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SOLVING THE NONLINEAR EQUATIONS OF PHYSICS 

G. ADOMIAN 

Center for Applied Mathematics, University of Georgia, Athens, GA 30602, U.S.A. 

Abstract--Application of the decomposition method and of the asymptotic decomposition method are 
considered for solution of nonlinear and/or stochastic partial differential equations in space and time. 
Examples are given to show the potential for solving systems of equations even with strongly coupled 
boundary conditions. 

I N T R O D U C T I O N  

The frontier applications of science lead naturally to the study of partial differential equations in 
space and time. Current developments in mathematical physics, engineering and other areas have 
given impetus to such research and to linearization techniques. The latter assumes, essentially, that 
a nonlinear system is "almost linear" in order to take advantage of well-known methods. Often, 
unfortunately, the assumption has little physical justification. Advances are vital, not only to 
mathematics but to the areas of application. Fluid mechanics, soliton physics, quantum field theory, 
nonlinear evolution equations are all areas which can benefit. In fluid mechanics, for example, the 
usual analyses are far indeed from any physical reality when they deal with a "mathematized" 
ocean bearing no resemblance to a real ocean. Strong nonlinearities and strong stochasticity would 
clearly be involved in a reasonable model. 

A methodology with a potential for the needed advances and solutions to the above problems 
will be discussed in this paper and proposed for rigorous study. 

Let us begin with the general form Fu = g, where g may be a function of  space variables x, y, z 
and time t. Consider, for example, 

[Lx+ Ly+ L~+ Lt]u + Nu = g ( x , y , z , t ) ,  

where Lx, Ly, Lz, L, represent linear differentiations in x, y, z, and t, respectively, and where 
N(u) is a nonlinear (possibly stochastic) term. It is written Nu if deterministic. We will assume here 
that Nu =f(u) .  Let each L = l + R, where k is an invertible operator, simply the highest-ordered 
differential operator, and R is the "remainder" operator.t  Then 

( I x +  Ly+ k~+ kt)u + ( R x + R y + R , +  R,)u + N u  =g. 

The operators Rx, Ry, R~ and R,, as well as the g, may be stochastic. Or, they may simply be 
a part of an entirely deterministic operator and be chosen only to make the remaining part 
easily invertible. We solve for Lxu, k,u, L~u, l,u in turn, and since the inverses L; 1, L~-~, L; ' ,  L7 ~ 
exist~ 

L.;ILxu = L~-~[g - Lyu - L~u - -  k t u  ] - k;~[Rx + R r + R: + R,]u - L~Nu  

Ly'Lyu-=- Ly'[g - Lxu - L~u - L ,u ] -  L;'[Rx + Ry + R. + Rt]u - L;7'Nu 

L;~L:u = L;~[g - Lxu - Lyu - L,u] - L;'[Rx + R~. + R: + R,]u - L;-~Nu 

L,~L,u = L,~[g - Lxu - Lyu - L~u] - kT~[Rx + R~ + R= + R,]u - L;-Wu. 

t in  stochastic cases, we can also let R be the stochastic part of  the operator, i.e. L = L + R, where t = ( L ) .  Finally, we 
can let L = L + R + R, where L is invertible, R is the remainder operator, and R is stochastic. 

:[:For example, V2u - u, is written L.~ + Lyu + L:u + L,u, where L x, Ly, Lz are second-order differentiations and 
L,u = - O u  / ~ t. 
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Solving for u in all four equations, we obtain 

u = Ox + L~-'[g - Lyu + L~u - Ltu] - L~-'[Rx + Ry + R~ + R,]u - L~-'Nu 

u = 0 , +  L f ' [ g  - Lxu - L~u - L , u ] -  L~-'[Rx + R, + R~ + R,]u - L~-'Nu 

u = 0~ + L Y~[g - L~u - Lyu - L,u] - L;-~[R~ + Ry + R~ + R,]u - L~-~Nu 

u = 0, + LT~[g - Lxu - Lyu - L.u] - L/-~[Rx + Ry + R: + R,]u - LTtNu 

where 

L~-'0~ = L;~Oy = L~-18~ = L;-Z0, = 0. 

