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Abstract The proteasome is responsible for most intracellular
protein degradation and is essential for cell survival. Previous re-
search has shown that the proteasome can be inhibited by a num-
ber of oxidants, including 4-hydroxynonenal (HNE). The present
study demonstrates that HNE rapidly inhibits the chymotrypsin-
like activity of the 20S proteasome purified from liver. Subunits
containing HNE-adducts were identified following 2D gel elec-
trophoresis, Western immunoblotting, and analysis by MAL-
DI-TOF MS. At a time when only the chymotrypsin-like
activity was inhibited, the a6/C2 subunit was uniquely modified.
These results provide important molecular details regarding the
catalytic site-specific inhibition of proteasome by HNE.
� 2004 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

The proteasome is a multi-subunit proteolytic complex that

is responsible for the regulated degradation of most intracellu-

lar proteins and is essential for cell survival [1]. The proteolytic

core of the proteasome, known as the 20S proteasome, appears

as a hollow cylinder of four stacked rings [2]. The two outer

rings, each composed of seven distinct a-subunits, serve to sta-

bilize the catalytic core and have been proposed as the site of

control for entry of substrates into the catalytic chamber [3].

The two inner rings are composed of seven distinct b-subunits.
In mammalian proteasome, three of the seven b-subunits con-
tain the active sites, which perform different proteolytic cleav-

age. Based on mutational and crystal structural analysis, the

three catalytic activities, the peptidylglutamyl hydrolyzing,

trypsin-like, and chymotrypsin-like, have been assigned to

the b1, b2, and b5 subunits, respectively [4]. As a consequence

of an inflammatory stimulus, the constitutive catalytic subunits

b1, b2, and b5 can be replaced in nascent proteasomes by the

inducible subunits LMP2, MECL, and LMP7, respectively [5].

Because the proteasomeplays a central role in key cellular pro-

cesses, it is essential to understand themechanistic basis for pro-

teasome inhibition. Previous research has shown that the

proteasome can be inhibited by a number of oxidants, including

4-hydroxynonenal (HNE) [6]. HNE is an aldehyde that origi-
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nates from peroxidation of polyunsaturated fatty acids and

forms a mixture of adduct types on the side-chains of cysteine,

lysine, and histidine through a Michael-type nucleophilic addi-

tion [7]. The addition of HNE adducts on both membrane and

soluble proteins has been shown to inhibit protein function [8–

11]. Further, direct attachment of HNE to the proteasome has

been ascribed to the decline in proteasome activity in studies

of cardiac muscle following ischemia reperfusion [12], with cere-

bral ischemia [13], in kidney homogenates following incubation

with HNE [14], and in lymphocytes and spinal cord from aged

organisms [15,16]. However, the molecular details responsible

for the loss in activity have not been elucidated.
2. Materials and methods

2.1. Materials
Proteasome substrates were purchased from Sigma and Calbiochem.

HNE was from Cayman Chemical. Antibodies and their respective
companies are as follows: Proteasomal subunits (Affinity Bioreagents),
HNE (Alpha Diagnostics and Calbiochem), heat shock protein 90
(HSP90) (StressGen), alkaline phosphatase-conjugated goat anti-
rabbit or -mouse secondary antibody (BioRad). All reagents for sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE) and
Western immunoblotting were supplied by BioRad. Immobline dry
strips (pH 3–11, non-linear, 11 cm) were from Amersham Pharmacia
Biotech. Immobilon-P polyvinylidene difluoride membrane (PVDF)
and C18 ZipTips were from Millipore. The bicinchoninic acid (BCA)
protein assay kit was obtained from Pierce. HPLC-grade dimethyl sulf-
oxide and all reagents for the preparation of samples for mass spec-
trometry were from Aldrich.

