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Casimir–Polder potential is investigated for a polarizable microparticle in the geometry of a straight
cosmic string with a metallic cylindrical shell. The electromagnetic field Green tensor is evaluated on
the imaginary frequency axis. The expressions for the Casimir–Polder potential is derived in the general
case of anisotropic polarizability for the both interior and exterior regions of the shell. The potential
is decomposed into pure string and shell-induced parts. The latter dominates for points near the shell,
whereas the pure string part is dominant near the string and at large distances from the shell. For the
isotropic case and in the region inside the shell the both pure string and shell-induced parts in the
Casimir–Polder force are repulsive with respect to the string. In the exterior region the shell-induced
part of the force is directed toward the cylinder whereas the pure string part remains repulsive with
respect to the string. At large distances from the shell the total force is repulsive.

© 2012 Elsevier B.V. Open access under the Elsevier OA license.
1. Introduction

The production of cosmic strings in symmetry breaking phase
transitions during the evolution of the early universe is predicted
by a wide class of particle physics models [1]. The considerable
attention attracted by this class of topological defects was moti-
vated by the fact that the cosmic strings are candidates for the
generation of a variety of interesting physical effects. The latter in-
clude gravitational lensing, anisotropies in the cosmic microwave
background radiation, the generation of gravitational waves, high-
energy cosmic rays, and gamma ray bursts. More recently it has
been shown that cosmic strings form in brane inflation models as a
by product of the annihilation of the branes (for a review see [2]).

In quantum field theory, the non-trivial topology of space
around a cosmic string results in the distortion of the vacuum fluc-
tuations of quantized fields. This induces non-zero vacuum expec-
tation values for physical observables such as the field squared and
the energy–momentum tensor. In a previous paper [3], we have
shown that the distortion of the vacuum fluctuations spectrum by
the cosmic string also gives rise to Casimir–Polder forces acting on
a polarizable microparticle (see also [4] for the force in the static
limit). These forces have attracted a great deal of attention because
of their important role in many areas of science, including material
sciences, physical chemistry, nanotechnology, and atom optics (for
reviews see [5]). In [3] it has been shown that, in dependence on
the eigenvalues for the polarizability tensor and of the orientation
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of its principal axes, the Casimir–Polder force induced by the string
can be either repulsive or attractive. For an isotropic polarizability
tensor the force is always repulsive.

Another source for the vacuum polarization is the presence of
material boundaries. The boundary conditions imposed on a quan-
tum field alter the zero-point oscillations spectrum and lead to
additional shifts in the vacuum expectation values. Combined ef-
fects of topology and boundaries on the quantum vacuum in the
geometry of a cosmic string have been investigated previously
for scalar [6], electromagnetic [7,8] and fermionic fields [9], con-
strained on a cylindrical boundary coaxial with the cosmic string.
The analysis of the vacuum energy for massless scalar fields sub-
ject to Dirichlet, Neumann and hybrid boundary conditions in the
setting of the conical piston has been recently developed in [10].
The vacuum polarization effects in a cosmic string spacetime in-
duced by a scalar field obeying Dirichlet or Neumann boundary
conditions on a surface orthogonal to the string are considered
in [11].

In the present Letter we derive the exact Casimir–Polder (CP)
potential for the general case of frequency dependent anisotropic
polarizability of a microparticle in the geometry of straight cosmic
string with a coaxial conducting cylindrical shell. From the point of
view of the physics in the region outside the string, this geometry
can be considered as a simplified model for the non-trivial core.
This model presents a framework in which the influence of the
finite core effects on physical processes in the vicinity of the cos-
mic string can be investigated. The corresponding results may shed
light upon features of finite core effects in more realistic models. In
addition, the problem considered here is of interest as an example
with combined topological and boundary-induced quantum effects
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in which the CP forces can be found in closed form. The CP inter-
action potential of a microparticle with an ideal metal cylindrical
shell in background of Minkowski spacetime has been investigated
in a number of papers, in particular, related to applications to car-
bon nanotubes (see, for instance, [12–16] and references therein).
Recently, the exact potential for a microparticle outside a cylindri-
cal shell has been found in [13] using the Hamiltonian approach.
The CP potential for both regions inside and outside an ideal metal
cylindrical shell is investigated in [15] using the Green function
method. In this Letter the exact quantum field theoretical result is
compared with that obtained using the proximity force approx-
imation and a very good agreement is demonstrated. In [14] it
was shown that for a particle out of thermal equilibrium with
its environment inside a cylindrical cavity the CP potential can be
enhanced by fine-tuning the cavity radius to resonate with the par-
ticle’s internal transition wavelength.