A linear combination of these solutions is necessary. Therefore, adding and dividing by four, 
we write 

u = u0 - (1/4){(Lz~Ly + Ly~Lx) + (L~-~L~ + L~-~Lx)+(L;~L, + L,~ ~Lx) 

+ (LT'L~ + LT 'L, )  + (Li-'L,. + LT~L,) + ( L ; '  L, + L,-~ L~)} u 

- ( I /4)  [L~-' + L 7 '  + LT' + L ; ' ] [Rx  + R, + R~ + R,]u 

-(I/4)[L~-' + L f ' +  LT~+ L,- ' ]Nu, 

where the term u0 includes 

( l /4) [L~ -~ + L f '  + L ; "  + L,- ' ]g 

and also includes the terms arising from the initial conditions which depend on the number 
of integrations involved in the inverse operators. We have L;l l .xu = u ( x , y , z ,  t ) - O x ,  where 
k~O.~ -- O. Now, k~kxu = u ( x , y ,  z, t)  - u(O,y, z, t) if L~ involves a single differentiation. 
k; t  L.,u = u(x ,  y,  z, t)  - u(O, y, z, t)  - x,  Ou(O, y,  z, t ) /Ox for a second order operator, etc. Similarly 
Ly~Lyu = u -Oy,  where Oy = u(x ,  O, z, t)  for a single differentiation in Ly, etc. Thus, we have the 
partial homogeneous solutions Ox, Oy, 0~, O, analogous to the one-dimensional problems considered 
in earlier work where we wrote 

f; k21L,u(t) = ( d u / d t ) d t  = u ( t )  - u(O) 

when kt--d/dt .  The resulting u 0 is given by: 

u0 = (1/4)[0~ + 0y + 0~ + 03 + (1/4)[L2 ~ + k ; '  + k2' + k,- qg. 

A key element in the solution methodology is the expansion of nonlinear terms in a special 
set of polynomials denoted by A, which have been defined by the author [1-3] and are generated 
for the specific nonlinearity involved. The second key element is decomposition of  the solution 
into components to be determined [1-3]. A final point is not to invert the entire linear operator 
but only the highest-ordered derivative term to avoid cumbersome integrations. If  the solution 
u is written X ~.=0 u.,  the A .  = A,,(u o, uj, . . .  , u.) and each component u. will depend only on 
u0, u~ . . . .  , u. and is therefore calculable. Since these matters have now been sut~ciently discussed 
in several books and numerous papers [5-12], we can simply proceed with their use. 

We now write Nu, the nonlinear term, as 

Nu = ~ A. 
n=O 

and assume our usual decomposition of u into 

Un, 
n~O 

to determine the individual components. 
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For m-dimensional problems, we can write in a more condensed form, 

~ ,  r n - |  

u = Uo - ( l /m)  ~', [Lx.' Lxj + L~' L~,lu 
j ~ i + l  i=1  

(i # j )  

where 

m m I oo -(I/m)I~=IL~,'I[~= R~']u-(l/m)I~= L~ ILA., 

u0 = (l /m) 0,+ L~lg . 
i i ~ l  

Thus u0 is easily calculated. The following components of the decomposition follow in terms 
of u0. (There are no statistical separability problems in the stochastic case.) Now for n >I 1 we 
can write 

m m - - I  

u , =  - - ( l /m)  ~ Z 
i = 1  j = l  

( i ~ j )  

[L~ a L~j + L -I • v Lxi ] U,_ t 

- - ( I /m ) l i ~ l  L~l]li=,~, I R~]u,-l--(I/m)li~=i L~IlA.-, 
which allows us to determine Ul,//2 . . . .  ; the complete solution is 

u = ~ u, and our n term approximation ~b, is given by 
n = 0  

For the particular problem here, 

U 0 

U n 

n - I  

~)n ~ ~ U i . 
i=O 

(I/4)[0~ + Oy+ 0.+  0,] + (I/4)[L;~ + L i '  + W' + L;-']g 
-(I/4){(L~-~Ly + Ly'L~) + (L~-'L~ + L;'L~) + (L~-'L, + L?'Lx) 

+ (L:7' L: + L~- fly) + (LTtLy + L~-t L,) + (LT'L, + LT'L~)} u._, 

- ( l /4 ) [L ; - '  + a~ l + L~ -I + LT'][R~ + & + R. + R,]u._, 

- ( I /4) [L~- '  + L i ' +  L:-J+ LT']A._,. 

