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Abstract

A unicyclic graph is a graph whose number of edges is equal to the number of vertices. Guo Shu-Guang [S.G. Guo, The largest
Laplacian spectral radius of unicyclic graph, Appl. Math. J. Chinese Univ. Ser. A. 16 (2) (2001) 131–135] determined the first four
largest Laplacian spectral radii together with the corresponding graphs among all unicyclic graphs on n vertices. In this paper, we
extend this ordering by determining the fifth to the ninth largest Laplacian spectral radii together with the corresponding graphs
among all unicyclic graphs on n vertices.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let G = (V, E) be a simple connected graph with vertex set V = {v1, v2, . . . , vn} and edge set E . Denote by di
the degree of the vertex vi of the graph G. Let A(G) be the adjacency matrix of G and L(G) = D(G) − A(G) the
Laplacian matrix of the graph G where D(G) =diag(d1, d2, . . . , dn) denotes the diagonal matrix of vertex degrees of
G. Without loss of generality, we assume d1 ≥ d2 ≥ · · · ≥ dn , and π(G) = (d1, d2, . . . , dn) is the degree sequence
of G. It is easy to see that L(G) is a positive semidefinite symmetric matrix and its rows sum to 0, so L(G) is singular.
Denote its eigenvalues by µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) = 0, which are always enumerated in non-increasing
order and repeated according to their multiplicity. We call the largest eigenvalue of L(G) the Laplacian spectral radius
of the graph G, denoted by µ(G). Let X be an eigenvector of G corresponding to µ(G). It will be convenient to
associate with X a labelling of G in which vertex v is labelled xv .

A unicyclic graph is a graph whose number of edges is equal to the number of vertices. Let Un be the set of all
unicyclic graphs of order n. Let G1–G10 be the following unicyclic graphs of order n as shown in Fig. 1:

It is easy to see that each unicyclic graph can be obtained by attaching rooted trees to the vertices of a cycle Ck of
length k. Thus if R1, . . . , Rk are k rooted trees (of orders n1, . . . , nk , say), then we adopt the notation Uk(R1, . . . , Rk)

(or simply U (R1, . . . , Rk) sometimes for convenience) to denote the unicyclic graph G (of order n = n1 + · · · + nk)
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Fig. 1. The graphs G1–G10 of order n.

obtained by attaching the rooted tree Ri to the vertex vi of a cycle Ck = v1v2 · · · vkv1 (i.e., by identifying the root of
Ri with the vertex vi ) for i = 1, . . . , k.

In the special case when Ri is a rooted star K1,ai with the center of the star as its root, we will simplify the notation
by replacing Ri by the number ai .

Let S(a, b) be the tree of order a + b + 2 obtained from K1,a and K1,b by adding a edge e = uv, where u, v are
the star centers of K1,a and K1,b, respectively.

Let R(a, b) be the rooted tree with S(a, b) as its underlying tree and with the vertex of degree a + 1 as its root.
Using the above defined notations, we can write the above graphs G1–G10 (in Fig. 1) in the following way:

G1 = U (n − 3, 0, 0), G2 = U (n − 4, 0, 0, 0), G3 = U (n − 4, 1, 0),

G4 = U (R(n − 5, 1), 0, 0),

G5 = U (n − 5, 1, 0, 0), G6 = U (R(n − 6, 1), 0, 0, 0), G7 = U (n − 5, 2, 0),

G8 = U (n − 5, 0, 1, 0), G9 = U (R(n − 6, 2), 0, 0), G10 = U (R(0, n − 4), 0, 0).

Throughout this paper, we shall denote by Φ(B; x) = det(x I − B) the characteristic polynomial of the square
matrix B. Let f (x) = xn

+ a1xn−1 + · · · + an−1x + an be a polynomial with ai ∈ R. If the equation f (x) = 0 has
only real roots, then we use µ( f ) to denote the largest root of f (x) = 0.

In [1], Guo Shu-Guang determined the first four largest Laplacian spectral radii together with the corresponding
graphs among all unicyclic graphs of order n (see graphs G1–G4 in Fig. 1). In this paper, we extend this ordering by
determining the fifth to the ninth largest Laplacian spectral radii together with the corresponding graphs among all
unicyclic graphs of order n (see graphs G5–G10 in Fig. 1).

2. The effect of a graph perturbation on the Laplacian spectral radii

There is a graph perturbation (which can be called “moving the pendant paths”) whose effects on the Laplacian
spectral radii are very useful in the comparison of the Laplacian spectral radii. Guo Ji-Ming studied this graph
perturbation in [2]. In this section, we will introduce Guo’s result on this perturbation and give some examples to
show the effect of this perturbation on the comparison of the Laplacian spectral radii of the unicyclic graphs.
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A pendant path of a graph is a path with one of its end vertices having degree one and all the internal vertices
having degree two. Obviously, a pendant path of length one is just a pendant edge.