We have organized the Letter as follows. In the next section
we evaluate the Green tensor in the frequency domain in the re-
gion inside a conducting cylindrical shell in the geometry of a
cosmic string. By using the generalized Abel–Plana summation for-
mula, the Green tensor is decomposed into the boundary-free and
boundary-induced parts. The corresponding CP potential is investi-
gated in Section 3 for the general case of anisotropic polarizability.
The Green tensor and the CP potential for the region outside a
cylindrical shell are considered in Section 4. Similar to the interior
region, these quantities are presented as the sum of pure string
and shell-induced parts. Section 5 summarizes the main results of
the Letter.

2. Electromagnetic field Green tensor inside a cylindrical shell

In the cylindrical coordinates (x1, x2, x3) = (r, φ, z), the geome-
try of an idealized infinitely long straight cosmic string is described
by the line element

ds2 = dt2 − dr2 − r2 dφ2 − dz2, (1)

where 0 � r < ∞, −∞ < z < +∞, 0 � φ � φ0 and the spatial
points (r, φ, z) and (r, φ + φ0, z) are identified. The planar angle
deficit is related to the mass μ0 per unit length of the string by
2π − φ0 = 8πGμ0, with G being the Newton gravitational con-
stant. (Effective metric with a planar angle deficit also arises in a
number of condensed matter systems (see, for instance, [17]).) In
addition, we shall assume the presence of a coaxial metallic cylin-
drical shell of radius a.

The non-trivial topology due to the cosmic string and the
boundary conditions imposed for the electric and magnetic fields
on the cylindrical shell change the structure of the zero-point fluc-
tuations of the electromagnetic field. In particular, a neutral po-
larizable microparticle experiences a dispersion force, the CP force.
For a particle with the polarizability tensor α jl(ω), the correspond-
ing interaction potential is expressed in terms of the subtracted
Green tensor as (see [5])

U (r) = 1

2π

∞∫
0

dξ α jl(iξ)G(s)
jl (r, r; iξ), (2)

where r is the location of the microparticle and summation is un-
derstood over the indices j, l = 1,2,3. In (2),

G(s)
jl

(
r, r′;ω) =

+∞∫
−∞

dτ
[
G jl

(
x, x′) − G(M)

jl

(
x, x′)]eiωτ , (3)

where G jl(x, x′), with x = (t, r), x′ = (t′, r′), τ = t − t′ , is the re-
tarded Green tensor for the electromagnetic field in the geometry
of a cosmic string with the cylindrical shell and G(M)

jl (x, x′) is the
corresponding tensor in the boundary-free Minkowski spacetime.
The geometry of a cosmic string is flat outside the string core and
the renormalization procedure is reduced to the subtraction of the
Minkowskian part.

For the evaluation of the Green tensor in (3) we use the direct
mode summation method. Let {Eα(x),E∗

α(x)} be a complete set of
normalized mode functions for the electric field, specified by a col-
lective index α. For the Green tensor we have the following mode
sum formula:

G jl
(
x, x′) = −iθ(τ )

∑
α

[
Eα j(x)E∗

αl

(
x′) − Eαl

(
x′)E∗

α j(x)
]
, (4)

where θ(τ ) is the unit-step function and the indices j, l = 1,2,3
correspond to the coordinates r, φ, z, respectively.

First we consider the region inside the cylindrical shell. In the
problem under consideration we have two classes of mode func-
tions corresponding to the cylindrical waves of the transverse mag-
netic (TM, λ = 0) and transverse electric (TE, λ = 1) types. The
mode functions for the electric field are obtained from the corre-
sponding functions for the vector potential given in Ref. [8] and
they have the form

E(λ)
α (x) = βαE(λ)(r)eiqmφ+ikz−iωt, (5)

where m = 0,±1,±2, . . . , −∞ < k < +∞, ω = √
γ 2 + k2, and

q = 2π/φ0. (6)