In the one-dimensional (m = 1) case, the general solution reduces to the previous result for an 
ordinary differential equation: 

Uo = O, + Lt- Ig 

ul = - LTtR ,uo  - L,-~Ao, 

etc. For simplicity in writing, define 

L~ -l + L: - I  + L? j + L71 =_ L- I  
4 

and 

(I/4)[(L~'Ly + L~7'L,) + (L.~-' L. + L:-' Lx) + (L; 'L,  + LT'Lx) 

+ (L;-'L: + L.:- ~ Lj,) + (LT'L:,+ L~7'L,) + (L:-'L, + LT'L-)] =- G 

and 

R x +  R y +  R : +  R ,  
= R, (then for m =4)  

u = Uo - G u  - L - ~ R u  - L - ~ N u .  
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In a one-dimensional case, Gu vanishes and the I/4 or I /m factor is, of  course, equal to one and 
we have 

u = u o -- L - IRu  - L-INu, 

which is precisely the basis of earlier solutions of nonlinear ordinary differential equations. 
For  m dimensions, we write: 

L- l=  ( l /m) ~ L -lx~ 
i = !  

R = ( l /m) ~ Rx,. 
i = l  

Now 

U = U 0 

which reduces to 

m - I  

- ( l /m)  ~ E [L~~ ILxj 
j = i + l  i=1 

+ L~' Lx,]U - L-=Ru - L-tNu, 

u = Uo -- L - IRu  - L-1Nu, 

as previously written for ordinary differential equations when m = 1, since the second term 
vanishes. 

P A R A M E T R I Z A T I O N  AND THE A, P O L Y N O M I A L S  

A parametrization of  the equation for u into 

k r a - I  

U = U o - ( 1 / m ) 2  ~' [L~IL~j+L~IL~,]u-2L-ZRu-2L-INu 
j = i + l  i = l  

and 

(1) 

into 

u = F - t g  = ~ u, 
n=O 

u = ~. 2"F~lg = 2"u~ 
n=O n=O 

has been convenient in determining the components of  u and also in finding the A, polynomials 
originally. The 2 is not a perturbation parameter. It is simply an identifier helping us to collect 
terms in a way which will result in each u~ depending only on ui_ ~, u~_: . . . . .  u0, for the nonlinear 
case. 

Now N ( u )  is a nonlinear function and u = u(2). We assume N(u)  is analytic and write it as 

~ A~2 ~ if N ( u ) = N u ,  
n--0 

i.e. if N is deterministic. (if the nonlinear stochastic term M u  appears, we simply carry that along 
as a second "stochastically analytic" expansion Z~=0 B~2".) 

Now equation (1) becomes 

~, 2"F~'g=uo-(llm)2 k ~'[I-.7,'L.,,+L~iL.,,]~ ,~'F~ig 
n = 0  j ~ i + l  i = l  n=O 

~I=0 n=O 
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Equating powers of 2: 

Fo Jg = u0 
m - - I  

F ~ - t g = - ( I / m )  ~ ~ [Lx.'Lxj 
j=i+l  i = 1  

F~'g = -(I /m) ~ [Lx~' U~, 
j = i + |  i = l  

+ L~' Lx,](Fo'g)- L-'R(F~tg)- L-'A0 

+ L~t L~](F~-t,g) - L-tR(Fy~_,g)- L-'A._ t. 

Hence, all terms are calculable. If there are both deterministic and stochastic terms which are 
nonlinear, i.e. Nu = Nu + Mu, we calculate both in the same way, but the second involves 
randomness. If randomness is involved anywhere in any part of the equation, we will then calculate 
the statistical measures, e.g., the expectation and covariance of the solution process. 

Thus, each F£t+~g depends on F~-~g and ultimately on F ~ g .  Hence, F-~, the stochastic non- 
linear inverse, has been determined. The quantities A~ and B~ have been calculated for general 
classes of nonlinearities, and explicit formulas have been developed. Their calculation is as 
simple as writing down a set of Hermite or Legendre polynomials. They depend, of course, on the 
particular nonlinearity. 

