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Abstract

A new non-commutative model invariant with respecti@l) gauge group is proposed. The model is free of nonintegrable
infrared singularities. Its commutative classical limit describes a free scalar field. Generalizatiiviomodels is also
considered.

0 2003 Published by Elsevier B.V. Open access under CC BY license.

1. Introduction ized in a gauge invariant way [6], the model is incon-
sistent [7-9].
Another unusual property of non-commutative gau-
Perturbative aspects of non-commutative quantum ge theories is related to the fact that non-commutative
theories were recently a subject of numerous investi- SU(N) algebra is not closed and one is forced to
gations. These studies revealed some peculiar featuregonsidert (N) models which include &/ (1) sector
of non-commutative models. Non-commutativity in- and hence are also inconsistent [10,11].
troduces naturally non-locality of interaction, which One could try to cure this desease by introducing
serves as an ultraviolet regulator. However, the regu- nonlocal counterterms which cancel the infrared sin-
larization is not complete and ultraviolet divergencies gularities. However, it would lead to a drastic mod-
do not disappear completely. Planar diagrams of a non-ification of the original action and nobody was able
commutative theory require renormalization similar to prove that such a procedure may be carried out in
to the procedure used in commutative models. Non- 3 consistent and gauge invariant way.
planar diagrams become ultraviolet convergent due to Experience obtained in commutative theories sug-
the presence of phase factors, however the correspondyests that appearance of divergencies, which cannot be
ing integrals have pole singularities in external mo- removed by renormalizing charges, masses and wave
menta leading to infrared divergency of higher order functions is a signal that the underlying classical the-
diagrams [1-5]. In particular these infrared singulari- ory is not complete and should be modified in such a
ties are present in non-commutati¥/é1l) gauge the-  way that possible divergent structures have the same
ory, and although planar diagrams may be renormal- form as the terms present in the classical action.
Motivated by this observation we propose a mod-
ified non-commutativel/ (1) invariant action which
E-mail address: slavnov@mi.ras.ru (A.A. Slavnov). does not lead to infrared divergencies. All divergen-
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cies are ultraviolet and may be removed by a stan-
dard renormalization procedure. The classical theory
in the limit when the non-commutativity parametgy

tends to zero reduces, contrary to naive expectations,

not to free electrodynamics, but to a free scalar field
theory. A similar procedure may be appliedd@N)
non-commutative gauge models, where the commuta-
tive classical limit describeSU (N) vector bosons and

U (1) scalar particle.

2. Non-commutative gaugeinvariant models

We start by reminding the basic facts about the
conventional non-commutativié(1) theory.
The model is described by the action

1
‘&zfd%{—zﬂwﬂw}, (1)
Fuy=0,A, —0,A, +ig[Ay*xA)]. (2)
The star product is defined as follows
f@)* g(x) =expli&0,,050)} f()g(My=r.  (3)

where 6, is a real antisymmetric matrix ang is
a non-commutativity parameter. In the lingit> 0 the
action (1) obviously reduces to the free electromag-
netic action.

The gauge transformations look similar to non-
Abelian gauge transformations

A, =0, —ig(A xe—€ xAy). 4)

Note that although for a general skewsymmetric ma-
trix 6,, the interaction (1) is non-local, models with
6;0 = 0 introduce only spatial non-locality and the
standard Hamiltonian formalism may be applied. In
what folows we assume théjy = 0 and Hamiltonian
formalism may be used. Without loss of generality one
may takefip = —021=1; 13 =023=0.

One sees that thE (1) non-commutative theory is
non-Abelian, and the Feynman rules look similar to
the usual Yang—Mills theory. In particular Faddeev—
Popov ghosts, parametrizing ¢&tD,,), whereD,, is

the covariant derivative, are present. The free propaga-

tors coincide with the propagators of Yang—Mills the-
ory, and the vertex functions are obtained substituting
Lie algebra structure constants by the phase factors.
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For example, the three point gauge vertex with mo-
mentap, ¢, k and indicesu, v, p looks as follows:

[(P —q) by + (g — k) ubyp
+ (k- P)vaup]-

Here we use the notatig, = 6,.,p,.

