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ABSTRACT 

We establish a number of extensions of the well-poised Bailey lemma and elliptic well-poised Bailey 
lemma. As application we prove some new transformation formulae for basic and elliptic hyper- 
geometric series, and embed some recent identities of Andrews, Berkovich and Spiridonov in a 
well-poised Bailey tree. 

1. INTRODUCTION 

In a recent paper [2] Andrews introduced a Bailey-type lemma for well-poised 
(WP) basic series. Together with Berkovich this led him to discover many new 
transformation formulae for basic hypergeometric series [3]. Shortly after [2] 
and [3] appeared, Spiridonov [19] pointed out that part of the programme car- 
ried out by Andrews and Berkovich can be formulated at the level of elliptic 
functions, leading to new results for elliptic or modular hypergeometric series. 
In the present paper we show that the work of Andrews, Berkovich and Spi- 
ridonov admits many further extensions. In particular we will show that An- 
drews’ binary WP Bailey tree can be enhanced to yield a tree with six-fold 
branching, and that Spiridonov’s elliptic WP Bailey chain can be upgraded to a 
trinary tree. As a consequence, all of the basic WP Bailey pairs of [2,3] and all of 
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the elliptic WP Bailey pairs of [19] become nodes on a single multi-dimensional 
basic or elliptic WP Bailey tree. In addition, many new WP Bailey pairs result, 
leading to new identities for basic and elliptic hypergeometric series. 

In Section 2 we present our extensions to the basic WP Bailey lemma, 
Section 3 deals with the elliptic WP Bailey lemma, and Section 4 contains a 
number of applications of our result to basic and elliptic hypergeometric series. 

2. THE BASIC WELL-POISED BAILEY LEMMA 

Throughout this paper we adopt the standard notation and terminology for 
basic hypergeometric series of Gasper and Rahman’s book [ll]. In particular 
we use 

where (a; q)n = nJ+i (1 - agi) is a q-shifted factorial and 

(al,... ) a,k; q)n = (al; 4jn . . . (a; 4jn. 

Since we will only be dealing with terminating series we do not impose the usual 
condition 141 < 1. In view of the frequent use of the term ‘well-poised’ we recall 
that a r+i4r series is well-poised if the pairwise product of numerator and de- 
nominator parameters is constant; qul = a& = . . . = ar+ib,.. If in addition 
a2 = -a3 = a;“q, the series is very-well-poised. We abbreviate such very-well- 
poised series by r+i W,(ut ; ~4, . . . , a,+~; q, z). Finally we note our convention that 
y1 is always a nonnegative integer. 

Before discussing Andrews’ WP Bailey lemma let us give the well-poised 
version of the classical Bailey transform. 

Lemma 2.1. (WP Bailey transform) For a and k indeterminates thefollowing two 
equations are equivalent: 

1 - aq’” n 1 - kq2’ (dk q)n-r 
4a,kq) =xX- 

(2.lb) 
rzO 1 - k (4; cd,-, 

Proof. Writing (2.1) as 

(2.2a) ,&(a, k; 4) = 2 Mda,k; +,(a, k; q), 
r=O 
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we get 

We thus need to prove the inverse relation 

(2.3) -&J&&, k; q)Ms,r(a, k q) = h:,. 

From the explicit expressions for tin,, and MS,, it follows that 

LHS(2.3) = (aq; q)2r (k’q)2r ~?,,,(a k. q) 6Ws(kq2s; k/a, aq’+‘, q-(“-‘I; q, q) 7 7 

= - ii&,,(a, k; q)6,,, = S,,,. 
(a% 4Lr 

Here the 6 W, has been summed by a special case of Rogers’ q-Dougall sum [ll, 
Equation (11.21)]. 

The companion relation 

can be proved in analogous fashion. In fact, it suffices to note that given a, 
equation (2.lb) uniquely fixes ,& and, conversely, given pn equation (2.la) 
uniquely fixes on. 0 

After the above preliminaries we review Andrews’ work on the WP Bailey 
lemma. Let Q: = (as, ~1,. . .) and p = (PO, PI,. . .). 

