = νm(F (V )) for every finite-dimensional
H-module V . In particular, νm(H) = νm(F (H)) = νm(L). On the other hand, if H = kG for some finite
group G , we have

νm(kG) = #
{

g ∈ G | gm = 1
}
.

This completes the proof.
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