If stochastic quantities are involved, the above series, i.e. the n-term approximation q~, then 
involves processes and can be averaged for <u > or multiplied and averaged to form the correlation 
<u(q)* u(t2)> = Ru(q, t2) as discussed in the author's previous works. Thus, the solution statistics 
or statistical measures are obtained when appropriate statistical knowledge of the random 
quantities is available. 

Summarizing, we have decomposed the solution process for the output of a physical system into 
additive components--the first being the solution of a simplified linear deterministic system which 
takes account of initial conditions. Each of the other components is then found in terms of a 
preceding component, and thus ultimately in terms of the first. 

The usual statistical separability problems requiring closure approximations are eliminated with 
the reasonable assumption of statistical independence of the system input and the system itself!t 
Quasimonochromaticity assumptions are unnecessary and processes can be assumed to be general 
physical processes rather than white noise. White noise is not a physical process. Physical inputs 
are neither unbounded nor do they have zero correlation times. In any event, the results can be 
obtained as a special case. If fluctuations are small, the results of perturbation theory are exactly 
obtained [1] but again this is a special case, as are the diagrammatic methods of physicists. 

Just as spectral spreading terms are lost by a quasimonochromatic approximation when a 
random or scattering medium is involved, or terms are lost in the use of closure approximations, 
Boussinesq approximations, or replacement of stochastic quantities by their expectations, 
significant terms may be lost by the usual linearizations, unless, of course, the behavior is actually 
close to linear. 

One hopes, therefore, that physically more realistic and accurate results and predictions will be 
obtained in many physical problems by this method of solution, as well as interesting new 
mathematics from the study of such operators and relevant analysis. 

The author's approach to these problems began with linear stochastic operator equations and 
has evolved since 1976 to nonlinear stochastic operator equations. Consider, for example 

~u ~2u 
d--t + b(t, x)  ~ = g(t, x),  

which is rewritten in terms of operators as 

Ltu + kxu = g(t, x) ,  

where 

O c3 2 
L , = ~  and Lx= b ox 2. 

tThis assumption can be modified in some particular cases. 
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In the stochastic equation 

 u(x, t, to) 
+ A(x,  t)u(x, t, o9) + B(x, t, to)u(x, t, to) =f (x ,  t, co), 

Ot 

where to e (fL F, #) is a probability space, f is a stochastic process, A is a deterministic coefficient 
and B is a stochastic process. We can now write this as: 

where 

I.u + Ru =f,  

L= +A(x,t) 
Ot 

is a deterministic operator and R = B(x, t, to) is a stochastic~( operator, or 

Lu =f ,  

where L is a stochastic operator with deterministic and random parts, t. being ( L )  if R is zero- 
m e a n .  

Let us consider then the operator equation 

Fu = g, 

where F represents a differential operator which may be ordinary or partial, linear or nonlinear, 
deterministic or stochastic. We suppose F has linear and nonlinear parts, i.e. Fu = Lu + Nu, 
where L is a linear (stochastic) operator and N is a nonlinear (stochastic) operator. We may, of  
course, have a nonlinear term which depends upon derivatives of  u as well as u. Such nonlinear 
terms are considered elsewhere. 

Since L may have deterministic and stochastic components, let L = / + R where conveniently 
l_ = ( L )  and R = L - l.. This is not a limitation on the method but a convenience in explanation. 
It is necessary that I. be invertible. I f  the above choice makes this difficult, we choose a simpler 
t. and let R incorporate the remainder. Let Nu = Nu + Mu, where Nu indicates a deterministic 
part and Mu indicates a stochastic nonlinear term. 

F may involve derivatives with respect to x, y, z, t or mixed derivatives. To avoid difficulties 
in notation which tend to obscure rather than clarify, we will assume the same probability space 
for each process and let l = l-x + ky + ks + k,, where the operators indicate quantities like 
O2/Ox ~, O/Oy, etc., but, for now, no mixed derivatives. Similarly, R is written as Rx + Ry + R~ + R,. 
Mixed derivatives and product nonlinearities such as u2u "3, uu", f[u, u', . . . .  u (")] can also be 
handled as shown elsewhere [2]. 