The radial functions E(λ)

l (r) in (5) are given by the expressions

E(0)
1 (r) = ikγ J ′

q|m|(γ r), E(0)
2 (r) = −kqm

r
Jq|m|(γ r),

E(0)
3 (r) = γ 2 Jq|m|(γ r),

E(1)
1 (r) = −ωqm

r
Jq|m|(γ r), E(1)

2 (r) = −iωγ J ′
q|m|(γ r),

E(1)
3 (r) = 0, (7)

where Jν(x) is the Bessel function, the prime means the derivative
with respect to the argument of the function. From the standard
boundary conditions for the electric and magnetic fields on the
cylindrical boundary with radius a, we can see that the eigenvalues
for the quantum number γ are roots of the equations

J (λ)
q|m|(γ a) = 0, λ = 0,1, (8)

where J (0)
ν (x) = Jν(x) and J (1)

ν (x) = J ′
ν(x). In the discussion be-

low the corresponding eigenmodes are denoted by j(λ)
m,n = γ a,

n = 1,2, . . . . As a result the set of quantum numbers specifying
the eigenfunctions is given by α = (k,m, λ,n). The normalization
coefficient in (5) is given by the expression [8]

β2
α = qTq|m|(γ a)

πωaγ
, Tν(x) = x

J ′2
ν (x) + (1 − ν2/x2) J 2

ν(x)
. (9)

Substituting the mode functions (5) into the mode sum formula
(4), the following representation is obtained for the Green tensor
on the imaginary frequency axis:
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G jl
(
r, r′; iξ

) = − q

π

+∞∑
m=−∞

+∞∫
−∞

dk
∑

λ=0,1

∞∑
n=1

Tq|m|( j(λ)
m,n)

j(λ)
m,nω

(λ)
m,n

×
[

E(λ)
j (r)E(λ)∗

l

(
r′)eiqmφ+ikz

ω
(λ)
m,n − iξ

+ E(λ)

l

(
r′)E(λ)∗

j (r)
e−iqmφ−ikz

ω
(λ)
m,n + iξ

]
, (10)

where φ = φ −φ′ and z = z − z′ , ω
(λ)
m,n =

√
j(λ)2
m,n /a2 + k2. For the

summation of the series over n we apply the formula [18]

∞∑
n=1

Tq|m|
(

j(λ)
m,n

)
f
(

j(λ)
m,n

)

= 1

2

∞∫
0

dx f (x) − π i

2

∑
p

Res
z=iyp

f (z)
H (1,λ)

q|m| (z)

J (λ)
q|m|(z)

, (11)

where z = ±iyp , yp > 0, p = 1,2, . . . , are poles of the func-

tion f (z) and H(s,0)
ν (z) = H(s)

ν (z), H(s,1)
ν (z) = H(s)′

ν (z), with H(s)
ν (z),

s = 1,2, being the Hankel functions. In (11), it is assumed that
f (z) is an analytic function for Re z > 0 and obeys the conditions
f (yeπ i/2) = −e2q|m|π i f (ye−π i/2) and | f (x + iy)| < ε(x)eby , b < 2,
for y → ∞, with ε(x) → 0 for x → ∞. For the poles of the function
f (z), corresponding to the series in (10), one has yp = a

√
k2 + ξ2.

The part of the Green tensor corresponding to the first term on the
right-hand side of (11) is the Green tensor in the boundary-free
cosmic string geometry. The latter will be denoted by G(0)

jl (r, r′; iξ).
The boundary-induced part of the Green tensor corresponds to the
second term.

As a result, by using (11), the Green tensor is presented in the
decomposed form

G jl
(
r, r′; iξ

) = G(0)

jl

(
r, r′; iξ

) + G(b)

jl

(
r, r′; iξ

)
. (12)

The boundary-induced part is given by the formula

G(b)

jl

(
r, r′; iξ

)

= − q

π

∞∑
m=−∞

eiqmφ
∑

λ=0,1

(−ξ2)λ

∞∫
−∞

dk eikz

× k2(1−λ)
K (λ)

q|m|(aγ )

I(λ)
q|m|(aγ )

i(λ)
j (γ r, γ /k)i(λ)∗

l

(
γ r′, γ /k

)
, (13)

where in the integrand γ = √
k2 + ξ2. In the last expression,

Iν(x) and Kν(x) are the modified Bessel functions, F (0)
ν (x) = Fν(x),

F (1)
ν (x) = F ′

ν(x) for F = I, K , and the functions i(λ)

l (x, y) are de-
fined as

i(0)
1 (x, y) = I ′q|m|(x), i(0)