Definition 2.1. A WPBaileypair is a pair of sequences (a(a, k; q), p(a, k; q)) that 
satisjies (2.1). 

The adjective ‘well-poised’ derives from the fact that 

(k/a; q)n-r (k q)n+r _ (k k/a; 4, (kfj C qlr 

(4; 4L (aq; 4)n+r - (4, aq; dn (aP/k W+l; qL ( ) 
5 ‘, 
k 

When k tends to zero a WP Bailey pair reduces to the classical Bailey pair as 
introduced by Bailey [4]. For more details we refer to the reviews [1,2,22]. 

Andrews proved two theorems for constructing WP Bailey pairs. His first 
result [2, Theorem 3] follows from Jackson’s s& sum. 

573 



Theorem 2.1. If (a(a, k; q), /3(a, k; q)) is a WP Bailey pair, then so is the pair 
(a’(a, k; q), P’(a, k; 4) given by 

&(a, k 4) = ’ 
ph(a, k; q) = crndb, mdci dn n ’ - mq2r (4 c; dr 

(aqlb,adc; qln 2 1 -m (mqlbmdc; 4. 
(k/m; qL (k qL+,. 

’ (4; 4L (mq; 4)n+r 
where m = bcklaq. 

Andrews’ second result [2, Theorem 41 follows from the q-Pfaff-Saalschutz 
summation. 

Theorem 2.2. If (a(a, k; q), @(a, k; q)) is a WP Bailey pair, then so is the pair 
(&‘(a, k; d, P’(a, k 4) given by 

where m = a*q/k. 

By combining the above two theorems it follows that each WP Bailey pair gives 
rise to a binary tree of WP Bailey pairs. Andrews coined this the WP Bailey 
tree. 

We will now show that the Bailey tree admits many additional branches 
thanks to the following four theorems. 

Theorem 2.3. If (a(a, k; q), ,O(a, k; q)) . IS a WP Bailey pair, then so is the pair 
(a’(a, k; q), P’(a, k 4) given by 

1 - gkll*qn 1 + aml/* 

wherem = a*/kanda E (-1, l}. 

The freedom in the choice of g simply reflects the fact that the above ex- 
pressions are invariant under the simultaneous negation of kl/*, m112 and 0. 

Theorem 2.4. If (a(a, k; q), p(a, k; q)) 1s a WP Bailey pair, then so is the pair 
(a’(a, k; q), P’(a, k 4) given by 
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where m = k/aq. 

Theorem 2.5. If (a(a, k; q), ,!?(a, k; q)) 1s a WP Bailey pair, then so is the pair 

(a’(a, k; q), @(a, k; q) given by 

1 + uqzn 
ah(a”,kq2) = C~h!a,m;q), 

,$(a’, k; q2) = qen (-mq; q)2n f: 1 - mq2r (k/m2; q2),-r 

(-ai q)2n r=O 1 - m (q2i q2L, 

(k q2L+, 
’ (m2q2;q2),+, a 0 yn npri-%(a, m; 41, 

where m = k/a. 

Theorem 2.6. If (a(a, k; q), /l(a, k; q)) . LY a WP Bailey pair, then so is the pair 
(a’(a, k; q), @‘(a, k; 4) given bv 

&SC k 4) = a,(a, m; q2), a&+,(a, k; q) = 0, 

where m = k2/a. 

The Theorems 2.4 and 2.6 admit an elliptic generalization and follow by letting 
p tend to zero in Theorems 3.2 and 3.3 of the next section. Before proving the 
remaining Theorems 2.3 and 2.5 we prepare two simple summation formulae. 