2.2. Preparation and characterization of liver 20S proteasome
The 20S proteasome was purified from frozen rat liver as described

[17]. Proteasome was suspended in 50 mM potassium phosphate (pH
7.0) and 0.1 M KCl and aliquots were stored at �80 �C. Protein con-
centrations were determined using the BCA protein assay and bovine
serum albumin as the standard protein. The relative content of
LMP7 and b5 subunits was determined by Western immunoblotting
(see Section 2.6) comparing the immune reaction of subunit-specific
antibodies in the liver 20S with the reaction in protein from retinal pig-
ment epithelial cells containing a known percent of each subunit. In
these cells, no LMP7 is present in the absence of cytokines. Induction
of the immunoproteasome was accomplished by incubating the cells
with 100 U/ml interferon-c for 72 h. Mixtures of cytokine-free and
cytokine-exposed cells were used to generate a standard curve of
known percentages of the inducible and constitutive subunits.

2.3. Incubation of proteasome with HNE
20Sproteasomewas incubatedwith 20lMHNEat various times from

0 to 240min. Themolar ratio of the 20S proteasome (mass�700 kDa) to
HNE (mass 156 Da) was approximately 1:10000. Preliminary experi-
ments showed that 20 lM was the optimal concentration to achieve
maximal inhibition without the formation of HNE-protein aggregates,
ation of European Biochemical Societies.
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which would have complicated the 2D gel analysis. The HNE reaction
was quenched by either (1) addition of 10-fold excess buffer to measure
activity, (2) addition of reducing buffer and immediate 1D electrophore-
sis of protein, or (3) dialysis of the proteasome in 20 mM Tris (pH 7.4)
overnight at 4 �C to prepare prior to 2D electrophoresis.
Fig. 1. Time-dependent modification of the 20S proteasome by HNE.
(A) Silver-stained gel of proteasomal subunits resolved by 13% SDS–
PAGE following incubation with HNE for varying times. Arrow
indicates the position of HSP90, determined by a positive immune
reaction with anti-HSP90. (B) Western immunoblot probing for HNE
adducts on proteins from the 20S proteasome following incubation
with HNE for varying times. Protein loads were 1 lg per lane.
Molecular mass standards are (in kDa): 97.4, phosphorylase b; 66.2,
bovine serum albumin; 45, ovalbumin; 31, carbonic anhydrase; 21.5,
soybean trypsin inhibitor; and 14.4, lysozyme.
2.4. Measurement of proteasome activity
The fluorogenic peptides LLVY-AMC (150 lM), LSTR-AMC (200

lM), and LLE-AMC (200 M) were used to measure the chymotrypsin-
like, trypsin-like and peptidylglutamyl hydrolyzing activities of the
proteasome, respectively. Proteasome (0.3 lg) was pre-incubated with
either buffer (control) or HNE for a specific length of time at room
temperature. Proteasome activity was measured as described previ-
ously [18]. Measurement of proteasome inhibition by HNE was mea-
sured on three separate preparations of 20S proteasome. The kinetics
of HNE-inhibition was determined from fitting a curve assuming
first-order exponential decay to the experimental data, plotted as rela-
tive activity versus time of HNE incubation (Origin version 6.0).

2.5. Gel electrophoresis
1D SDS–PAGE separation of proteasomal subunits (1 lg) was

accomplished using a 12% resolving gel with a 3% stacking gel [19].
For 2D electrophoresis, proteasomal subunits were first focused across
a non-linear pH gradient of 3–10 (11 cm) using a Protean IEF Cell
(BioRad). Purified 20S (15 g) was diluted in sample buffer (8 M urea
and 4% CHAPS) and focused for 50000 V h over 23 h. Second dimen-
sion was performed using 12% SDS–PAGE [19]. Two gels were run in
parallel. One gel was silver stained using the Silver Stain Plus Kit. The
alternate gels were used for Western immunoblotting. Images were
captured using a Fluor-S MultiImaging system (BioRad).