A simple Langevin equation is written tu  = g, where t. = (d /d r )+  fl and g is a white noise 
process. Langevin equations, as used for modeling complex nonlinear phenomena in physics of  the 
form • = f ( ~ )  + 4, can be represented by Lu + Nu = g. We will not make any Markovian or white 
noise restrictions. All processes will be physical processes without restriction to being Gaussian or 
stationary. In the KdV equation, for example, Fu would become I-tu + I.~u + Nu, where Nu 
is of the form uu~ (again a product nonlinearity). In equations of  the Satsuma-Kaup type for 
soliton behavior, we have also such products as uux, uu~xx, U~Uxx, Stochastic transport equations 
will fit nicely into our format since W =  t.~ + t.y + It and stochastic behavior in coefficients or 
inputs are easily included. For  example, instead of Ly(L t) = ~(~, t, to), where ~ is a random source 
and I. = (O/Ot)-  ~W or (O/Ot)-Axy~, we can include nonlinear terms or stochastic behavior 
in the operator. In the double s ine-Gordon equation we have u , -  u~x- sin u + sin 2u = 0 or 
k, + I_~ + N(u), where N(u) includes the trigonometric nonlinearities. We can allow trigonometric 
terms, polynomials, exponentials, or products, sums of  products, etc. Or, as in the LAX theorem, 
N(u) =f(u,  u~, u ~ , . . . ) .  We remark that the Ito equation dy =f( t ,  y)  dt + g(t, y)  dz, where z is the 
Wiener process, which can be written dy/dt =f ( t ,  y ) +  g( t , y )u( t )  so that we can write dz/dt = u 
if we do not insist that z is a Wiener process. This equation can, consequently, be put into the 
author's standard form. The nondifferentiability of  the Wiener process is, of  course, a mathematical 

tWe prefer script letters to indicate stochasticity, Where script letters have been unavailable, italic letters have been used. 
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property. We are interested in physical solutions. In the i to integral S f d z ,  the z process is not o f  
bounded variation; however, a Lipschitz condition on z is reasonable for physical processes, so that 
the integral will be a well-defined Riemann-Stieltjes integral. Physically reasonable models and 
mathematically tractable models are not necessarily the same. This point o f  view offers interesting 
and different mathematics for systems characterized by linear or nonlinear stochastic operator  
equations in which the operator  may be an ordinary or partial differential operator,  where the 
operator  may be stochastic. As an example, in a differential operator  of  n th  order, one or more 
coefficients may be stochastic processes. 

Now consider the inhomogeneous heat equation as an example: 

82U du 
= g (x ,  t )  

dx 2 dt 

or  

Lxu - Ltu = g. 

Assume g is given along with appropriate  conditions on u. We write now 

Lxu = g + L,u, (2) 

Ltu = - g  + Lxu. (3) 

Remembering L~ = d2/dx 2 and L, = d/at,  equations (2) and (3) become 

u = a + bx + L;  tg + L;iL,u, (4) 

u = c - L~-~g + L[IL~u, (5) 

where a, b and c must be evaluated from the given conditions on u. (They arise from the solutions 
of  Lxu = 0 and L,u = 0.) Adding equations (4) and (5) we obtain 

u = (1/2)(a + bx + L~r'g - L;-tg) + ( I /2)(L;~L, + LT~Lx)u. 

We rewrite this as 

with 

Let 

Then 

u = Uo + (1/2){L;~L, + L?tL~}u 

u0 = ( l /2)(a  + bx + L;~g - L[tg).  

u:Lu.. 
r t=O  

u = uo+ ( I /2){L~- 'L ,+ Lf 'Lx} ~ un. 
n = 0  

Since u0 is known when the conditions on u are specified, we have 

u~ = (I/2){Lj-tL, + L;-tLx}uo 

u: = (]/2){L~-'L, + LT'Lx}u, 

u.+ t = ( I /2 ) {L ; 'L ,  + L,-'L~}u~. n I> O. 

so all terms of  u are easily evaluated once u0 is determined. If, for example, initial conditions are 
specified, we have 

a = u (x, 0) 

b = u(0, t) 

c = du(O, t ) /dx .  
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At any stage o f  approximat ion,  we write 

and can easily verify that  

G. Avo~tAN 

~)n=UO+Ul + ' ' ' + U n - t  

Ox 2 Ot = g" 

ASYMPTOTIC DECOMPOSITION FOR PARTIAL 
DIFFERENTIAL EQUATIONS 

In an equat ion such as [Lx + Ly]U + Nu  = g, write 

~ A .  for Nu, 
n ~ 0  

then solve for the A. (or for  u if Nu = u) 

~ A ,  = g - Lxu - I..yU. 
n = 0  

For  example, if Nu = u 2, we get Uo = g~:2 and u~ = - Lxuo - ]yU o, etc. 

