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Abstract

A new non-commutative model invariant with respect toU(1) gauge group is proposed. The model is free of nonintegr
infrared singularities. Its commutative classical limit describes a free scalar field. Generalization toU(N) models is also
considered.
 2003 Published by Elsevier B.V. Open access under CC BY license.
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1. Introduction

Perturbative aspects of non-commutative quan
theories were recently a subject of numerous inve
gations. These studies revealed some peculiar fea
of non-commutative models. Non-commutativity i
troduces naturally non-locality of interaction, whic
serves as an ultraviolet regulator. However, the re
larization is not complete and ultraviolet divergenc
do not disappear completely. Planar diagrams of a n
commutative theory require renormalization simi
to the procedure used in commutative models. N
planar diagrams become ultraviolet convergent du
the presence of phase factors, however the corresp
ing integrals have pole singularities in external m
menta leading to infrared divergency of higher ord
diagrams [1–5]. In particular these infrared singula
ties are present in non-commutativeU(1) gauge the-
ory, and although planar diagrams may be renorm
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-

ized in a gauge invariant way [6], the model is inco
sistent [7–9].

Another unusual property of non-commutative ga
ge theories is related to the fact that non-commuta
SU(N) algebra is not closed and one is forced
considerU(N) models which include aU(1) sector
and hence are also inconsistent [10,11].

One could try to cure this desease by introduc
nonlocal counterterms which cancel the infrared s
gularities. However, it would lead to a drastic mo
ification of the original action and nobody was ab
to prove that such a procedure may be carried ou
a consistent and gauge invariant way.

Experience obtained in commutative theories s
gests that appearance of divergencies, which cann
removed by renormalizing charges, masses and w
functions is a signal that the underlying classical t
ory is not complete and should be modified in suc
way that possible divergent structures have the s
form as the terms present in the classical action.

Motivated by this observation we propose a mo
ified non-commutativeU(1) invariant action which
does not lead to infrared divergencies. All diverge
se.
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cies are ultraviolet and may be removed by a st
dard renormalization procedure. The classical the
in the limit when the non-commutativity parameter(ξ)

tends to zero reduces, contrary to naive expectati
not to free electrodynamics, but to a free scalar fi
theory. A similar procedure may be applied toU(N)

non-commutative gauge models, where the comm
tive classical limit describesSU(N) vector bosons an
U(1) scalar particle.

2. Non-commutative gauge invariant models

We start by reminding the basic facts about
conventional non-commutativeU(1) theory.

The model is described by the action

(1)S =
∫

d4x

{
−1

4
FµνFµν

}
,

(2)Fµν = ∂µAν − ∂νAµ + ig[Aµ ∗Aν].
The star product is defined as follows

(3)f (x) ∗ g(x)= exp
{
iξθµν∂

x
µ∂

y
ν

}
f (x)g(y)y=x,

where θµν is a real antisymmetric matrix andξ is
a non-commutativity parameter. In the limitξ → 0 the
action (1) obviously reduces to the free electrom
netic action.

The gauge transformations look similar to no
Abelian gauge transformations

(4)δAµ = ∂µε − ig(Aµ ∗ ε − ε ∗Aµ).

Note that although for a general skewsymmetric m
trix θµν the interaction (1) is non-local, models wi
θi0 = 0 introduce only spatial non-locality and th
standard Hamiltonian formalism may be applied.
what folows we assume thatθi0 = 0 and Hamiltonian
formalism may be used. Without loss of generality o
may takeθ12 = −θ21 = 1; θ13 = θ23 = 0.

One sees that theU(1) non-commutative theory i
non-Abelian, and the Feynman rules look similar
the usual Yang–Mills theory. In particular Faddee
Popov ghosts, parametrizing det(∂µDµ), whereDµ is
the covariant derivative, are present. The free propa
tors coincide with the propagators of Yang–Mills th
ory, and the vertex functions are obtained substitu
Lie algebra structure constants by the phase fac
For example, the three point gauge vertex with m
mentap,q, k and indicesµ,ν,ρ looks as follows:

2ig sin(ξpq̃)
[
(p − q)ρδµν + (q − k)µδνρ

(5)+ (k − p)νδµρ
]
.