Lemma 2.2. For c = -abq OY c = a2q/b there holds 

(2.4) 1 + aq*lb (cla2q, c/h qln 
1 + a/b (c; c/a2bq; q)n 
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Lemma 2.3. There holds 

8 WT(a; b, aq”/b”2, -aq”/b’12, q-n, -qen; q, q2> 

(2.5) = (-a/b; q)2n (a2q2k q2>, 
(-9; q)2n (l/b, a2q2/b2; q2), % n’ 0 

Proof of Lemma 2.2. By Sears’ transformation for ~$3 series [II, Equation 
(111.15)] 

LHS(24 = (c/a297 c/b; 4)n 4$3 
Cc, cla2bq; qln 

a-l 16 4-l 14P ; q 
a, c/a2q, bq’-“/c ’ 

q 1 = (cla2q, c/k dn a(1 - b)(l - qn) 

Cc, cla2bq; dn ’ - b(1 - a2q/c)(l - cqn-l/b) ’ 

In general the term within the curly braces does not factor, but since 

Cl+ wnlb)(l - c/W (1 - qn)(l + c/abq)(l - bc/a2q) 
(1 +a/b)(l - cq”-l/b) + (1 + b/a)(l - c/a2q)(l - cq”-l/b) 

it certainly does for c = -abq and c = a2q/b, leading to the right-hand side of 
(2.4). 

Proof of Lemma 2.3. By Watson’s transformation [ll, Equation (111.17)] 

LHS(2,5) = (aq, b’12; qW’ 443 b’12q b aq”lb1/2, q-” 
(ad4 b-‘j2; qln blj2, :bl)2ql-n, -aqn+l ‘q’ q 

I 
’ 

The 443 series on the right can be summed by the c = -abq instance of (2.4) 
leading to the desired right-hand side. 

Proof of Theorem 2.3. We write the claim of the theorem as 

and use the notation (2.2a). Then on the one hand 

and on the other hand 
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Hence the proof of the theorem boils down to showing that 

(2.6) 

where m = a2/k. Using the explicit expressions for N,,s and &I,,$, shifting the 
summation index s to s + r and carrying out some standard manipulations in- 
volving q-shifted factorials, we obtain 

Recalling that m = u2/k we can sum the 443 by the c = u2q/b case of 
Lemma 2.2. Thus, 

443 . . = [ 1 1 - ,k112q” (kq”, k/u; q)n-r (w; q)2r M&a, k q)L(a>k; 4) 
1 - crk112q’ (uq2’+‘, k/m; q)+,. = (m; Nn;&, k; 4) ’ 

Putting the above two equations together yields (2.6). 17 

Proof of Theorem 2.5. Writing the claim of the theorem as 

and following the proof of Theorem 2.3, we have to show that 

(2.7) 

Using the explicit forms of N,,$ and &I,,$ and shifting the summation index, we 
get 

LHS(2.7) = MN&u, k; q) 
u, 2r 

x 8 W7(mq2’; m/a, k112fl+r, -k112@+r, q-(n-‘), -q-(n-I’); q, 42). 

Since m = k/u the s W, can be summed by Lemma 2.3. Hence 



( -aq2’; q)2n-2v (m2q4r+2, mla; q’),-, aq n-r 
’ w7(’ . .) = (-mq2’+‘; q)2n-2r (a/m, a2q4r+2; q2),-, ( > G 

* 

3. THE ELLIPTIC WP BAILEY LEMMA 

We denote by B(z;p) the modified Jacobi theta function 

8(z;p) = fi(l - zp’)(l -pjfl/z), IPI < 1, 
j=O 

and define the elliptic q-shifted factorial by the product 

n-1 

(a; 4>PL? = JyI @qGP). 
j=O 

Note that (a; q, 0), = (a; q)*. A s usual we employ the condensed notation 

(al,... , ak; %Pjn = (ali w), . . . (ak; %P)n. 

In analogy with the previous section we define the very-well-poised elliptic hy- 
pergeometric series 

r+l Vr(a1; 4,. . . 
w @Zlq2k;p) (al,&, . . . ,&+I; %P)kqk 

7a,+1’q’p)=~ d(lZl;p) (q,alq/a6,. . . ,alq/av+l;q>P)k’ 

where for convergence reasons we require the r+i V, to terminate. The rationale 
behind the above labelling of the r+i I’, series is that [18] 

Hence, provided none of the parameters ai depends onp (see Theorems 4.1 and 
4.2 for examples of suchp-dependence) we get 

(3.1) v+lF(al;a6,... ,h+l;q,O) =r~l~-2(al;a6,...,a,+l;q,q). 