E x a m p l e  

Consider  

where 

Write 

Uxx + tt~.~ + U = g, 

g = x2y  2 + 2x  z + 2y 5. 

u = g - uxx - Uyy 

02 ~ ~92 ® 

2 
Uo = g = x2y  2 + 2 x  5 + 2y 2 

ul = -Ox----- ~ Uo - Oy--" ~ u0 = - 2 y  2 - 2x 2 - 8 

U 05 
us = - - ~ x  z ul - Oy-- ~ ut = 4 + 4 = 8 

u 3 = 0  and u , = 0  f o r n > 3 a s w e l l .  

Thus  we have a terminat ing series which is the solution. 

u = U o + U  l + u  5 = x S y  5. 

I f  the last term on the left side o f  the example is nonlinear,  i.e. if we have, say, N u  = u 5 instead 
o f  u, the A0 term is u 2. Then  u0 = gt/2, 

05 02 
A ~ = 2UoUl = - ~ uo - 8 7  Uo 

and we can solve for ul, etc. 
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Example 

Consider the equation 

Uxx-F Uyy-l- U2 ---- x2y 2 

A,, = x2y 2 -  (O2/OX ") ~ u , , -  (O2/Oy :') ~ u,, 
n ~ O  n = O  n ~ O  

Ao = u~ = x~y ~ 

uo = xy  

A z = 2UoU, = - (O:/Ox:) (xy)  - (a 2/t3y2) (xy)  

U I ~ U 2 ~ ' ' ' = 0 .  

Thus, u = xy. 
Thus, both forms--the decomposition and asymptotic decomposition---offer a new and powerful 

way of gaining insight into the behavior of very complicated nonlinear equations. 

SYSTEMS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS 

The decomposition method [1] has been demonstrated to solve a wide class of equations [2]. 
These have included differential equations and systems of differential equations and also partial 
differential equations. Consider now a system of nonlinear partial differential equations given by: 

U t = UU x "4- VUy 

u,, = uv~ + VVy (6) 

u(x,  y, O) =f(x,  y) 

v(x,  y, O) = g(x ,  y) .  (7) 

We wish to investigate the solution by the decomposition technique. Let L, = O/dt, L~ = O/d~, 
Ly = d/Oy and write the above equations in the form: 

k,u = u Lxu + v Lyu 

L,v = u L~v + v Lye. (8) 

Let 

L; -1 = fo[ ' ]  dt, 

remembering we solve only for linear operator terms:t 

u = u(x,  y, O) + LTluL.,:u + L;'tvLyu 

v = v (x , y ,  O) + Lt-lu L~v + L~-IvL:,,v. 

Let 

and using equations (8) let 

u =  ~ u, and v =  ~ v, 
n~O n s O  

Uo = u(x,  y, O) = f ( x ,  y )  

Vo = v(x ,  y, O) = g(x ,  y )  

?Writing L.~, Ly in the nonlinear terms avoids double subscripts when we decompose u and v. 

C.A,M.W.A. 16/10-11--J 
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SO that the first term of u and of  v are known. We now have: 

u = Uo+ L;-luLx u + LtlvLyu 

v = Vo + L~-tuLxv + LF)vLyv. 

We can use the A, polynomials for the nonlinear terms, that 

u--Uo+ Lr' ~ A,(uLxu)+ Li '  ~ A.(vLyu) 
n=O n~O 

v =-Vo+ LF' ~ A.(uLxv)+L;-' ~ An(vL?). 
n~O rl=O 

(The notation A,(uL~u) means the A, generated for UUx.) 