2.6. Western immunoblotting of 1D and 2D gels
Proteins were electrophoretically transferred to PVDF membrane

and probed with either the monoclonal antibody to HSP90, or poly-
clonal antibodies that recognize proteasomal subunits (b1, b2, b5,
LMP2, LMP7, a6/C2, a-subunits, and b-subunits), amino acid-HNE
Michael adducts or the reduced forms of HNE (1:1 amino acid–HNE
Michael adducts). The specificity of the HNE antibody recognizing
1:1 amino acid:HNE Michael adducts has been thoroughly character-
ized [20]. Prior to application of the antibody that recognizes the re-
duced forms of HNE, blotted proteins were reduced by incubating
the PVDFmembranes in a solution containing 25 mM sodium borohy-
dride in 100 mM MOPS (pH 8.0) for 10 min at room temperature. So-
dium borohydride reduces the carbonyl present on Michael adducts
[21]. For the HNE antibodies, Immun-blot Amplified Alkaline Phos-
phatase Kit (1:3000 each of biotinylated goat anti-rabbit IgG, strepta-
vidin, and biotinylated alkaline phosphatase) was used in conjunction
with the substrate BCIP-NBT to visualize the immunoreaction. For
all other antibodies, the secondary antibody was either goat anti-mouse
or -rabbit alkaline phosphatase without the amplification system.
Images were captured using a Fluor-S MultiImaging System (BioRad).

2.7. Selection and preparation of proteins for mass spectrometry
Western immunoblotting of 2D gels was used to identify specific

protein spots containing HNE adducts. Immune reactive spots were
aligned with spots on silver stained gels. The selected spots were ex-
cised and proteins digested in-gel overnight at 37 �C with trypsin. Pep-
tides were extracted as described [22].

2.8. Matrix-assisted laser desorption ionization-time of flight mass

spectrometry
The peptide mixture was desalted using Millipore C18 ZipTips fol-

lowing the manufacturer�s protocol. Data were acquired on a QSTAR
XL quadrupole-TOF mass spectrometer (ABI) as described [22]. Mea-
sured peptide masses were used to search the NCBI and Swiss-Prot se-
quence databases for protein identifications and database accession
numbers using Mascot (www.matrixscience.com) or BioAnalyst
(ABI) software. All searches were performed with a mass tolerance
at 50 ppm. Positive identification required a minimum of three peptide
matches and a probability score that indicates high concordance be-
tween the masses of experimentally derived peptides with theoretical
masses of peptides from the matched protein, and a positive identifica-
tion from at least one product ion spectrum.
2.9. MS/MS sequencing of peptides
Product ion spectra were collected in an information dependent

acquisition mode using the enhanced feature of the scan mode with
a three second scan time. Experimental fragment masses were used
to search the NCBI and Swiss-Prot sequence databases for protein
identifications and database accession numbers using Mascot
(www.matrixscience.com) or BioAnalyst (ABI) software. Peptides with
a minimum of four consecutive b and y ions were considered as an
acceptable match.
3. Results

3.1. Selective Inhibition of the 20S proteasome by HNE

To directly test the effect of HNE modification on protea-

some function, the 20S proteasome purified from liver was

incubated with HNE from 0 to 240 min. Fig. 1 shows a sil-

ver-stained polyacrylamide gel and the corresponding Western

immunoblot probed for HNE-adducts. Prior to incubation

with HNE, there is a prominent reaction in a single protein

band at �26 kDa before exposure to exogenous HNE (Fig.

1B). Following incubation, there is a time-dependent increase

in the reaction in a protein band at �33 kDa and in proteins

with migrations at higher molecular masses. By four hours

of incubation, HNE-adducts are present in the proteins at

the interface between the resolving and stacking gels and near

the top of the resolving gel, suggesting the formation of protein

aggregates cross-linked by HNE.