A v+i V, series is called balanced if a6 9 . al+lq = (alq)(Y-5)‘2. All known identi- 
ties for elliptic hypergeometric series are both balanced and very-well-poised. 
One such identity that will be applied on a number of occasions is the elliptic 
version of Jackson’s 847 sum due to Frenkel and Turaev [lo, Theorem 55.21; 

(3.2) lo v9(a; b, c, 4 e, q-*; q>p) = 
(w aqlbc, aqlb4 w/cd; q,pL 

(aqlb, q/c, add, cdbcd; q,pjn ’ 

where bcde = a2qn+l. Fo r a more extensive introduction to elliptic hyper- 
geometric series we refer the reader to [6-10,12,14-16, 1%21,231. 
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As our first application of elliptic hypergeometric series we state the follow- 
ing analogue of the WP Bailey transform. 

Lemma 3.1. (Elliptic WP Bailey transform) Fov a and k indetemzinates the fol- 
lowing two equations are equivalent: 

Q(aq2?P) n c @q2’;d (a/k; wL 
(3.3b) 

an(a’ k’q’p) = Q(q) r=O @;p) (4; q,PL. 
ca; %d??+r k n-r,f(a k. q p) 

’ (kqx,p)n+, a 0 ’ ’ ’ ’ 

Proof. The proof is an almost exact copy of the proof of Lemma 2.1. Writing 
the two transformations of the lemma as 

we have to show the inverse relation 
n 

cJk,da, k; q,P)W,Ja, k; w) = an,,. S=Y 
This is equivalent to showing that 

8 V7(kq2$; k/a, aqn+‘, q@-‘); q,p) = S,,,, 

and readily follows from the elliptic Jackson sum (3.2). 0 

The next result is Spiridonov’s elliptic version of Andrews’ Theorem 2.1 [19, 
Theorem 4.31. 

Theorem 3.1. V(4a, k; w), P(a, k; w)) 1s an elliptic WP Bailey pair, then so is 
thepair (a’(a, k; q,p), @(a, k; q,p) given by 

4 (a, k w) = (bAq,P), 
0 

k nO/ (a m.q p) 
(aq/b,aqlc;q,p), m ’ ’ ’ ’ ’ 

pL(a, k; 4 p) = (wlbmlc; qA ’ @v2’;d 
c 

(6 c; w), 
> (w/b, 4c; w), r=O +w) (mdb,wlc; qs), 

x Ww~pL. kqdn+r k rs (a m.q.p) 
0 (4; 4, P),-, (mq; q>P)n+r m T ’ ’ ’ ’ 

where nz = bcklaq. 
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To this we can add two more transformations for elliptic WP Bailey pairs. The 
first generalizes Theorem 2.4. 

Theorem 3.2. lf(4a,k w-9, PW; q,p)) is an elliptic WP Bailey pair, then so is 
thepair (&(a, k; q,p), P’(a, k; q,p) given by 

4(a2, k q2,p2) = a,(a, m; w), 
P;(a2, k; q2,p2) = (-nv; 4,P)zn 2 O(mq%p) (klm2; q2,p2)n-r 

(-as 4,P)2n r=O Q(m2) (q2; q2d2Lr 

(k q2>p2)n+r 
’ (m2q2;q2,p2)n+y Z ’ ’ ’ 0 

m n-ra (a m. q,p) 
’ 

where m = k/aq. 

The second result provides an elliptic extension of Theorem 2.6. 

Theorem 3.3. If(a(a, k w), P(a, k w)) is an elliptic WP Bailey pair, then so is 
thepair (&(a, k; q,p), P’(a, k; q,p) given by 

c&Car k w) = ada, m; q2,p), c&+, (a, k q,p) = 0, 

where m = k2/a. 