Ao(u Lxu ) = uoLxuo 

Al(uLxu) = uoLxul + ulLxuo 

A~(u Lxu) = uoLxu2 + u, Lxu) + u2L~uo 

etc., for the other A,. A simple rule here is that the sum of  the subscripts of  each term is the same 
as the subscript of  A. Consequently, we can write: 

u, = L~-JuoL~uo + L~-lvoLyuo 

vl = Lt)uoLxvo + L;-)voLyvo, 

which yields the next component  of  u and of  v. Then 

u2 = LTl[uoLxu) + u, Lxuo] + LT'[voLyul + v, Lyuo] 

v2 = L? I[uoLxv ' + u)L~vo] + L;-t[voLyt~ I + v I Lyvo] 

u3 = L71[u0Lxu2 + uiL~u~ + u2Lxuo] + Ltl[voLyu2 + v~Lyu, + v2L~u0 ] 

v3 = LTt[uoL~v2 + u, Lxv, + uzLxvo] + L;-'[voL?2 + v,L?, + v2L, vo]. 

etc., up to some Un, Vn; then we have the n-term approximations 
n - I  n - I  

ui f o r u a n d  ~, vi f o r v  
i = 0  i = 0  

as our approximate solutions. 
Since the solution of  equations (6) and (7) can exhibit a shock phenomenon for finite t, we 

select f ,  g such that the shock occurs for a value of  t far from our region of  interest. Let 
f ( x , y )  = g ( x , y )  = x + y. Therefore, 

u0 = v0= x + y ,  

then u t, vt can be calculated as 

ul = Li )uoLxuo + L,-lvoLyu o 

= L;-~(x + y)Lx(x + y ) +  LT'(x + y)Ly(x + y)  

= xt  + y t  + x t  + yt  = 2xt + 2yt 

vj = L71uoL~vo + L71voLyvo = 2xt + 2yt 

and u2, v2 are calculated as 

u2 = L7 I[(x + y)Lx(2Xt + 2yt)  + (2xt + 2yt)Lx(x + y)] 

+ L,-'[(x +y)Ly(2xt  + 2yt)  + (2xt + 2yt)Ly(x + y ) ]  

= 4t2(x + y )  

v2 = 4t2(x + y).  
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Thus,  

u = (x  + y ) + 2 t ( x  + y ) + 4 t 2 ( x  + y ) + . . .  

v = (x  + y ) +  2 t ( x  + y ) + 4 t 2 ( x  + y ) + . . . ,  

which we can also write as 

u(x ,  y )  = (x  + y) / ( l  - 2t) 

v(x ,  y )  = (x  + y)/(1 - 2t), 

which is identical to the solution obtained by Bellman using the method o f  differential quadra ture  

[31. 
Using the same procedure,  it is shown in Ref. [2] that  we can consider linear, nonlinear,  

stochastic, or  coupled boundary  conditions.  Adomian  and Rach  [4] give the the example: 

d2u/dt  2 + v = 0  

d2v /dt  2 + u = O, 

on the interval [n/2, rt/2]. Let 's  assume the boundary  conditions:  

d 
B,(u, v) = ~-~ u(n/4)  + ~u(n/4) + 2v(n/4) = 3 

B2(u, v) = d u(n/2)  + ½u(rc/2) + 4v(n/2)  = 5 

e3(u, v) = d v(n/4)  + ¼ v(n/4)  + 8u(rt/4) = 7 

B4(u, v) = d v(rc/2) + ~v(n/2) + 16u(n/2) = 11, 

I f  L = d2/dt 2, we have L u  = - v  and Lv  = - u .  Then 

U = C I + C2t -- l - I v  

/ ) = k  I + k 2 l  - I - l u ,  

so that  

u0 ~-- ¢t + (72l 

Vo = kl + k2t 

ul = - L-l[kl + kzt] = - k i t 2 / 2  - k2t3/3! 

vl = - I_-l[c I + c2t ] = - cl t2/2 - c2t 3/3! 

Cont inuing in this way, we can write the n- term approximat ions  ~b,(t) and ~bn(t). Using only three 
terms, i.e. ~b3 and 03 substituted in the given conditions,  we find c~ = 0.20300, c2 = 1.00769, 
k~ = 0.49390 and k2 = 0.98480. Verification by substitution yields three decimal place accuracy. 
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