The gauge field polarization operator has ultraviolet
divergent part corresponding to the planar diagrams,
and the convergent non-planar part, which contains the
term singular ap = 0. Explicit calculation gives

2igsin(épq)
(5)

i Pubv_ (6)
272 52(152)2 ’
where- -- denotes less singular terms. One sees that
I1,, has a pole singularity ap = 0 and the limit
& — 0 does not exist. The diagrams which have
several insertions of7,, into gauge field lines are
infrared divergent.

Similar singularities appear in the three point func-
tion, which looks as follows:

H/LV(P) =

PuPvDp
£(p?)?
where- - - again stands for less singular terms and sym
means symmetrization

Luvp(psq) ~ COS(EP(?){ + sym} 4+, (7)

P—>4q, H—>v;
p—~>—p+q), n—p;
qg—>—(p+q), v—p. (8)

In general infrared pole singularities arise in the di-
agrams which in the absence of phase factors would
be quadratically or linearly ultraviolet divergent. Log-
arihmically divergent diagrams produce only logarith-
mic infrared singularities which do not spoil integra-
bility. In the commutative case gauge invariance pre-
vents the appearance of linear and quadratic divergen-
cies, but in the non-commutative theory they do ap-
pear. The only possible exception known so far is pre-
sented by supersymmetric gauge theories [12-14].

To avoid infrared divergencies one may try to
subtract non-local counterterms (6), (7). However the
meaning of such subtraction is not clear, as it does
not correspond to renormalization of any parameter
present in the original Lagrangian and the subtraction
procedure is ambigous. Moreover, as was mentioned
above, nobody proved that such subtraction can be
done in a consistent and gauge invariant way.
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We consider the appearance of singular terms 0 the action (10) includes the additional constraint

proportional top, A, as a signal that original action 9;A; = 0. The commutator of this constraint with the

must be modified to include the terms of this type. Hamiltonian is different from zero:
The action (1) is not the only gauge invariant ex- : 3
pression one can write in the non-commutativel) [/ dx ?’ eijaiAj] = 0; pi. (12)

theory. The most general gauge invariant action, which
corresponds to a power counting renormalizable the- That means the secondary constraint must be included
ory, possesses passive Lorentz invariance (i.e., is in-and the complete action looks as follows:

variant if the tensoé,,, also undergoes Lorentz trans- 2 4

formations), and introduces nonlocality only via star g = /d4x{PiAi _bi _ S0 A — 3in)2

product has a form 2 4 -

+ Aod; pi + M(x)3; A; +/L(X)51m}.
(13)

2 i iold: .
+ ¥ (v Frv (1)) } (9) i, If_oeﬁolﬁsparametrlze the field; and momentunp;

1
S :fd4x{_ZFMVFMV + BA(X)Op Fluw (x)

Here 8 and y are arbitrary parameters and the
Lagrange multiplierA(x) transforms according to ~ o c
adjoint representation of the gauge group. pi = 8 py + 0 py + 750720, 3k py. (14)

We choosed = 1. Then obviously the last term is
irrelevant and one may pyt = 0. The action (9) de-
scribes a constrained system and to study its physical
content one has to formulate the Hamiltonian dynam-
ics. A natural requirement for a non-commutative the-
ory is the condition that in the limg — O the Lorentz
invariance is restored. The commutative limit of the _ 4 . Pé 0;0;
action (9) is SO—/dx{pW_?_ 2 }

1 x which is the Lorentz invariant action for the scalar
So= /d4x {_Z(aﬂA” —0uA + Mx)a"Ai(x)}' field. Contrary to naive expectations the lirit> 0 of
(10) the modified electromagnetic action describes a scalar
field.

Now we turn to the analysis of infrared singulari-
ties. We ignore possible local determinants which ap-
pear due to the second class constraints, assuming
that some gauge invariant regularization (e.g., dimen-
sional) is used, in which these factors are absent. The
Feynman rules differ from the usual non-commutative
U(1) theory by the presence of propagators of
fields, mixed propagatorsA, and the new vertex
gMA, * A,10,,. The corresponding elements of di-

A =dix+ v+ Eijké_zajék(ﬁ,

The Coulomb gauge condition and the constraint
3;A; = 0 insure thaty = ¥ = 0. The remaining
constraints nullify the corresponding momenta.