Proof of Theorem 3.2. Writing the claim of the theorem as 

4(a2, k; q2,p2) = eda, m; w), 

PL(a2, k; q2,p2) = gN,;4+ k; w)b(a, m; w) 
r=O 

and using the notation of equation (3.4a), we need to show that 

(3.5) ~N,.ia, k q,pPfda, m; w) = Mn,4a2, k; q2,p2), 

where m = k/aq. From the explicit expressions for N,,$ and M,,$, and simple 
elliptic q-factorial relations such as 

(3.6a) (a; w),+k = (a; w)n(aqn; wh 

(3.6b) (a; q,p)+k = (a; q,P),(-ql-“/a)kq(:)/(ql-n/a; w)k 
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(3.6~) (a2; q2,p2)n = (a, -a; %P)n> 

we obtain 

LHS(3.5) = jmy4qypi?‘, N,&n2, k; q2,p2) 
a, j 2, 

x 1o V9(mq2’; m/a, k’12q”+‘, -k’i2qn+‘, q-(n-‘), -q-@‘); q,p). 

Since m = k/aq the 1s I79 can be summed by (3.2) to yield 

lov9( . ) = (kq2’/a, aqr-n+1/k1/2, -aqr+‘+1/k1/2, -q-2n/a; q;p),-, 
. . 

(aqzr+l, kl/2qr-n/a, -k1/2qr-n/a, -aqzn+l/k; q,p)n-, 

= (a4; 4iP)21 Kda2,k 4”,P21 
Cm; 4,~)~~ K,4m2,k; q2,p2) ’ 

q 

Proof of Theorem 3.3. We write the claim of the theorem as 

&Ja,k;q,p) = da,m;q’,p), 4,+l(a,k;q,~) = 0, 
l@J 

PL(a,k; 4,~) = c Nda,k; q,p)Pda,m; q2,p) 
r=O 

and again use the notation (3.4a). We then need to show that 

(3.7) 
147.i 
c Nn,Ja, k q,p)W,,(a,m; q2;p) = Mn,zv(a, k; q,p), 
S=Y 

where m = k2/a. From (3.6) and (a; q,p)2n = (a, aq; q2,p), it follows that 

LHS(3.7) = Cm; 421P)2r 
(aq2; q2,~)2, 

N 
dm, k w) 

Since m = k2/a the r. V9 can be summed by (3.2) upon distinguishing between IZ 
even and IZ odd. After some simplifications one finds that irrespective of the 
parity of n 

lov9( 
. . . 

) = (aq2;q2,P)2rMn,2r(a,k;q,P) 

Cm; q’,~)~? N&m, k; 4~) ’ 

which completes the proof. q 

4. APPLICATIONS 

As mentioned in the introduction, all of the WP and elliptic WP Bailey pairs 
found in [2,3,19] readily follow by application of the theorems of the previous 
two sections. To illustrate this we take Pn(a, k; q) = fin20 in the WP Bailey trans- 
form (2.1), yielding the unit WP Bailey pair 
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(4.la) 
1 - aq2” (a, a/k; q)n 

a,(a, k; q) = _____ 
1 - a (q>kc q)n 

(4.lb) h(a,k; q) = &,o. 

Then applying Theorem 2.3 results in the (corrected) WP Bailey pair given by 
13, Equations (3.5) and (3.6)], applying Theorem 2.6 results in the (corrected) 
WP Bailey pair given by [3, Equations (3.11) and (3.12)], applying Theorem 2.4 
results in the WP Bailey pair given by [3, Equations (4.5) and (4.6)], and, finally, 
applying Theorem 2.5 results in the (corrected) WP Bailey pair given by [3, 
Equations (4.7) and (4.8)]. These last two cited WP Bailey pairs were first found 
by Bressoud in [5]. 

In much the same way, from the elliptic WP Bailey transform (3.3) one im- 
mediately infers the elliptic unit WP Bailey pair 

(4.2a) a,(a, k w) = e(aq2’;p) (a, 4% q,pL 
Q(a;p) (4,kq; 4,PL 

(4.2b) /%(a, k cm) = &,o 

When inserted in Theorem 3.2 this yields 

4a2, k; q2,p2) = @(aq2*;p) bw2qlk q,pL 
WP) (4, k/a; q,pL 

B&2 k. q2 p2) = (-k/a; %dh ck, a2q2/k; q2,P2)n 73, (Fag; w)2n (q2A2/a2; ’ 
which is equivalent to [19, Equations (5.2) and (5.3)] of Spiridonov. By further 
iterating this pair using Theorem 3.1 Spiridonov obtained the following trans- 
formation formula for elliptic hypergeometric series [19, Theorem 5.11. 