Here we use the notatioñpµ = θµνpν .
The gauge field polarization operator has ultravio

divergent part corresponding to the planar diagra
and the convergent non-planar part, which contains
term singular atp = 0. Explicit calculation gives

(6)Πµν(p)= g2

2π2

p̃µp̃ν

ξ2(p̃2)2
+ · · · ,

where· · · denotes less singular terms. One sees
Πµν has a pole singularity atp = 0 and the limit
ξ → 0 does not exist. The diagrams which ha
several insertions ofΠµν into gauge field lines ar
infrared divergent.

Similar singularities appear in the three point fun
tion, which looks as follows:

(7)Γµνρ(p, q)∼ cos(ξpq̃)

{
p̃µp̃νp̃ρ

ξ(p̃2)2
+ sym

}
+ · · · ,

where· · · again stands for less singular terms and s
means symmetrization

p → q, µ→ ν;
p → −(p + q), µ→ ρ;

(8)q → −(p + q), ν → ρ.

In general infrared pole singularities arise in the
agrams which in the absence of phase factors wo
be quadratically or linearly ultraviolet divergent. Lo
arihmically divergent diagrams produce only logari
mic infrared singularities which do not spoil integr
bility. In the commutative case gauge invariance p
vents the appearance of linear and quadratic diver
cies, but in the non-commutative theory they do
pear. The only possible exception known so far is p
sented by supersymmetric gauge theories [12–14]

To avoid infrared divergencies one may try
subtract non-local counterterms (6), (7). However
meaning of such subtraction is not clear, as it d
not correspond to renormalization of any parame
present in the original Lagrangian and the subtrac
procedure is ambigous. Moreover, as was mentio
above, nobody proved that such subtraction can
done in a consistent and gauge invariant way.
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We consider the appearance of singular te
proportional top̃µAµ as a signal that original actio
must be modified to include the terms of this type.

The action (1) is not the only gauge invariant e
pression one can write in the non-commutativeU(1)
theory. The most general gauge invariant action, wh
corresponds to a power counting renormalizable
ory, possesses passive Lorentz invariance (i.e., is
variant if the tensorθµν also undergoes Lorentz tran
formations), and introduces nonlocality only via s
product has a form

S =
∫

d4x

{
−1

4
FµνFµν + βλ(x)θµνFµν(x)

(9)+ γ
(
θµνFµν(x)

)2
}
.

Here β and γ are arbitrary parameters and t
Lagrange multiplierλ(x) transforms according t
adjoint representation of the gauge group.

We chooseβ = 1. Then obviously the last term
irrelevant and one may putγ = 0. The action (9) de
scribes a constrained system and to study its phys
content one has to formulate the Hamiltonian dyna
ics. A natural requirement for a non-commutative th
ory is the condition that in the limitξ → 0 the Lorentz
invariance is restored. The commutative limit of t
action (9) is

(10)

S0 =
∫

d4x

{
−1

4
(∂µAν − ∂νAµ)

2 + λ(x)∂̃iAi(x)

}
.

We remind that we consider the case when the o
non-zero elements of the matrixθµν are θ12 =
−θ21 = 1. In this case

∑
i ∂̃

2
i = ∑

i=1,2 ∂
2
i = ∂̃2.

At first sight the Lorentz invariance is broken ev
in the commutative limit. The proper Hamiltonia
analysis shows however that the action (10) descr
a usual free scalar field.

Let us rewrite Eq. (10) as the action of a generali
Hamiltonian system:

S0 =
∫

d4x

{
piȦi − p2

i

2
− 1

4
(∂iAj − ∂jAi)

2

(11)+A0∂ipi + λ∂̃iAi

}
.