After solution of the constraints and gauge condi-
tion Eq. (13) may be written in the following form

(15)

We remind that we consider the case when the only
non-zero elements of the matrig,, are 012 =
—021=1.Inthis cas_; 37 =";_; ,07 = 9°.

At first sight the Lorentz invariance is broken even
in the commutative limit. The proper Hamiltonian
analysis shows however that the action (10) describes
a usual free scalar field.

Let us rewrite Eq. (10) as the action of a generalized
Hamiltonian system:

4 . p? ) agram technique are:
So = /d x {Pi = T 0iAj = 9A) The propagatok, A
N 272
+ Aodi pi +Aa,-Ai}. 1y KR (16)

The propagatok, A,
To fix the gauge we choose the Coulomb condition _ _ .
9;A; = 0. Apart from the first class constraifitp; = ky(k)~=. (17)
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The vertexi, A2

igsin(Epq)Opy. (18)

The propagator of the Yang—Mills field is also
modified. In the diagonal Feynman gauge it is
Kk,

(- %2)

We start with the one loop polarization operator. To
study the leading singularities we may put the external
momentum equal to zero everywhere except for the
phase factors. Thus we have

1

k2

19)

3%p) = f d*k Sin? (€ pk) Py (k), (20)
where P, is a rational function with the dimension
k~2. To separate the infrared singular contribution one
presents the phase factor as

. | N
Sin? (& pk) = E(l — cog2&pk)). (21)

The constant term corresponds to the planar contri-
bution and produces ultraviolet divergency which is
removed by the usual wave function renormalization,
whereas the term proportional to ¢@spk) gives the
infrared singular contribution

Ag" p? + B p"
£2(p%)?

The polarization operator must satisfy ST-identities,

which in this case reduce to transversality condition

m%p) ~ (22)

pMp,,I'[;il?g=O—> A=0. (23)

Hence, the pole singularity is proportional f, p,.
Recalling that the free propagator (19) of the Yang—
Mills field A, is transversal with respect tg,, we
conclude that the infrared singularity is irrelevant if
the polarization operator is connected to other part
of a diagram by the gauge field propagator. The next
possible singular term is In(p?) and does not lead to
non-integrable singularity.

In our model there is also a mixed propagatomn..
Due to this mixing the singular part ¢, may con-
tribute to the amplitude with four external gauge field
lines, obtained by connecting the polarization operator
11, with the vertices (18) by the mixed propagators.
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The corresponding contribution is proportional to

Sir(¢pg)

(p?)2g?
and does not lead to infrared divergencies at small
Note that the limit — O is also nonsingular.

There are also one-loop polarization operators
I1,(p), corresponding to diagrams with one external
A,-line and onei-line, andI(p), corresponding to
diagrams with twar-lines. All these diagrams in the
absence of phase factors diverge at most logarithmi-
cally and therefore are infrared safe.

However, if the polarization operator of-field,
I1(p) required renormalization, that would mean that
the action (9) was not complete and new counterterms
~ 22 have to be introduced.

Moreover, the completg-field propagator may in-
clude subsequent insertions of several polarization op-
eratorsl1,,, I1,,, IT connected by the mixed propaga-
tor A, A. For example

Dy (p) = Dia, (P)uy(p)Da,x(p)II(p)
X DjA,(P) o (p)Da,a(p). (25)

Obviously a diagram containing such propagator may
produce infrared singularities due to accumulation of
theT,, poles.

Let us study the infrared behaviour &f(p) more
closely. In the lowest order the polarization operator
II(p) is equal to

(p) = / d4k[sin(p1€s)ew (gw — %)k—z
(PR + R

) (gw (5 + k)2 )

x (p+ k)zsin(p%swaﬁ]. (26)

(24)

Performing the multiplication explicitely we can rewri-
te this expression in the form

(p) =/d4k Sir?(pk&)
% |:9aﬁ _ kéka T (p +]f)oz(]i+ ﬁ)ﬂ
k2 (k + p)?
(P)ka(k + p)g
kK2(p + k)?