2 (x, y) = i
qm

x
Iq|m|(x),

i(0)
3 (x, y) = iy Iq|m|(x),

i(1)
1 (x, y) = qm

x
Iq|m|(x), i(1)

2 (x, y) = −i I ′q|m|(x),

i(1)
3 (x, y) = 0. (14)

In accordance with (2), for the evaluation of the CP potential we
need the expression of the boundary-induced part in the coinci-
dence limit. In this limit the off-diagonal components vanish and
for the diagonal components we have
G(b)

ll (r, r; iξ) = −4q

π

∞∑′

m=0

∑
λ=0,1

(−ξ2)λ

×
∞∫

ξ

dγ γ
K (λ)

qm (aγ )

I(λ)
qm(aγ )

|i(λ)

l (γ r, γ /
√

γ 2 − ξ2 )|2
(γ 2 − ξ2)λ−1/2

,

(15)

where the prime on the summation sign means that the term
m = 0 should be taken with the coefficient 1/2.

3. Casimir–Polder potential

On the base of Eq. (12), the CP potential in the presence of the
cylindrical shell is decomposed as:

U (r) = U0(r) + Ub(r), (16)

where U0(r) is the potential for the geometry of a cosmic string
without boundaries and the term Ub(r) is due the presence of the
cylindrical shell. The pure string part is investigated in [3] and here
we will be mainly concerned with the boundary-induced part. The
latter is given by the expression

Ub(r) = 1

2π

∞∫
0

dξ α jl(iξ)G(b)

jl (r, r; iξ). (17)

As it has been mentioned before, the off-diagonal components of
the boundary induced part of the Green tensor in (17) vanish. As
a result, by taking into account the expression (15), we get

Ub(r) = − 2q

π2

∞∑′

m=0

∑
λ=0,1

3∑
l=1

∞∫
0

dξ αll(iξ)
(−ξ2)λ

×
∞∫

ξ

dγ γ
K (λ)

qm (aγ )

I(λ)
qm(aγ )

|i(λ)

l (γ r, γ /
√

γ 2 − ξ2 )|2
(γ 2 − ξ2)λ−1/2

. (18)

In the special case q = 1 this formula reduces to the result of [15]
for the CP interaction potential for a cylindrical shell in Minkowski
spacetime.

In (18), αll(iξ) are the physical components of the polariz-
ability tensor in the cylindrical coordinates corresponding to line
element (1). These components depend on the orientation of the
polarizability tensor principal axes. As a consequence, the CP po-
tential depends on the distance of the microparticle from the
string and on the angles determining the orientation of the prin-
cipal axes. Let us introduce Cartesian coordinates x′′ l = (x′′, y′′, z′′)
with the z′′-axis along the string and with the particle location
at (r,0,0) and let βln be the cosine of the angle between x′′ l

and the nth principal axis of the polarizability tensor. One has∑3
n=1 β2

ln = 1. Now we can write αll(ω) = ∑3
n=1 β2

lnαn(ω), where
αn(ω) are the principal values of the polarizability tensor. The
coefficients βln can be expressed in terms of the Euler angles de-
termining the orientation of the principal axes with respect to the
coordinate system x′′ l . In the isotropic case αn(ω) ≡ α(ω) and we
have αll(ω) = α(ω).

The boundary-induced part of the potential is finite on the
string. Assuming that q > 1, we can see that only the m = 0 term
contributes and

Ub(0) = − q

π2

∞∫
dξ α33(iξ)

∞∫
dγ

γ 3√
γ 2 − ξ2

K0(aγ )

I0(aγ )
. (19)
0 ξ
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For the evaluation of the CP force we need also the next-to-leading
order term near the string. For q > 2, the dominant contribution
comes from the m = 0 term and the potential is given by the for-
mula

Ub(r) ≈ Ub(0) − qr2

2π2

∞∫
0

dξ α33(iξ)

∞∫
ξ

dγ
γ 5√

γ 2 − ξ2

K0(aγ )

I0(aγ )
.