In a parallel experiment, the activity of each catalytic site

was measured using the fluorogenic peptides LLE-AMC,

LSTR-AMC, and LLVY-AMC, to assay the peptidylglutamyl

hydrolyzing, trypsin-like, and chymotrypsin-like activities,

respectively. We observed a time-dependent inhibition of each

catalytic site that differed in both the extent and the rate of

inhibition (Fig. 2). The peptidylglutamyl hydrolyzing activity

was the least sensitive to HNE; only 25% inhibition was ob-

served during 4 h of incubation. The trypsin- and chymotryp-

sin-like activities were both inhibited by �45%. However,

rapid inactivation of the chymotrypsin-like activity occurred

within 2 min of incubation with HNE, whereas maximal inhi-

bition of the trypsin-like activity occurred in �158 min. These

http://www.matrixscience.com
http://www.matrixscience.com


Fig. 3. Two-dimensional gel resolution of proteasomal subunits before
and after incubation with HNE. The 20S proteasome purified from
liver was incubated in the absence of HNE (control) (A,B) or presence
of 20 M HNE for 15 min (C,D). Proteasome (15 lg) was then resolved
by 2D gel electrophoresis. One gel was stained with silver and used for
mass spectrometric identification of proteins (A,C). Gel A shows the
proteins corresponding to the catalytic b-subunits (1, b1i/LMP2; 2, b1/
Y; 3, b2/Z; 4, b5/X; and 5, b5i/LMP7), as determined by Western
immunoblotting using protein-specific antibodies. The second gel of
each pair was used for Western immunoblotting to locate subunits
containing HNE-adducts (B,D). Arrows on Western blots indicate
HNE reactions unique to that incubation time. Open arrows are
modified subunits with more acidic migration than parent protein. All
numbered spots were identified by MALDI-TOF MS and data base
search (Table 1). The indicated pI values (top of A,B) were determined
from an experimental calibration curve supplied by Amersham
Biosciences. Molecular mass standards are (in kDa): 45, ovalbumin;
31, carbonic anhydrase; and 21.5, soybean trypsin inhibitor.
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Fig. 2. Time-dependent inactivation of the proteasome by HNE. The
peptidylglutamyl hydrolyzing (triangle), chymotrypsin-like (square)
and trypsin-like (circle) activities were determined by measuring the
proteolysis of the fluorogenic peptides LLE-AMC, LLVY-AMC and
LSTR-AMC, respectively. Data are reported as means (±SEM) for
duplicate measurements from three separate preparations of purified
20S proteasome. Initial rates of peptide proteolysis in the absence of
HNE were 17.2 ± 6.8 (LLVY), 1.1 ± 0.2 (LSTR), and 3.2 ± 1.2 (LLE)
nmol/mg/min.
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results suggest that the chymotrypsin-like activity is exquisitely

sensitive to HNE modification, although prolonged exposure

to HNE also affects the activity of the other catalytic sites.

3.2. Identification of subunits containing HNE-adducts

To investigate the mechanistic basis for the rapid inhibition

of the chymotrypsin-like activity by HNE, we identified sub-

units that were modified by HNE using a combination of

2D-PAGE, Western immunoblotting, and mass spectrometry.

After localizing the HNE-immune reaction to specific protein

spots, the corresponding subunits were identified by perform-

ing in-gel trypsin digests and peptide mapping using full scan

matrix-assisted laser desorption ionization-time of flight mass

spectrometry (MALDI-TOF MS). Tandem MS data were ac-

quired to provide unambiguous confirmation of a subunit�s
identity. To identify the HNE-modifications that were re-

stricted solely to a loss in chymotrypsin-like activity, we chose

an incubation time of 15 min. During this short incubation, a

strong immune reaction of a single protein band (Fig. 1) cor-

relates with maximal inhibition of chymotrypsin-like activity

and no effect on the other activities (Fig. 2).

Following 2D gel resolution of subunits from the 20S cata-

lytic core, we observed a larger number of protein spots than

predicted for the 17 catalytic core subunits known from the

mammalian proteasome (Fig. 3). Our analysis of individual

protein spots by either MS or Western immunoblotting

showed that many of the individual subunits were found in

multiple spots or smears migrating at the same molecular mass

but at different isoelectric points (pI). These isoelectric variants

from individual proteins are known as ‘‘charge trains’’ and re-

sult from post-translational modifications that alter the intrin-

sic charge of the protein. Post-translational modifications

described for individual subunits that alter the protein�s pI in-
clude phosphorylation, acetylation, and glycosylation [23–25].

HNE-modification of the e-amino group of lysine would also

cause the modified protein to migrate to a more acidic position

than the unmodified parent protein. Several protein spots on

the silver stained gel demonstrated very light negative staining.
This type of ‘‘reversed’’ staining with silver is normally associ-

ated with proteins containing sugar moieties [26].