]kz(p +5) " 20p.
(27)
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According to our choice ofd,, in this equation
a,f = 1,2. The most singular terms vanish after
summation ovew, 8, providing absolute convergence
of the integral (27).

=182
%k‘z(p + k)2
k2(p + k)?
(28)
To estimate the infrared behaviour@f( p) let us take
|p1] = |p2| = p. Rescaling the integration variables

pEk — x we get

m(p) = p*&?f(p?€). (29)

where the functionf (p2¢) has a logarithmic singu-
larity at the origin f (p?€) y~0 ~ IN(p?€). Therefore,
up to logarithmic correctionsl (p) vanishes ap =0
as p*. It compensates the infrared singularity of the
operator [1,, and guarantees the infrared conver-
gence.

A general polarization operatofi(p) may be
analyzed in a similar way. It may be presented in the
following form

(p) = / d*k sin?(pk&)

(p) =/d4k~-~d4s

o Kok

X 1 SIN(pk&)Bqp gau—lz—z
X(g _<ﬁ+1€)v<ﬁ+1€>ﬂ>

Gk

X n;wp(r(pv k,s) (gpk -

X (ga/(

X O30 sin(pgg)}.

55
)
G+ PG+ ;m)
(5 + p)?

(30)
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term is proportional tap?. Therefore, the integral is
absolutely convergent and to study its behaviour at
& ~ 0 we may put ~ 0 in the integrand. In this way
one sees that thH (p, &) and its first derivative over

& vanish att = 0. Possible asymptotics ¢f (p, &) at

& ~ 0 have the form

(p,§)z~0=¢"In"(&). (31)

Therefore, IT(p, £) for small & is proportional to
£2In™ (¢). By dimensional reasons at— 0, IT(p) ~
prE2In™(p2€), in accordance with the lowest order
result.

Insertion of the mixed polarization operatay, (p)
does not change our analysis. This operator vanishes at
p =0 as|p|. At the same time the mixed propagator
A, has a singularity~ |p|~1. So the product is
not singular. It is important to note that to have
two insertions ofl7,,,(p) which might produce non-
integrable infrared singularity one needs at least one
insertion of the operato¥7(p), which cancels the
singularity.

Now we turn to the study of three point gauge field
vertex. It satisfies the ST-identity, which we take in the
original form [15]:

(Au(x)Av(Y)apAp(Z»
= (0. M AL () + (A ()M AL ()
+(u—v,x—>y).

(32)
Here M ! is the Green function of ghost field in the
external gauge field.

We start again with the one-loop diagrams. To
pass to the proper vertex function we must ampu-
tate external propagators, which include bdthA -
propagators and mixed propagatotgi. However
mixed propagators and mixed proper vertex functions

do not have pole singularities and being interested in

We consider the case when the outer vertices arethe leading singular terms, we may drop them. The

connected with the internal part of the diagram by the

gauge-ghost vertices and ghost propagators which en-

gauge field propagators. There are also the diagramster the r.h.s. of Eq. (32) also have no pole singulari-
where some of these propagators are replaced by theties as in the absence of phase factors the correspond-

mixed propagatorsA,A. They are considered in a

similar way and we shall not present the analysis here.

The function/7,,,. in Eq. (30) may be separated into
parts symmetric and antisymmetric with respeqgtto

and po. The antisymmetric parts are proportional to
0, andd,,, respectively. Performing the summation

over all indices one sees that the first non-vanishing

ing integrals diverge logarithmically. Keeping only the
terms which may have pole singularities we rewrite
Eqg. (32) in thr form

(p+‘])p (g _ ﬁuﬁa)(g _‘jv‘jﬂ)
(p+q2\ore ™ g J\o T T2
X oo (p.) =0, (33)
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where ;5" is the pole singular part of the one- singular part of™”, will now include the terms