(20)

The corresponding CP force linearly vanishes on the string. In the
case 1 < q < 2, the dominant contribution to the next-to-leading
order term comes from the m = 1 term and for the potential near
the string one has

Ub(r) ≈ Ub(0) − qr2q−2

22q−1π2Γ 2(q)

∞∫
0

dξ
[
α11(iξ) + α22(iξ)

]

×
∞∫

ξ

dγ
γ 2q−1√
γ 2 − ξ2

[
Kq(aγ )

Iq(aγ )

(
γ 2 − ξ2) − ξ2 K ′

q(aγ )

I ′q(aγ )

]
.

(21)

The corresponding CP force vanishes on the string for q > 1.5 and
diverges for q < 1.5. The boundary-free part in the potential near
the string behaves as r−3 and it dominates.

For the isotropic polarizability tensor the general expression
(18) for the boundary-induced part in the CP potential takes the
form

Ub(r) = − 2q

π2

∞∑′

m=0

∞∫
0

dξ α(iξ)

∞∫
ξ

γ dγ√
γ 2 − ξ2

×
{

Kqm(aγ )

Iqm(aγ )

[(
γ 2 − ξ2)Fqm(γ r) + γ 2 I2

qm(γ r)
]

− ξ2 K ′
qm(aγ )

I ′qm(aγ )
Fqm(γ r)

}
(22)

with the notation Fqm(x) = I ′2qm(x) + (qm/x)2 I2
qm(x).

The CP potential diverges on the cylindrical shell. For points
near the shell the dominant contribution comes from large values
of m and we can use the uniform asymptotic expansions for the
modified Bessel functions [19]. For the isotropic case, from (22), to
the leading order one finds:

Ub(r) ≈ − (r − a)−4

16π

×
∞∫

0

dζ α
(
iζ

/[
2(r − a)

])
e−ζ

(
ζ 2 + 2ζ + 2

)
. (23)

The expression in the right-hand side coincides with the CP poten-
tial for a metallic plate in Minkowski spacetime, with r − a being
the distance from the plate.

For the further transformation of the CP potential the polariz-
ability tensor should be specified. We use the anisotropic oscillator
model:

αn(iξ) =
∑

j

g(n)
j

ω
(n)2
j + ξ2

, (24)

where ω
(n)
j and g(n)

j are the oscillator frequencies and strengths,
respectively. With this model, performing the integration in (18)
we find
Ub(r) = − q

π

∞∑′

m=0

3∑
n=1

∑
j

g(n)
j

∑
λ=0,1

∞∫
0

dγ γ
K (λ)

qm (aγ )

I(λ)
qm(aγ )

×
[√

1 + γ 2/ω
(n)2
j − 1

]
fλ,qm

(
γ r,

√
1 + γ 2/ω

(n)2
j

)
,

(25)

where we have introduced the notations

f0,qm(x, y) = β2
1n I ′2

qm(x) + β2
2n

(
qm

x

)2

I2
qm(x)

+
(

1 + 1

y

)
β2

3n I2
qm(x),

f1,qm(x, y) = − 1

y

[
β2

1n

(
qm

x

)2

I2
qm(x) + β2

2n I ′2
qm(x)

]
. (26)

The coefficients βln depend on the orientation of the polarizability
tensor principal axes with respect to the string.

In the isotropic case

Ub(r) = q

π

∞∑′

m=0

∑
j

g j

ω2
j

∞∫
0

dγ γ 3
{

K ′
qm(aγ )

I ′qm(aγ )

Fqm(γ r)

s j(γ )[s j(γ ) + 1]

− Kqm(aγ )

Iqm(aγ )

[
Fqm(γ r)

s j(γ ) + 1
+ I2

qm(γ r)

s j(γ )

]}
, (27)

with the notation

s j(γ ) =
√

1 + γ 2/ω2
j . (28)

For the boundary-induced part in the CP force we have Fb =
Fb,rnr , where nr is the unit vector along the radial coordinate
r and Fb,r = −∂r Ub(r). Now, by using the inequality I ′ 2

qm(x) �
[1 + (qm/x)2]I2

qm(x), from (27) it can be seen that ∂r Ub(r) < 0.
Hence, in the isotropic case one has Fb,r > 0 and the boundary-
induced part in the CP force inside the cylindrical shell is directed
toward the shell. The pure string part of the force has the same
direction and the total force in the isotropic case is repulsive with
respect to the string and attractive with respect to the shell.