As a reference point, we localized the position of the b-
subunits containing the catalytic sites by Western immunoblot

using subunit-specific antibodies. The protein spots corre-

sponding to each catalytic subunit are indicated on the sil-

ver-stained gel from the control (no HNE) sample (Fig. 3A).

A positive immune reaction for both the constitutive (b1/Y,

b2/Z, and b5/X) catalytic subunits and their inducible counter-

parts (b1i/LMP2 and b5i/LMP7) was evident in the 20S from

liver. (We were unable to obtain an unambiguous immune

reaction for b2i/MECL.) The apparent molecular mass and

pI values were consistent with the theoretical values for sub-

units without their corresponding propeptide (Table 1). To

estimate the percent composition of the inducible (LMP7)

and constitutive (b5) subunits responsible for the chymotryp-

sin-like activity, we compared the immune reaction in the liver

20S with the reaction in cells containing a known percentage of

each subunit (data not shown). We estimated that our 20S

preparation contained 70% LMP7 and 30% b5.
In the control sample, Western immunoblot analysis with

anti-HNE showed a strong immune reaction in five distinct

proteins spots migrating between pI 5.8 and 7.0 and at a mass

of �26 kDa (Fig. 3B). MS analysis determined that these pro-

tein spots were the isoelectric variants of the a2/C3 subunit. A

light immune reaction was also observed in multiple spots

migrating more acidic to the a2/C3 subunit at a mass of �28

kDa. These proteins were identified as the a4/C6 subunit.

The pattern of migration for these subunits and the HNE-

modified subunits identified following 15 min of incubation

(see below) was consistent with the theoretical values for their

respective molecular mass and pI values for the unmodified

protein plus isoelectric variants containing post-translational

modifications that alter the intrinsic charge (Table 1).



Table 1
Subunit identification of 20S proteasome

Spota no. 20S subunitb Accession No. Molecular mass pI Identification

Exp.c Theo.d Exp.e Theo. WBf MALDI-TOF MS
kDa Da

% Coverage # Peptides

1 b1i/LMP2 P28077 23 21354 4.7 4.77 X
2 b1/Y P28073 23 21964 4.8 4.98 X
3 b2/Z Q9JHW0 27 25314 5.7 5.84 X
4 b5/X P28075 26 22482 8.0 8.33 X
5 b5i/LMP7 P28064 26 22733 8.8 8.57 X
6 a4/C6 XP_342599.1 30 28439 7.9 8.60 20 3
6 0 a4/C6 30 28439 7.3 8.60 27 7
7 a2/C3 P17220 27 25795 6.8 7.12 38 7
7 0 a2/C3 27 25795 6.3 7.12 46 7
700 a2/C3 27 25795 5.9 7.12 35 6
8 a6/C2 P18420 33 29517 6.2 6.14 44 12
8 0 a6/C2 33 29517 6.0 6.14 30 6

a Protein spots were excised from 2D gels shown in Fig. 3 and analyzed on a QSTAR XL quadrupole MALDI-TOF MS instrument.
b First subunit name follows nomenclature by Groll [2].
c Exp., experimental molecular mass values were estimated using the experimental calibration curve generated from the Rf of low molecular weight
silver stained markers.
d Theo., theoretical molecular mass and pI values were calculated from the Swiss-Prot sequences without the propeptide sequences.
e Exp., experimental pI values were estimated using the calibration curve supplied for 11 cm, pH 3–11, non-linear IPG strips (Amersham Bio-
sciences).
f WB, Western immunoblotting.
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Following 15 min of incubation with HNE, Western immu-

noblot analysis probing for HNE-adducts showed a promi-

nent, new reaction of multiple spots between pI 5.8 and 6.2

and at a mass of �33 kDa (Fig. 3D). These proteins were iden-

tified by MS analysis as the a6/C2 subunit (Fig. 4). Fig. 4A

shows a MALDI-TOF mass spectrum of peptides generated

by in-gel trypsin digestion from spot 8 0. Six peptides covering

30% of the primary sequence for the a6/C2 subunit were iden-

tified from the peptide mass fingerprint. The fragmentation of

peptide 1431 generated by tandem MS produced a spectrum

containing 9 of 12 b ions and 8 of 12 y ions matching residues

19-30 of the a6/C2 subunit (Fig. 4B). Six b- and y-series ions of

low intensity (m/z ranging between 129 and 605, not indicated

on spectrum) with the loss of a water or ammonia also

matched. Fragmentation of one additional peptide of a singly

charged ion of 1779 matched the sequence for residues 4–18 of

the a6/C2 subunit (data not shown). These data provide unam-

biguous identification of the a6/C2 subunit.