V,
loop proper vertex function. In deriving this equation . "
we used the transversality of the free gauge field (p +¢), — n—m—I.sin
propagators with respect ), and established earlier m Z Dﬁa(l’)Dlvﬁ (@) Fvp .9,
fact that the singular part df,, (p) is proportional to m,i=1 (35)
DPuDv. By the same reasonings as above the singular
part of Fl}vp(p,q) depends only orp, g. The only
possible structure which has a proper symmetry and
dimension, and satisfies the identity (33) is

We proved that the two point Green functions and

proper one-loop three-point Green functions have no
pole singularities at zero momenta. Assuming that it
is true for allm < n, we see that these terms do not

produce singular contributions tbj},,(p, ¢) and its

Fl,sing( ) structure is also given by Eq. (34). It completes the
wop P4 induction.
PubvPp A similar modification allows to formulate a con-
~ { 25 tp—>p+(p—> -+ CI))}- sistent non-commutativé/ (N) gauge theory. The
(34) standard non-commutativé&(N) Yang—Mills action is
1
Dlile to transversality of the free gauge field propagator S = /d4x tf[—é v * Fuu], (36)

I does not contribute to the vertex function with

three external gauge lines. It might give a non-zero

contribution to the diagram Wiltr;infour external gauge Fuo = 8 Ay — 8y Ay + gl Ay % Ay (37)

lines obtained by connecting;, ° with the vertex .

(18) by the mixed propagators, .. However as in ~ @nd 4, belongs toU(N) Lie algebra. Due to non-

the case of the two point polarization operator this di- commutativity of the star product this actlon_m|xes

agram does not produce infrared singularities. Proper the U(1) and theSU(N) gauge bosons, leading to

vertex functions with at least one externaline in the UV/IR mixing analogous to the pure (1) case. The

absence of the phase factors diverge logarithmically ©n€ loop diagrams in this theory were analyzed in

and do not produce infrared divergencies. [10]. It appears th_at th(_e planar dlagram_s in this theory
To analyze higher loop diagrams one should per- Ma&y be renormahzgd in a gauge invariant way. Non-

form carefully the renormalization and check if our es- Planar diagrams with th&/(1) boson external lines

timates remain valid. It is not done in the present Let- &re infrared singular, whereas the non-planar diagrams

ter. Assuming that renormalization does not introduce With only SU(N) boson external lines do not exibit

new problems we may basically repeat our arguments Infrared singularities. N o

for arbitrary multi-loop diagrams. _ The mfrar_ed pole singularities may be eliminated
The singular part of the polarization operator again " analogy with thel (1) case. .

may be calculated by taking external momentum equal L€t us consider the modified (V) action:

to zero everywhere except for the phase factors. (Of 4 1

course we assume that necessary ultraviolet subtrac-S Z/d xtr[——F,w * Fuv]

tions of divergent subgraphs are done in accordance

with R-operation.) Therefore, the singular part of po- A0 Fuv ], (38)

larization operator at arbitrary order depends only where the Lagrange multipliex(x) belongs to the

on p. Gauge invariance and dimensional reasons fix adjoint representation of th& (1) group, andF,,, is

the form of the singular part tg, j,|p|~4. Hence the U (N) curvature tensor.

the arguments given above to prove the absence of in- The free action consists of the usuJ(N) part

frared singularities may be applied directly. and modifiedU (1) action considered above. So the
The singular part of the three point function de- spectrum includes vect&®J(N) bosons and the scalar

pends only orp, ¢ and by gauge invariance must sat- particle associated with th& (1) group. The analy-

isfy the identity (32). An analogue of Eq. (33) for a sis of infrared singularities given above was based on

where
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the gauge invariance, power counting and the explicit been given for one-loop diagrams [10]. Although it is
form of U (1) propagators. Therefore, it may be ap- likely to be true for a general diagram, a careful study
plied directly to the diagrams with at least one external would be useful.

U (1) line and leads to the same conclusion. These dia-

grams are free of infrared pole singularities. The one-

loop diagrams with ony8U(N) external lines were  Acknowledgements
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In this Letter | wanted to show that consistent non-
commutative quantum gauge theories free of infrared
singularities may exist even in the absense of super-
symmetry. The crucial observation which allows to
construct such models is a possibility to describe by
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