4. Green tensor and the Casimir–Polder potential in the exterior
region

In this section we consider the region outside the cylindrical
boundary. The corresponding mode functions for the electric field
are given by formulas (5) and (7) with the replacement (see [8])

Jq|m|(γ r) → g(λ)
q|m|(γ a, γ r)

= Jq|m|(γ r)Y (λ)
q|m|(γ a) − Yq|m|(γ r) J (λ)

q|m|(γ a), (29)

and with the normalization coefficient

β−2
α = 2π

q
γω

[
J (λ)2

q|m|(γ a) + Y (λ)2
q|m| (γ a)

]
. (30)

Here, as before, λ = 0,1 correspond to the waves of the electric
and magnetic types, respectively. Substituting the eigenfunctions
into the corresponding mode-sum formula, for the retarded Green
tensor we find:

G jl
(
x, x′)

= −i
qθ(τ )

2π

+∞∑
m=−∞

∑
λ=0,1

+∞∫
dk

∞∫
dγ

(γω)−1

J (λ)2
q|m|(γ a) + Y (λ)2

q|m| (γ a)
−∞ 0
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× [
eiqmφ+ikz−iωt Ē(λ)

j (r)Ē(λ)∗
l

(
r′)

− e−iqmφ−ikz+iωt Ē(λ)

l

(
r′)Ē(λ)∗

j (r)
]
, (31)

where the expressions for the functions Ē(λ)

l (r) are given by (7)
with the replacement (29).

For the further transformation of the expression for the Green
tensor, we use the identity

Ē(λ)
j (r)Ē(λ)∗

l (r′)

J (λ)2
q|m|(γ a) + Y (λ)2

q|m| (γ a)

= E(λ)
j (r)E(λ)∗

l

(
r′) − 1

2

2∑
s=1

J (λ)
q|m|(γ a)

H (s,λ)
q|m| (γ a)

E(λ)
(s) j(r)Ẽ(λ)

(s)l

(
r′), (32)

where the expression for the functions E(λ)

(s)l(r) and Ẽ(λ)

(s)l(r) are

obtained from the expressions for E(λ)

l (r) and E(λ)∗
l (r) from (7), re-

spectively, by the replacement Jq|m|(γ r) → H(s)
q|m|(γ r). The part of

the Green tensor corresponding to the first term in the right-hand
side of (32) coincides with the Green tensor in the boundary-free
geometry, G(0)

jl (x, x′). As a result, the Green tensor is decomposed
as

G jl
(
x, x′) = G(0)

jl

(
x, x′) + G(b)

jl

(
x, x′), (33)

where the expression for the shell-induced part G(b)

jl (x, x′) is di-
rectly obtained from (31) and (32). For the corresponding spectral
component we find

G(b)

jl

(
r, r′; iξ

) = q

4π

+∞∑
m=−∞

∑
λ=0,1

+∞∫
−∞

dk
2∑

s=1

∞∫
0

dγ
1

γω

J (λ)
q|m|(γ a)

H (s)(λ)
q|m| (γ a)

×
[

E(λ)
(s) j(r)Ẽ(λ)

(s)l

(
r′)eiqmφ+ikz

ω − iξ

+ E(λ)

(s)l

(
r′)Ẽ(λ)

(s) j(r)
e−iqmφ−ikz

ω + iξ

]
. (34)

For the term with s = 1 (s = 2) we rotate the contour of the in-
tegration over γ by π/2 (−π/2). After introducing the modified
Bessel functions, this leads to the final expression

G(b)

jl

(
r, r′; iξ

)

= − q

π

∞∑
m=−∞

eiqmφ
∑

λ=0,1

(−ξ2)λ

∞∫
−∞

dk eikz

× k2(1−λ)
I(λ)
q|m|(aγ )

K (λ)
q|m|(aγ )

e(λ)
j (γ r, γ /k)e(λ)∗

l

(
γ r′, γ /k

)
, (35)

where γ = √
k2 + ξ2 and we have defined the functions

e(0)
1 (x, y) = K ′

q|m|(x), e(0)
2 (x, y) = i

qm

x
Kq|m|(x),

e(0)
3 (x, y) = iyKq|m|(x),

e(1)
1 (x, y) = qm

x
Kq|m|(x), e(1)

2 (x, y) = −iK ′
q|m|(x),

e(1)
3 (x, y) = 0. (36)

In the coincidence limit the off-diagonal components of the Green
tensor vanish.