One additional change in immune reaction and protein

staining occurred with the a2/C3 subunit. After the 15 minute

incubation, two new immunoreactive protein spots appeared

to the acidic side of spots 7 and 7 0, which had been identified

as a2/C3. On silver stained gels, these new protein spots were

approximately equivalent to the parent spots 7 and 7 0. The

acidic migration of new protein spots suggests the addition

of HNE-adducts on one or more lysine residues.

3.3. Confirmation of antibody specificity

A second antibody that recognizes the reduced form of ami-

no acid:HNEMichael adducts was used to verify the specificity

of the antibody used in the previous experiments. As shown in

Fig. 5, identical immune reactive bands were observed for 20S

incubated with HNE for 15 min (Lanes 2 and 3). The absence

of reaction for HNE modified BSA that was not reduced with

sodium borohydride prior to exposure to the antibody that

recognizes the reduced HNE Michael adducts (Lane 5) also

confirms the specificity of this second antibody. Taken to-
gether, the immune reaction of two antibodies that recognize

different chemical forms of HNE provides convincing evidence

for the presence of HNE Michael adducts on proteasomal

subunits.
4. Discussion

The goal of this study was to test the effect of HNE on indi-

vidual catalytic activities and elucidate the molecular details

responsible for HNE-induced inhibition by identifying the sub-

units containing HNE-adducts. Activity measurements per-

formed during incubation with HNE showed rapid inhibition

of the chymotrypsin-like activity, followed by slower inhibition

of the other catalytic sites. Resolution of modified subunits by

2D gel electrophoresis and Western immunoblotting revealed

that the a6/C2 subunit is uniquely modified at a time when

only the chymotrypsin-like activity is inhibited. These results

provide important molecular details regarding the catalytic

site-specific inhibition of the proteasome by HNE. Under-

standing how the 20S proteasome reacts in the presence of ele-

vated levels of HNE is particularly relevant, since the 20S

proteasome has been suggested as the primary mechanism

for degrading damaged proteins following an oxidative insult

[27,28]. As a caveat, the identity of the proteasome species that

is functionally active under different physiological conditions

remains controversial.

Inhibition of the chymotrypsin-like activity induced by HNE

would have a direct negative impact on many key cell func-

tions regulated by the proteasome, since it is primarily the chy-

motrypsin-like activity that determines the rate of protein

breakdown [4,29,30]. The exquisite sensitivity of the chymo-

trypsin-like site to modification by HNE was also demon-

strated in two different neuronal cell lines following

incubation with HNE [31]. In these studies, the loss in activity

occurred along with the appearance of proteasome HNE-

adducts, increased levels of protein carbonyls and ubiquitinated
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Fig. 4. Mass spectrometric analysis of tryptic peptides from the 20S
proteasome subunit a6/C2. (A) Full scan of a MALDI-TOF MS
peptide mass fingerprint from spot 8 0 (Fig. 3D). The spectrum shows
six peptides that matched the theoretical m/z values for residues in the
sequence from rat 20S proteasome subunit a6/C2. The six matching
peptides covered 30% of the sequence (Table 1). * denotes products of
trypsin autolysis. (B) Product ion spectrum for fragmentation of the
singly charged ion 1431 of the IHQIEYAMEAVK peptide formed by
MALDI ionization. The amino acid sequence is displayed above the
spectrum and corresponds to residues 19–30 of proteasome subunit a6/
C2. The y- and b-ions found experimentally are written above and
below the sequence, respectively, and are indicated above the corre-
sponding peak in the spectrum. Immonium ions are denoted as (I) on
spectrum. Fragment ion nomenclature was established by Biemann
[50]. The data were plotted as a function of m/z values after raw mass
spectral data were smoothed, centroided, and labeled in BioAnalyst
(ABI).