Theorem 4.1. For m = bck/a2q2 and d = -m/a there holds 

14Vli3(a; a2q/m, b112, -b112, c112, -c112, k’12q”, -k’12q”, qwn, -qen; q,p) 

(a2q2, k/m, mq2/b, mq2/c; q2,p2jn 
= (mq2, k/a2, a2q2/b, a2q2/c; q2,p2)n 

x lJVl3(m; a2q2/m, d, dq, d/p, dqp, b, c, kq2”, qp2”; q2,p2). 

Interestingly, some of the parameters in the 14 Vl3 series on the right depend on 
p. Therefore (3.1) does not apply, and in the p -+ 0 limit the above identity 
ceases to be balanced. Indeed in this limit one finds 
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12 Wl1 (u; a2q/m, b’i2, -b112, c1i2; -c112, k112q”, -k112q”, qPn, -qPn; q, q) 

(a”q2, klm, mq2/b, mq2/c; q2),l 
= (mq2, k/a2, a2q2/b, a2q2/c; q2), 

x 10 W&n; a2q2/m, d, 4, b, c, kq2”, qe2”; q2,mqla2) 

of Andrews and Berkovich [3, Equation (4.9)]. What we will now show is that 
thanks to Theorem 3.3 the above theorem has the following companion. 

Theorem 4.2. For m = bcklaq and d = fm(q/a)1’2 there holds 

14 Vl3(a; a2/m2, b, bq, c, cq, W’, kq”+‘, C, ql? q2,p) 

_ (as k/m, mqlb, mqlc; apIn 
(mq, k/a, w/b, aqlc; q,pL 

x 14 Vl3(m; a/m, d, -d, dp112, -dlp112, b, c7W’, C; w) 

This provides a second example of an identity that fails to be balanced after 
takingp to zero. In this limit 

12 Wll(a;a2/m2,b,bq, c, cq,kq”,kf+‘, qen, ql? q2; 4’) 

= (as, klm, mqlb, mqlc; qL, 
(mq, kla, ad6 a+; dn IO W9(m; aim, d, -d, 6 G kg”, C; 4, -mqla) 

again due to Andrews and Berkovich [3, Equation (3.13)]. 

Proof of Theorem 4.2. Substituting the elliptic unit WP Bailey pair (4.2) in 
Theorem 3.3 results in the new pair 

a2n(a, k; w) = 
8(aq4n;p) (a; a2/k2; q2,p), 

Q(a;p) (q2,k2q2/a; q2,pjn 

an+1 (a, k w) = 0, 

p,(a, k. q p) = (k2qh q2A (kalk w)n 
i > (aq; 42,P)n (4,k2qla; 4,Ph . 

Next applying Theorem 3.1 and manipulating some of the elliptic q-shifted 
factorials using (3.6) yields 

da, k; w) = 
d(aq4n;p) (a, a2/m2; q2,Pln (6 c; q&z k 2n 

~(Q;P) (q2, m2q2/a; q2:p), (aqlb, aqlc; qJP)2n a 0 ’ 
a2n+1 (a, k w) = 0: 

a(a, k. q p) = 6% klw bkla, ckla; w4, 1 > (4, mq, aqlb, aqlc; w),, 

Cm, b, c, al+ kf ,P; wIr 
’ (4, mqlb, mql c, m2qla, mPlk mqn+l; w), ’ 
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where m = bckjaq. By taking the ratio of 