By taking into account the expression (35) of the Green tensor,
for the CP potential outside a cylindrical shell we get
Ub(r) = − 2q

π2

∞∑′

m=0

∑
λ=0,1

3∑
l=1

∞∫
0

dξ αll(iξ)
(−ξ2)λ

×
∞∫

ξ

dγ γ
I(λ)
qm(aγ )

K (λ)
qm (aγ )

|e(λ)

l (γ r, γ /
√

γ 2 − ξ2 )|2
(γ 2 − ξ2)λ−1/2

. (37)

In the special case q = 1, from this formula we obtain the result
of [13,15] for the interaction potential with a cylindrical shell in
Minkowski spacetime. For the isotropic polarizability tensor the
explicit expression has the form

Ub(r) = − 2q

π2

∞∑′

m=0

∞∫
0

dξ α(iξ)

∞∫
ξ

γ dγ√
γ 2 − ξ2

×
{

Iqm(aγ )

Kqm(aγ )

[(
γ 2 − ξ2)Gqm(γ r) + γ 2 K 2

qm(γ r)
]

− ξ2 I ′qm(aγ )

K ′
qm(aγ )

Gqm(γ r)

}
(38)

with the notation Gqm(x) = K ′ 2
qm(z) + (qm/z)2 K 2

qm(γ r). These for-
mulas are obtained from the corresponding formulas in the inte-
rior region by the interchange Iqm � Kqm . Near the boundary the
leading term in the corresponding asymptotic expansion over the
distance from the shell coincides with (23).

At large distances from the cylinder the dominant contribution
comes from the lower limit of the integration. Expanding the mod-
ified Bessel functions for small values of the argument we can see
that the dominant contribution comes from the term m = 0, λ = 0
and to the leading order we find

Ub(r) ≈ − qα11(0)

6πr4 ln(r/a)
. (39)

Note that at large distances the leading term in the pure string
part is given by the expression

U0(r) ≈ (q2 − 1)(q2 + 11)

360πr4

[
α11(0) − α22(0) + α33(0)

]
. (40)

Hence, at large distances the Casimir–Polder potential is dominated
by the pure string part and the corresponding force is repulsive. As
it follows from (39), at large distances the relative contribution of
the boundary-induced effects in the CP potential decays logarith-
mically. Considering the cylindrical boundary as a simple model
for string’s core, we see that the internal structure of the string
may have non-negligible effects even at large distances (see also
the discussion in [20]).

In the oscillator model for the polarizability tensor the expres-
sion for the CP potential in the exterior region is obtained from
(25) by the replacements Iqm � Kqm . In particular, in the isotropic
case we have

Ub(r) = q

π

∞∑′

m=0

∑
j

g j

ω2
j

∞∫
0

dγ γ 3
{

I ′qm(aγ )

K ′
qm(aγ )

Gqm(γ r)

s j(γ )[s j(γ ) + 1]

− Iqm(aγ )

Kqm(aγ )

[
Gqm(γ r)

s j(γ ) + 1
+ K 2

qm(γ r)

s j(γ )

]}
, (41)

with s j(γ ) defined by the relation (28). By using the inequality
K ′ 2

qm(x) � [1 + (qm/x)2]K 2
qm(x), from (41) it can be seen that in

the exterior region ∂r Ub(r) > 0. Consequently, the radial compo-
nent of the boundary-induced part in the CP force is negative,
Fb,r = −∂r Ub(r) < 0, and this force is attractive with respect to the
cylinder. For the isotropic case the radial component of the pure
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Fig. 1. Total CP potential (full curve), the pure string part (dot-dashed curve) and the boundary-induced part (dashed curve) as functions of r/a for a/λ0 = 1. The left and
right panels are plotted for q = 2 and q = 4, respectively.
string part in the force is positive and it has an opposite direction
with respect to the boundary-induced part. Near the cylindrical
shell the boundary-induced part dominates and the total force in
the exterior region is directed toward the cylinder. At large dis-
tances from the shell the pure string part is dominant and the
total force is repulsive with respect to the cylinder.