To fix the gauge we choose the Coulomb condit
∂iAi = 0. Apart from the first class constraint∂ipi =
0 the action (10) includes the additional constra
∂̃iAi = 0. The commutator of this constraint with th
Hamiltonian is different from zero:

(12)

[∫
dx

p2
i

2
, θij ∂iAj

]
= ∂̃ipi .

That means the secondary constraint must be inclu
and the complete action looks as follows:

S0 =
∫

d4x

{
piȦi − p2

i

2
− 1

4
(∂iAj − ∂jAi)

2

(13)

+A0∂ipi + λ(x)∂̃iAi +µ(x)∂̃ipi

}
.

Let us parametrize the fieldAi and momentumpi
as follows:

Ai = ∂iχ + ∂̃iψ + εijk ∂̃−2∂j ∂̃kφ,

(14)pi = ∂ipχ + ∂̃ipψ + εijk ∂̃−2∂j ∂̃kpφ.

The Coulomb gauge condition and the constra
∂̃iAi = 0 insure thatχ = ψ = 0. The remaining
constraints nullify the corresponding momenta.

After solution of the constraints and gauge con
tion Eq. (13) may be written in the following form

(15)S0 =
∫

d4x

{
pφφ̇ − p2

φ

2
− ∂iφ∂iφ

2

}

which is the Lorentz invariant action for the sca
field. Contrary to naive expectations the limitξ → 0 of
the modified electromagnetic action describes a sc
field.

Now we turn to the analysis of infrared singula
ties. We ignore possible local determinants which
pear due to the second class constraints, assu
that some gauge invariant regularization (e.g., dim
sional) is used, in which these factors are absent.
Feynman rules differ from the usual non-commutat
U(1) theory by the presence of propagators ofλ-
fields, mixed propagatorsλAµ and the new vertex
gλ[Aµ ∗ Aν]θµν . The corresponding elements of d
agram technique are:

The propagatorλ,λ

(16)k2k̃−2.

The propagatorλ,Aµ

(17)k̃µ(k̃)
−2.
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The vertexλ,A2

(18)ig sin(ξpq̃)θµν.

The propagator of the Yang–Mills field is als
modified. In the diagonal Feynman gauge it is

(19)
1

k2

(
gµν − k̃µk̃ν

k̃2

)
.

We start with the one loop polarization operator.
study the leading singularities we may put the exter
momentum equal to zero everywhere except for
phase factors. Thus we have

(20)Π
sing
µν (p)=

∫
d4k sin2(ξpk̃)Pµν(k),

wherePµν is a rational function with the dimensio
k−2. To separate the infrared singular contribution o
presents the phase factor as

(21)sin2(ξpk̃)= 1

2

(
1− cos(2ξpk̃)

)
.

The constant term corresponds to the planar co
bution and produces ultraviolet divergency which
removed by the usual wave function renormalizati
whereas the term proportional to cos(2ξpk̃) gives the
infrared singular contribution

(22)Π
sing
µν (p)∼ Agµνp̃2 +Bp̃µp̃ν

ξ2(p̃2)2
.

The polarization operator must satisfy ST-identiti
which in this case reduce to transversality conditio

(23)pµpνΠ
sing
µν = 0 →A= 0.

Hence, the pole singularity is proportional tõpµp̃ν .
Recalling that the free propagator (19) of the Yan
Mills field Aµ is transversal with respect tõpµ, we
conclude that the infrared singularity is irrelevant
the polarization operator is connected to other p
of a diagram by the gauge field propagator. The n
possible singular term is∼ ln(p2) and does not lead t
non-integrable singularity.

In our model there is also a mixed propagatorAµλ.
Due to this mixing the singular part ofΠµν may con-
tribute to the amplitude with four external gauge fie
lines, obtained by connecting the polarization opera
Πµν with the vertices (18) by the mixed propagato
The corresponding contribution is proportional to

(24)
sin2(ξpq̃)

(p̃2)2ξ2

and does not lead to infrared divergencies at smap.
Note that the limitξ → 0 is also nonsingular.