O(a2;p) = 8(a;p)Q(-a;p)B(ap’/2;p)13-a/p1~2;p)p1~2/a 

and the equation obtained by replacing a by -b it readily follows that 

(a2; q2,p), _ (a, -a, ap”‘, -a/p’j2; q,p)n 
(b2; q2,& - (b, -b, %1/2, -W/2; q,dn 

Defining d by d2 = m2qla one thus finds 

(m2qla; q2d4, -m r= 
( > 

Cd, -4 dp”2, -dlp’J2; ad,. 
hi q2A a (mqld, -mqld, mqldp1J2, -mqp1/2/4 q2,pjr ’ 

Using this in the expression for pn and (a; q,p)2n = (a, aq; q2,p)n in the ex- 
pression for Q,, and substituting the above Bailey pair in (3.3a) yields the 14 Vi3 
transformation of the theorem. Cl 

Many more transformations for basic and elliptic hypergeometric series can be 
derived along the lines of the above proof. Most of the simpler results are either 
known or variations of known identities. To give just two more examples, iter- 
ating the unit Bailey pair (4.1) using first Theorem 2.1 and then Theorem 2.3 or 
Theorem 2.5 yields 

12 Wll(a; b, c, kq/bc, (mq)“2,m’/2q, -m112, -(mq)li2,kqn, qpn; q, q) 

1 + k1j2 (aq, k/m; q) 
= 1 + k112qn (k, k/a; q)nn 6’5 

m, m1j2q, bmla, cm/a, aqlbc, qen 
ml/z, aq/b, aq/c, bcmla, mql-n/k ’ ” ’ I ’ 

with m = a2/k, and 

12 Wll(a; b, c, a2q/bcm, (-a)li2q, -(-a)“2q, k’i2q”, -k”2q”, q-n, -qen; q, q) 

= (-mq; d2,, (a2q2, klm2; q2), n m 
(-a; q)2n (m2q2, kla2; q2), & 0 

x 10 Wg(m; bm/a, cm/a, aq/bc, k’j2q”, -k’12q”, q-“, -qpn; q, q2), 

with m = k/a. The first of these formulas is similar to a nearly-poised trans- 
formation of Bailey [ll, Equation (111.25)] and the second formula is similar to 
a special case of Bailey’s is& transformation [ll, Equation (111.28)]. 

5. NOTE ADDED IN PROOF 

After submission of this paper we discovered many more transformations for 
basic and elliptic WP Bailey pairs. The most important two, which hold at the 
elliptic level, are given below. 

Theorem 5-l. V(da, k; w), %a, k w)) 1s an elliptic WP Bailey pair, then so is 
thepair (&(a, k; q,p), @(a, k; q,p) given by 
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where m = a2/k. 

Theorem 5.2. rf(a(a, k; q,p), jl(a; k; q,p)) 1s an elliptic WP Bailey pair, then so is 
thepaiv (a’(a, k; q,p), P’(a, k; q,p) given by 

Q;(a&q2>P2) = 

(k 4,P)n+r a r/j(a, ,2. q2 p2) 

’ (mq; 4,P)n+r 2 ( > ’ ’ ’ 

where m = a/kq. 

Especially this last theorem is remarkable because, unlike all the other trans- 
formations for elliptic WP Bailey pairs, its proof does not rely on the elliptic 
Jackson sum (3.2) but on the new elliptic summation 

n @2q4k;P2) c (a2, b; q2,P2)k (aq”-l/b> q-? q>P)k 2k 

k=O e(a2;P2) (q2> a2q2/b; q2,P2)k @q2-“, aqn+‘; qdk ’ 

= Q(-aqzn-‘/b;p) (aq, -al&; q,ph (llbq2; qz1p21n n 

++q;p) (-4, l/b; w), (a2q2/k q2,p21n ’ ’ 

When p tends to zero this reduces to a bibasic summation of Nassrallah and 
Rahman [13, Corollary 41 (see also [ll, Equation (3.10.8)]). 