Definition 2.1. Let v be a non-pendant vertex of a connected graph G and u be a vertex different from v. Suppose
that P1, . . . , Pt are t pendant paths of G with v as one of its end vertices. Let vi be the vertex on the path Pi which is
adjacent to v(i = 1, . . . , t). Let

M t
G(v, u) = G − vv1 − vv2 − · · · − vvt + uv1 + uv2 + · · · + uvt .

Then we call the graph M t
G(v, u), the graph obtained from G by moving t pendant paths from v to u.

Lemma 2.1 ([2]). Let G and M t
G(v, u) be the graphs as defined in Definition 2.1. Suppose 1(G) ≥ 3, where 1(G)

is the maximum degree of the graph G. Let X be a unit eigenvector of G corresponding to µ(G). If |xu | ≥ |xv|, then

µ(G) ≤ µ(M t
G(v, u)).

Furthermore, if |xu | > |xv|, then µ(G) < µ(M t
G(v, u)).

Since at least one of the two conditions |xu | ≥ |xv| and |xv| ≥ |xu | holds, we have the following corollary.

Corollary 2.1. Let u and v be two distinct non-pendant vertices of a connected graph G. Suppose that P1, . . . , Pt are
t pendant paths of G with v as one of its end vertices, and Q1, . . . , Qs are s pendant paths of G with u as one of its
end vertices.

Let M t
G(v, u) (and Ms

G(u, v)) be the graph obtained from G by moving t pendant paths from v to u (and by moving
s pendant paths from u to v, respectively) as in Definition 2.1. Suppose 1(G) ≥ 3, where 1(G) is the maximum degree
of the graph G. Then we have

µ(G) ≤ max{µ(M t
G(v, u)), µ(Ms

G(u, v))}. (2.1)

Furthermore, if X is a unit eigenvector of G corresponding to µ(G) with |xu | 6= |xv|, then this inequality is strict.

Proof. If |xu | ≥ |xv|, then from Lemma 2.1 we have

µ(G) ≤ µ(M t
G(v, u)).

While if |xv| ≥ |xu |, then from Lemma 2.1 we also have

µ(G) ≤ µ(Ms
G(u, v)).

Combining these two cases, we get the desired inequality.
Furthermore, if |xu | 6= |xv|, then either |xu | > |xv| or |xv| > |xu |, so by Lemma 2.1 the strict inequality holds. �

The following two examples show how Lemma 2.1 and Corollary 2.1 can be used in the comparison of the
Laplacian spectral radii of graphs.

Example 2.1. If 0 ≤ a ≤ min{c, d} and a + b = c + d, R is any rooted tree, then

µ(U (c, d, R)) ≤ µ(U (a, b, R)).

Proof. Let G = U (c, d, R). Let v be the vertex on the cycle of G with d(v) = c + 2 and u be the vertex on the cycle
of G with d(u) = d + 2. Let Mc−a

G (v, u) (and Md−a
G (u, v)) be the graph obtained from G by moving c − a pendant

edges from v to u (and by moving d − a pendant edges from u to v, respectively), then it is easy to see that both of
the two graphs Mc−a

G (v, u) and Md−a
G (u, v) are isomorphic to U (a, b, R). Thus from Corollary 2.1 we have

µ(G) ≤ max{µ(Mc−a
G (v, u)), µ(Md−a

G (u, v))} = µ(U (a, b, R)). �

Similarly we have,

µ(U (c, d, R1, R2)) ≤ µ(U (a, b, R1, R2)),

µ(U (c, R1, d, R2)) ≤ µ(U (a, R1, b, R2)).
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Fig. 2. The graphs T1–T14 of order n.

Example 2.2. If 0 ≤ b ≤ min{c − 3, d} and a + b = c + d, R is any rooted tree, then

µ(U (R(c − 3, 1), d, R)) ≤ µ(U (R(a − 3, 1), b, R)).

Proof. Let G = U (R(c − 3, 1), d, R). Let u be the vertex on the cycle of G with d(u) = c (and with c − 3 pendant
edges and one pendant path of length 2 attached to u), and v be the vertex on the cycle of G with d(v) = d + 2 and d
pendant edges attached to v.