In Fig. 1 we display the total CP potential U (r) (full curve),
pure string part U0(r) (dot-dashed curve), and the boundary-
induced part Ub(r) (dashed curve) as functions of the ratio r/a
for a/λ0 = 1, with λ0 = 2π/ω0. The single oscillator model is used
with isotropic polarizability and with the parameters g j = g0 and
ω j = ω0. The left and right panels correspond to q = 2 and q = 4,
respectively. As it has been explained before, the potential is dom-
inated by boundary-induced part near the cylindrical shell and by
the pure string part for points near the string and at large dis-
tances from the cylindrical shell.

In the discussion above we have considered the idealized geom-
etry with a zero thickness cosmic string. A realistic cosmic string
has a structure on a length scale defined by the phase transition
at which it is formed. In the presence of a conducting cylindri-
cal boundary, the CP potential in the exterior region is uniquely
defined by the boundary conditions and the bulk geometry. From
here it follows that if we consider a non-trivial core model with
finite thickness b < a and with the line element (1) in the region
r > b, the results in the region outside the cylindrical shell will not
be changed.

5. Conclusion

We have investigated the CP potential for a polarizable mi-
croparticle in the geometry of a straight cosmic string with a coax-
ial conducting cylindrical shell. Both regions inside and outside the
shell are considered. We start the consideration from the evalua-
tion of the Green tensor inside the shell. In this region the mode
sum contains the summation over the corresponding eigenmodes
which are expressed in terms of the zeros of the Bessel function
and its derivative. For the summation of the series over these zeros
we have employed the formula (11). This allowed to extract from
the Green tensor the part corresponding to the cosmic string ge-
ometry without boundaries. The latter was previously investigated
in [3] and here we are mainly interested in the boundary-induced
part. This part is presented in the form (13). For the evaluation of
the CP potential we need the Green tensor in the coincidence limit
of the arguments. In this limit the off-diagonal components vanish
and the diagonal components are given by (15).

Similar to the case of the Green tensor, the CP potential is
decomposed into the pure string and boundary-induced parts. In
the region inside the shell, the latter is given by the expression
(18). The CP potential depends on the distance from the string and
on the angles determining the orientation of the principal axes of
the polarizability tensor with respect to the cosmic string. For the
isotropic polarizability the general expression is simplified to (22).
Unlike to the pure string part, the boundary-induced part in the
CP potential is finite on the string. The corresponding asymptotic
behavior near the string is given by expressions (20) and (21) for
q > 2 and 1 < q < 2, respectively. The boundary-induced part in
the CP potential diverges on the cylindrical shell. The leading term
in the asymptotic expansion over the distance from the shell co-
incides with the CP potential for a metallic plate in Minkowski
spacetime. As a model for a polarizability tensor we have used the
anisotropic oscillator model. The expressions for the CP potential
with this model are given by (25) and (27) for anisotropic and
isotropic cases respectively. In the isotropic case, the boundary-
induced part in the CP force inside the cylindrical shell is di-
rected toward the shell. The pure string part of the force has the
same direction and the total force in the isotropic case is repul-
sive with respect to the string and attractive with respect to the
shell.

The electromagnetic field Green tensor and the CP potential
outside a cylindrical shell have been discussed in Section 4. By
making use of the identity (32), the Green tensor is presented as
the sum of boundary-free and boundary-induced parts. The latter
is given by the expression (35). The corresponding expressions for
the CP potential have the form (37) and (38) for the anisotropic
and isotropic polarizabilities, respectively. At large distances from
the cylinder the leading term in the boundary-induced CP poten-
tial is given by the expression (39). The leading term in the pure
string part is given by the expression (40) and it dominates at
large distances. The corresponding force is repulsive. For the oscil-
lator model, the expression for the boundary-induced CP potential
takes the form (41). In the isotropic case the corresponding force
is attractive with respect to the cylinder. For the isotropic case the
pure string part in the force has an opposite direction with re-
spect to the boundary-induced part. Near the cylindrical shell the
boundary-induced part dominates and the total force in the exte-
rior region is directed toward the cylinder. At large distances from
the shell the pure string part is dominant and the total force is re-
pulsive with respect to the cylinder. From the point of view of the
physics in the exterior region the conducting cylindrical surface
can be considered as a simple model of superconducting string
core. Superconducting strings are predicted in a wide class of field
theories and they are sources of a number of interesting astro-
physical effects such as generation of synchrotron radiation, cosmic
rays, and relativistic jets.
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