An appealing example of a new result that follows from Theorem 5.2 (com- 
bined with (4.2) and Theorem 3.1) is 

’ B(a2q4k;p2) c (a2, b, c, 4 q2,p21k ceqn, q-? %dk 

@(a2;p2) (q2; a2q2/b, a2q2/c, a2q2/4 q2,p2jk (w-*/e, aqn+l; qlpjk 

$k 

k=O 

__ Q(-eq2n;p) C-e, aq; 4,PL (elan; q2,P2L n 

&e;p) C-9, e/a; 4,PL (k2; q2,P2L ’ 

x 14 v13(& -aq, -aq2, -aq/p, -aq2p, Xb/a2, Xc/a2, Xd/a2, e2qzn, q-2n; q2,p2), 

where X = a4q2/bcd and e = X/aq. Again the p-dependence of some of the pa- 
rameters of the 14 Vi3 on the right is to be noted. In the limit when p tends to 
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zero the above transformation simplifies to [13, Equation (4.24)] (see also [ll, 
Exercise 3.131. 

As a final comment we wish to remark that not all of the (elliptic) WP Bailey 
pairs one can find seem to follow from the (elliptic) unit WP Bailey pair by 
transformations of the type discussed in this paper. One example is 

an(a,k; q2,p) = @(aq4”;p) (a, m2qlk b, a/b; q2,pL 
Q(v) (q2,ak41 m2, aq2/b, bq2; q2,pjn Cm; w)2, 

Pn(a7k’ q2’p) = (akq/m2; q2,p)n u=. 
(m241a; q2,Pln 2 Q(mq3’;p) (q/m, bmla, ml& q,pL 

e(m;p) (m2q/a, aq2/b, bq2; q2,p)v 

x @*q/k q2,plv (k/m; wL 6% q2>P)n+r ,(;) 
(k/m; q,plr (q2; q2,pLv (mq; w)2n+r ’ 

which implies the transformation [23, Theorem 4.21 

n 8(mq3r;p) (aqlm, bmla, m/b; q,p)r c (m2q/k, kq2”, qm2”; q2,pL 
r=O O(m;p) (m2q/a, aq2/b, bq2; q2,p)v (k/m, mq’-*“lk, mq2”+‘; q,p),.” 

= (k/a, aWm2; q2,pln bq; q,pL,, 
(aq2, m241a; q2,Pln (k/m; 4,P)2n 

x 12 Vll (a; b, a/b, m2qlk, aqlw aq2/m, kq2n, qp2? q2,p) 

In order to establish the above elliptic WP Bailey pair (and similar pairs not 
given here) one has to extend some of our earlier results to bibasic series. A first 
step is to define a bibasic elliptic WP Bailey pair by 

A!‘) (a, k; q,p), 

with i a positive integer. Note that (AL’), (l) - 
trivial step is to relate a pair (A!), (‘I 

B, ) - (cL~, &). The next and non- 
B, ) with i 2 2 to (Q,, p,). Two examples of 

such relations can be stated as follows. 

Theorem 5.3. There holds 

an(a,k q2,p) = &)(a, m; 4,PL 
PAa, k q*,p) = b241a; q2,Pln n 6(mq3’;P) (q/m; 4,P), (m241k 42,PL 

(akqlm2; q2,pjn z Q(m;p) (m2q/a; q2,dr (k/m; 4>P)r 
(k/m; q,p)2n-r k q2,pL+,. 

x k2; q2,PL. (vi 43P)2n+r q(;) a ‘BF)(a,m; q,p). 
0 
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Theorem 5.4. For t-n3 = ak there holds 

a,(a, kr q3,p) = q3”arAf)(a, m; q,p), 

The proofs hinge on [23, Corollaries 4.4 and 4.51. As third and final step in the 
proof of the elliptic WP Bailey pair of our example we note that 1123, Theorem 
4.11 is equivalent to 

&(a, k; q>p) = B(aq*%) (aI b, a/b; qilp), 
o(a;p) (4, d/b, W; q”,p), 

x (aqlk q,din 
(k; 4, P)in 

(-l)“q-(‘)ii2(e$)‘n; 

Bt)(a, k; q,p) = (bkla, klb; q,pL 
(Q/b, bqi; qi;pln ’ 

Substituting this in Theorem 5.3 concludes our derivation. 
We leave it as an open problem to find transformations between (A(;‘), Bf)) 

and (A!), B,o”) for arbitrary i andj. 
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