Let Md−b
G (v, u) be the graph obtained from G by moving d − b pendant edges from v to u, and Mc−2−b

G (u, v)

be the graph obtained from G by moving c − 3 − b pendant edges and one pendant path of length 2 from u to
v, respectively. Then it is easy to see that both of the two graphs Md−b

G (v, u) and Mc−2−b
G (u, v) are isomorphic to

U (R(a − 3, 1), b, R). Thus from Corollary 2.1 we have

µ(G) ≤ max{µ(Md−b
G (v, u)), µ(Mc−2−b

G (u, v))} = µ(U (R(a − 3, 1), b, R)). �

3. The auxiliary graphs T1–T14

The basic strategy of proving our main results consists of the following steps:

Step 1: To prove that for each graph G ∈ Un \ {G1, . . . , G10}, we have µ(G) < µ(G10).
For this purpose, we need to do the following two substeps.

Substep 1.1: We define the 14 auxiliary graphs T1–T14 in Un (see Fig. 2) and then show that

µ(Ti ) < µ(G10) (i = 1, . . . , 14).

Substep 1.2: We show that for each graph G ∈ Un \ {G1, . . . , G10}, we have either µ(G) < µ(G10) or µ(G) ≤ µ(Ti )

for some i ∈ {1, . . . , 14}.

Step 2: To prove that

µ(G10) = µ(G9) < µ(G8) < µ(G7) < µ(G6) < µ(G5) < µ(G4) < µ(G3) < µ(G2) < µ(G1).

(Notice that µ(G5) < µ(G4) < µ(G3) < µ(G2) < µ(G1) has already been proved by Guo in [1].)
We will settle Substep 1.1 in Section 3, settle Substep 1.2 in Section 4 and settle Step 2 in Section 5.
First we need to introduce the following lemmas from [1,3–7] before introducing the auxiliary graphs T1–T14.
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Lemma 3.1 ([1]). Let G be a unicyclic graph on n vertices, v1, v2 ∈ V (G), then

(1) If v1, v2 are adjacent, then d(v1) + d(v2) ≤ n + 1;
(2) If v1, v2 are not adjacent, then d(v1) + d(v2) ≤ n.

Lemma 3.2 ([3]). Let G be a graph on n vertices. Then

µ(G) ≤ max{di + mi | vi ∈ V (G)},

where mi =

∑
vi v j ∈E d(v j )

d(vi )
is the average of the degrees of the vertices of G adjacent to vi , which is called the

average 2-degree of the vertex vi .

Lemma 3.3 ([4]). Let G be a connected graph on n vertices with the degree sequence π(G) = (d1, d2, . . . , dn) (d1 ≥

d2 ≥ · · · ≥ dn). Then µ(G) ≤ d1 + d2.

Lemma 3.4 ([5]). (The operation of “grafting pendant edges”) Let G be a connected graph on n ≥ 2 vertices and
v be a vertex of G. Let Gk,l be the graph obtained from G by attaching two new paths P : v(= v0)v1v2 · · · vk and
Q : v(= v0)u1u2 · · · ul of lengths k and l at v, respectively, where u1, u2, . . . , ul and v1, v2, . . . , vk are distinct new
vertices. Let

Gk−1,l+1 = Gk,l − vk−1vk + ulvk .

If l ≥ k ≥ 1, then

µ(Gk−1,l+1) ≤ µ(Gk,l)

with equality if and only if there exists a unit eigenvector of Gk,l corresponding to µ(Gk,l) taking the value 0 on
vertex v.

Lemma 3.5 ([6,7]). Let G be a connected graph on n vertices with at least one edge, then µ(G) ≥ 1(G) + 1, where
1(G) is the maximum degree of the graph G, with equality if and only if 1(G) = n − 1.

Now we introduce the following auxiliary graphs T1–T14 of order n in Fig. 2.
By employing the notations in Section 1, we can write these graphs (except {T1, T11, T13}) in the following way:

T2 = U (R(n − 6, 1), 1, 0), T3 = U (R(n − 7, 1), 1, 0, 0), T4 = U (R(n − 7, 1), 0, 1, 0),

T5 = U (R(n − 7, 3), 0, 0), T6 = U (R(n − 7, 2), 1, 0), T7 = U (R(n − 7, 2), 0, 0, 0),

T8 = U (R(1, n − 5), 0, 0), T9 = U (R(0, n − 5), 1, 0), T10 = U (R(0, 2), n − 6, 0),

T12 = U (R(0, n − 5), 0, 0, 0), T14 = U (R(0, 1), n − 5, 0).

First we prove the following bounds for µ(G9) and µ(G10).

Proposition 3.1. Let G9, G10 be the unicyclic graphs on n (n ≥ 6) vertices as in Fig. 1. Then

n − 2 < µ(G9) = µ(G10) < n − 1.