There are also one-loop polarization operat
Πµ(p), corresponding to diagrams with one exter
Aµ-line and oneλ-line, andΠ(p), corresponding to
diagrams with twoλ-lines. All these diagrams in th
absence of phase factors diverge at most logarith
cally and therefore are infrared safe.

However, if the polarization operator ofλ-field,
Π(p) required renormalization, that would mean th
the action (9) was not complete and new counterte
∼ λ2 have to be introduced.

Moreover, the completeλ-field propagator may in
clude subsequent insertions of several polarization
eratorsΠµν,Πµ,Π connected by the mixed propag
torAµλ. For example

Dλλ(p)=DλAµ(p)Πµν(p)DAνλ(p)Π(p)

(25)×DλAρ (p)Πρσ (p)DAσ λ(p).

Obviously a diagram containing such propagator m
produce infrared singularities due to accumulation
theΠµν poles.

Let us study the infrared behaviour ofΠ(p) more
closely. In the lowest order the polarization opera
Π(p) is equal to

Π(p)=
∫

d4k

[
sin(pk̃ξ)θµν

(
gµα − k̃µk̃α

k̃2

)
k−2

×
(
gνβ − (p̃ + k̃)ν(p̃ + k̃)β

(p̃ + k̃)2

)

(26)× (p+ k)−2 sin(pk̃ξ)θαβ

]
.

Performing the multiplication explicitely we can rew
te this expression in the form

Π(p)=
∫
d4k sin2(pk̃ξ)

×
[
θαβ − kβk̃α

k̃2
+ (p + k)α(k̃ + p̃)β

(k̃ + p̃)2

(27)

+ (p̃k)k̃α(k̃ + p̃)β

k̃2(p̃+ k̃)2

]
k−2(p+ k)−2θαβ.
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According to our choice ofθµν in this equation
α,β = 1,2. The most singular terms vanish aft
summation overα,β , providing absolute convergenc
of the integral (27).

(28)

Π(p) =
∫

d4k sin2(pk̃ξ)
(p̃k)2

k̃2(p̃ + k̃)2
k−2(p + k)−2.

To estimate the infrared behaviour ofΠ(p) let us take
|p1| = |p2| = p. Rescaling the integration variabl
pξk → x we get

(29)Π(p) = p4ξ2f
(
p2ξ

)
,

where the functionf (p2ξ) has a logarithmic singu
larity at the originf (p2ξ)p∼0 ∼ ln(p2ξ). Therefore,
up to logarithmic correctionsΠ(p) vanishes atp = 0
asp4. It compensates the infrared singularity of t
operatorΠµν and guarantees the infrared conv
gence.

A general polarization operatorΠ(p) may be
analyzed in a similar way. It may be presented in
following form

Π(p) =
∫
d4k · · ·d4s

×
{

sin(pk̃ξ)θαβ

(
gαµ − k̃µk̃α

k̃2

)

×
(
gνβ − (p̃ + k̃)ν(p̃ + k̃)β

(p̃ + k̃)2

)

×Πµνρσ (p, k, s)

(
gρλ − s̃ρ s̃λ

s̃2

)

×
(
gσκ − (s̃ + p̃)σ (s̃ + p̃)κ

(s̃ + p̃)2

)

(30)× θλκ sin(ps̃ξ)

}
.