Fig. 5. Comparison of immune reactions between antibodies that
recognize different chemical forms of HNE-Michael adducts. Proteins
were resolved by 13% SDS–PAGE, then blotted on a PVDF
membrane. The lane containing the 20S proteasome was cut in half
so that the reaction with the two antibodies could be aligned. Reaction
of the antibody that recognizes amino acid:HNEMichael adducts with
HNE-modified bovine serum albumin (Lane 1) and 20S proteasome
incubated with HNE for 15 min (Lane 2, arrow). Reaction of the
antibody that recognizes the reduced form of amino acid:HNE
Michael adducts with 20S proteasome incubated with HNE for 15
min (Lane 3, right half of blot) and HNE-modified bovine serum
albumin (Lane 4). Both samples were reduced with sodium borohy-
dride prior to exposure to the antibody. Reaction of the antibody
recognizing the reduced form of HNE with HNE-modified bovine
serum albumin without prior reduction with sodium borohydride
(Lane 5). Protein loads were 1 lg. Lane M is the molecular mass
marker; corresponding masses are shown on the right.
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proteins, and cellular changes indicative of apoptosis. Studies

showing the partial reversal of peroxide-induced inhibition of

chymotrypsin-like activity by DTT and the inhibition of chy-

motrypsin-like activity by sulfhydryl compounds, such as N-

ethyl-maleimide [32,33], suggest that at least one of the sites

critical for maintenance of chymotrypsin-like activity is a cys-

teine residue. In support of this idea, other studies have sug-

gested that the reversible S-glutathionylation of cysteine may

be an important physiological regulator of proteasome chymo-

trypsin-like activity [33,34]. Taken together, these results indi-

cate that the intracellular redox state may be closely linked to

proteasome-mediated proteolysis. Further, HNE modification

of a key cysteine is a potential means for rapid inactivation of

the chymotrypsin-like activity.
In the present study, the trypsin-like activity was inhibited to

the same extent as the chymotrypsin-like activity, but at a

much slower rate. This observation suggests several possibili-

ties, including differential susceptibility to HNE-modification

or partial protection of sites critical for the trypsin-like activ-

ity. The contaminant, HSP90, which co-purified with the 20S

(Fig. 1, arrow), could be the putative protector against

HNE-inhibition. In previous studies, exogenous addition of

HSP90 to purified 20S proteasome and overexpression of

HSP90 in cells protected the trypsin-like activity from inhibi-

tion by both HNE and metal-catalyzed oxidation [21,35,36].

In our study, HSP90 is not modified by HNE during the incu-

bation (Fig. 1). Therefore, the mechanism of protection does

not include providing a non-proteasome target for HNE mol-

ecules, i.e., HSP90 is acting as a ‘‘molecular sponge’’. Rather,

it is likely that the binding site of HSP90 shields residues that

are sensitive to modification by HNE.

The plot of the time-dependent inhibition of the three cata-

lytic activities (Fig. 2) shows that the maximal extent of inhibi-

tion is less than 50%. These results suggest that only half of the

proteasome population were inhibited even in the presence of

HNE in molar excess. One explanation is that at least a por-

tion of the population was in a conformation that makes it less

susceptible to HNE modification and subsequent inactivation.

Additionally, both the composition of the b-subunits (constitu-
tive or inducible) and ‘‘activation state’’ (active or latent) of

the purified 20S proteasome have been shown to alter the cat-

alytic activity in response to oxidants or following binding of

proteins, such as HSP90 [35–38]. For example, Amici et al.

[38] showed that proteasomes isolated from thymus, composed

mainly of the inducible subunits, were more sensitive to perox-

ynitrite inactivation. In contrast, proteasomes isolated from

brain, composed mainly of the constitutive subunits, were

resistant to peroxynitrite inactivation. Liver 20S proteasome

contains both constitutive and inducible b-subunits, as
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evidenced in our study by a positive immune reaction with pro-

tein-specific antibodies (Fig. 3A) and also reported by others

[39–41]. In our preparations, approximately 70% of the chy-

motryptic subunit is LMP7. In view of the evidence demon-

strating increased susceptibility of proteasome containing the

inducible subunits to oxidative damage, the 50% maximal inhi-

bition achieved in the current study could reflect the differen-

tial susceptibility of the immunoproteasome versus the

constitutive proteasome.

A logical prediction of the mechanism of inactivation by

HNE would be the direct modification of the b-subunits at

either key residues required for activity or at sites that would

disrupt specific interactions between adjacent b-subunits. While

we did not detect HNE-adducts on b-subunits, it is possible that
our method of analysis did not have the required sensitivity to

reveal modification of a limited number of HNE-adducts. Addi-

tionally, the HNE could have assumed a form, i.e., fluorescent

cross links, that is not recognized by the antibodies used in this

study. However, we did observe a robust immune response for

modification of a-subunits during the HNE-induced inhibition

of the proteasome. These results are consistent with a report of

HNE modification of only a-subunits for 20S proteasome iso-

lated from heart muscle following an oxidative stress induced

by ischemia/reperfusion [12]. Examination of the crystal struc-

ture of mammalian 20S proteasome provides potential mecha-

nistic explanations for our results based on the physical

arrangement of the a-subunits and the catalytic subunits

[42,43]. The a6/C2 subunit is an adjacent neighbor to the b5 sub-
unit that contains the chymotrypsin-like active site. Although

the details of how cross-talk occurs between these two subunits

are still unclear, the interaction of the a6/C2 subunit with either

micro- or macromolecular ligands has a profound effect on the

chymotrypsin-like activity. For example, direct binding of lipo-

polysaccharide to the a6/C2 subunits in proteasome isolated

from macrophages or rabbit muscle selectively activated the

chymotrypsin-like activity [44]. The a6/C2 subunit is also the

putative binding site for the regulatory protein, PA28 [45].

Binding of this macromolecular ligand of the 20S significantly

increases the hydrolysis of fluorogenic peptides, especially the

peptides hydrolyzed by the chymotrypsin-like site [46].

Prior to incubation with exogenously added HNE, the a2/C3
and a4/C6 contained HNE-adducts. While we cannot rule out

that the modification occurred during the purification process,

the consistent presence of HNE-adducts on these subunits in

three separate liver preparations and in 20S purified from skel-

etal muscle (unpublished observation) provides strong evidence

for their modification in vivo. Further, the positive immune

reaction with a second antibody that recognizes the reduced

form of amino acid:HNE Michael adducts verifies the selective

recognition of two different chemical forms of HNE. These re-

sults also imply that HNE-modification is not a random pro-

cess and that even in a multi-subunit complex such as the

proteasome, specific proteins are molecular targets for HNE.

Proteasome function is intimately linked to its subunit com-

position and structural properties, such as post-translational

modifications. An important observation that has recently

emerged is the plasticity of the proteasome subunit composi-

tion in response to changing cellular environments. In cultured

neuronal cells, both low (sublethal) levels of oxidative stress

and cellular expression of aggregate-prone proteins resulted

in increased expression of the inducible subunit, LMP2

[47,48]. Increased content of the inducible subunits, LMP2
and LMP7, was also reported in aged muscle [18]. While the

consequences of altering the subunit composition are not fully

understood, it may be a compensatory change that primes the

proteolytic machinery to accommodate an increased demand

for degradation of specific substrates, i.e., oxidized proteins.

These changes could confer protection against subsequent

stresses applied to the cell.

Results from this study provide insight into how modifica-

tion of a specific proteasomal subunit by HNE can affect the

activity of a select catalytic site. These results also provide a

potential explanation for the selective loss of chymotrypsin-

like activity we have previously reported in retinal proteasome

from aged rats [49]. However, we also acknowledge that in the

cellular context, proteasomal inhibition by HNE-conjugated

proteins may also play a significant role in inhibiting protea-

some function. Knowledge of the structural modifications that

affect proteasome activity, such as altering the subunit compo-

sition or oxidative modification, is critical to understanding its

function under both normal and pathological conditions.
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