We consider the case when the outer vertices
connected with the internal part of the diagram by
gauge field propagators. There are also the diagr
where some of these propagators are replaced by
mixed propagatorsAµλ. They are considered in
similar way and we shall not present the analysis h
The functionΠµνρσ in Eq. (30) may be separated in
parts symmetric and antisymmetric with respect toµν

andρσ . The antisymmetric parts are proportional
θµν andθρσ , respectively. Performing the summati
over all indices one sees that the first non-vanish
term is proportional top2. Therefore, the integral i
absolutely convergent and to study its behaviou
ξ ∼ 0 we may putξ ∼ 0 in the integrand. In this wa
one sees that theΠ(p, ξ) and its first derivative ove
ξ vanish atξ = 0. Possible asymptotics ofΠ(p, ξ) at
ξ ∼ 0 have the form

(31)Π(p, ξ)ξ∼0 = ξn lnm(ξ).

Therefore,Π(p, ξ) for small ξ is proportional to
ξ2 lnm(ξ). By dimensional reasons atp → 0,Π(p)∼
p4ξ2 lnm(p2ξ), in accordance with the lowest ord
result.

Insertion of the mixed polarization operatorΠµ(p)

does not change our analysis. This operator vanish
p = 0 as|p|. At the same time the mixed propaga
Aµλ has a singularity∼ |p|−1. So the product is
not singular. It is important to note that to ha
two insertions ofΠµν(p) which might produce non
integrable infrared singularity one needs at least
insertion of the operatorΠ(p), which cancels the
singularity.

Now we turn to the study of three point gauge fie
vertex. It satisfies the ST-identity, which we take in t
original form [15]:〈
Aµ(x)Aν(y)∂ρAρ(z)

〉
= 〈

∂µM
−1
xz A

b
ν(y)

〉 + g
〈
Aµ(x)M

−1
xz Aν(y)

〉
(32)+ (µ→ ν, x → y).

HereM−1
xy is the Green function of ghost field in th

external gauge field.
We start again with the one-loop diagrams.

pass to the proper vertex function we must am
tate external propagators, which include bothAµAν -
propagators and mixed propagatorsAµλ. However
mixed propagators and mixed proper vertex functi
do not have pole singularities and being intereste
the leading singular terms, we may drop them. T
gauge-ghost vertices and ghost propagators which
ter the r.h.s. of Eq. (32) also have no pole singul
ties as in the absence of phase factors the corresp
ing integrals diverge logarithmically. Keeping only th
terms which may have pole singularities we rewr
Eq. (32) in thr form

(p + q)ρ

(p + q)2

(
gµα − p̃µp̃α

p̃2

)(
gνβ − q̃ν q̃β

q̃2

)

(33)× Γ
1,sing
αβρ (p, q)= 0,
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whereΓ 1,sing
µνρ is the pole singular part of the on

loop proper vertex function. In deriving this equati
we used the transversality of the free gauge fi
propagators with respect tõpµ and established earlie
fact that the singular part ofΠµν(p) is proportional to
p̃µp̃ν . By the same reasonings as above the sing
part of Γ 1

µνρ(p, q) depends only onp̃, q̃. The only
possible structure which has a proper symmetry
dimension, and satisfies the identity (33) is

Γ
1,sing
µνρ (p, q)

(34)

∼
{
p̃µp̃νp̃ρ

ξ2|p̃|4 + (p → q)+ (
p → −(p+ q)

)}
.

Due to transversality of the free gauge field propaga
Γ

1,sing
µνρ does not contribute to the vertex function w

three external gauge lines. It might give a non-z
contribution to the diagram with four external gau
lines obtained by connectingΓ 1,sing

µνρ with the vertex
(18) by the mixed propagatorsAµλ. However as in
the case of the two point polarization operator this
agram does not produce infrared singularities. Pro
vertex functions with at least one externalλ-line in the
absence of the phase factors diverge logarithmic
and do not produce infrared divergencies.

To analyze higher loop diagrams one should p
form carefully the renormalization and check if our e
timates remain valid. It is not done in the present L
ter. Assuming that renormalization does not introd
new problems we may basically repeat our argume
for arbitrary multi-loop diagrams.

The singular part of the polarization operator ag
may be calculated by taking external momentum eq
to zero everywhere except for the phase factors.
course we assume that necessary ultraviolet sub
tions of divergent subgraphs are done in accorda
with R-operation.) Therefore, the singular part of p
larization operator at arbitrary order depends o
on p̃. Gauge invariance and dimensional reasons
the form of the singular part tõpµp̃ν |p̃|−4. Hence
the arguments given above to prove the absence o
frared singularities may be applied directly.

The singular part of the three point function d
pends only onp̃, q̃ and by gauge invariance must s
isfy the identity (32). An analogue of Eq. (33) for
singular part ofΓ n
µνρ will now include the terms

(35)

(p + q)ρ

(p + q)2

n−1∑
m,l=1

Dm
µα(p)D

l
νβ (q)Γ

n−m−l,sing
µνρ (p, q).

We proved that the two point Green functions a
proper one-loop three-point Green functions have
pole singularities at zero momenta. Assuming tha
is true for allm < n, we see that these terms do n
produce singular contributions toΓ n

µνρ(p, q) and its
structure is also given by Eq. (34). It completes
induction.

A similar modification allows to formulate a con
sistent non-commutativeU(N) gauge theory. The
standard non-commutativeU(N) Yang–Mills action is

(36)S =
∫

d4x tr

[
−1

8
Fµν ∗ Fµν

]
,

where

(37)Fµν = ∂µAν − ∂νAµ + g[Aµ ∗Aν]
andAµ belongs toU(N) Lie algebra. Due to non
commutativity of the star product this action mix
the U(1) and theSU(N) gauge bosons, leading
UV/IR mixing analogous to the pureU(1) case. The
one loop diagrams in this theory were analyzed
[10]. It appears that the planar diagrams in this the
may be renormalized in a gauge invariant way. N
planar diagrams with theU(1) boson external line
are infrared singular, whereas the non-planar diagr
with only SU(N) boson external lines do not exib
infrared singularities.

The infrared pole singularities may be eliminat
in analogy with theU(1) case.

Let us consider the modifiedU(N) action:

S =
∫

d4x tr

[
−1

8
Fµν ∗ Fµν

]

(38)+ λ(x) tr[θµνFµν],
where the Lagrange multiplierλ(x) belongs to the
adjoint representation of theU(1) group, andFµν is
theU(N) curvature tensor.

The free action consists of the usualSU(N) part
and modifiedU(1) action considered above. So t
spectrum includes vectorSU(N) bosons and the scala
particle associated with theU(1) group. The analy
sis of infrared singularities given above was based
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76.

2.
,

the gauge invariance, power counting and the exp
form of U(1) propagators. Therefore, it may be a
plied directly to the diagrams with at least one exter
U(1) line and leads to the same conclusion. These
grams are free of infrared pole singularities. The o
loop diagrams with onlySU(N) external lines were
shown to be infrared safe. If this property holds
higher loops, the non-commutativeU(N) theory has
the same infrared properties as the commutative
and is renormalizable.

3. Discussion

In this Letter I wanted to show that consistent no
commutative quantum gauge theories free of infra
singularities may exist even in the absense of su
symmetry. The crucial observation which allows
construct such models is a possibility to describe
non-commutative gauge models not only vector
also scalar fields.

Several questions may be raised in this connect
We did not consider carefully the ultraviolet reno

malization of the theory. It seems very plausible t
the ultraviolet renormalization preserves the inva
ance of the model and does not change our estim
of asymptotics, but it would be good to demonstrat
explicitely.

We concentrated in this Letter on pole singula
ties, which lead to infrared divergency. However, t
logarithmic singularities, which do not cause infrar
problems, may be present. Commutative limit of qu
tum theory deserves further investigation.

Our proof of existence of the non-commutati
quantumU(N)model assumed the absence of infra
singularities in the diagrams with pureSU(N) external
lines. To my knowledge explicit proof of this fact ha
been given for one-loop diagrams [10]. Although it
likely to be true for a general diagram, a careful stu
would be useful.
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