Proof. By Lemma 3.5, we have

µ(G9) > 1(G9) + 1 = n − 2,

µ(G10) > 1(G10) + 1 = n − 2.

It is not difficult to calculate (recursively) that

Φ(G9; λ) = Φ(G10; λ) = λ(λ − 3)(λ − 1)n−5h(λ), (3.1)

where

h(λ) = λ3
− (n + 2)λ2

+ (4n − 7)λ − n.
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For n ≥ 6, we have

h(0) = −n < 0, h(1) = 2(n − 4) > 0,

h(n − 2) = −2 < 0, h(n − 1) = n2
− 6n + 4 > 0.

But h(λ) is a cubic polynomial, so h(λ) > 0 if λ ≥ n − 1. So

Φ(G9; λ) = Φ(G10; λ) = λ(λ − 3)(λ − 1)n−5h(λ) > 0 (for λ ≥ n − 1).

Thus we have

n − 2 < µ(G9) = µ(G10) = µ(h) < n − 1. �

Now we begin to show that µ(Ti ) < µ(G10) (i = 1, . . . , 14).

Proposition 3.2. Let U (n −5, 1, 1), U (n −5, 0, 0, 0, 0) and T1 (Fig. 2) be the unicyclic graphs on n (n ≥ 7) vertices.
Then

µ(U (n − 5, 1, 1)) = µ(U (n − 5, 0, 0, 0, 0)) = µ(T1) < µ(G10).

Proof. It is not difficult to calculate recursively that

Φ(U (n − 5, 1, 1); λ) = λ(λ − 1)n−6(λ2
− 5λ + 3)h1(λ), (3.2)

Φ(T1; λ) = λ(λ − 3)(λ − 1)n−7(λ2
− 3λ + 1)h1(λ), (3.3)

Φ(U (n − 5, 0, 0, 0, 0); λ) = λ(λ − 1)n−6(λ2
− 5λ + 5)h1(λ), (3.4)

where

h1(λ) = λ3
− (n + 1)λ2

+ (3n − 5)λ − n.

By Lemma 3.5, we have

µ(U (n − 5, 1, 1)) > 1(U (n − 5, 1, 1)) + 1 = n − 2,

µ(T1) > 1(T1) + 1 = n − 2,

µ(U (n − 5, 0, 0, 0, 0)) > 1(U (n − 5, 0, 0, 0, 0)) + 1 = n − 2,

so µ(U (n − 5, 1, 1)), µ(T1), µ(U (n − 5, 0, 0, 0, 0)) are the largest roots of h1(λ). Thus

µ(U (n − 5, 1, 1)) = µ(T1) = µ(U (n − 5, 0, 0, 0, 0)).

Next by (3.1) and (3.3), we have

Φ(T1; λ) − Φ(G10; λ) = λ2(λ − 3)(λ − 1)n−7g1(λ),

where

g1(λ) = λ2
− (n − 2)λ + 2.

It is easy to check that for λ ≥ n − 2, we have g1(λ) > 0. So if λ ≥ µ(G10) > n − 2, then

Φ(T1; λ) − Φ(G10; λ) = λ2(λ − 3)(λ − 1)n−7g1(λ) > 0.

Thus we have

µ(U3(n − 5, 1, 1)) = µ(U (n − 5, 0, 0, 0, 0)) = µ(T1) < µ(G10). �

By the similar method as in Proposition 3.2, we can obtain the following propositions.

Proposition 3.3. Let T2 (Fig. 2) be a unicyclic graph on n (n ≥ 6) vertices. Then

µ(T2) < µ(G10).
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Proof. It is not difficult to calculate recursively that

Φ(T2; λ) = λ(λ − 1)n−7h2(λ), (3.5)

where

h2(λ) = λ6
− (n + 7)λ5

+ (9n + 10)λ4
− (28n − 18)λ3

+ (36n − 42)λ2
− (18n − 14)λ + 3n.

Then by (3.1), we have

Φ(T2; λ) − Φ(G10; λ) = λ2(λ − 1)n−7(λ + n − 7).

So if λ ≥ µ(G10) > n − 2, we have

Φ(T2; λ) − Φ(G10; λ) = λ2(λ − 1)n−7(λ + n − 7) > 0

since n ≥ 6. Thus we have

µ(T2) < µ(G10). �

Proposition 3.4. Let T14 (Fig. 2) be a unicyclic graph on n (n ≥ 6) vertices. Then

µ(T14) < µ(G10).

Proof. It is not difficult to calculate recursively that

Φ(T14; λ) = λ(λ − 1)n−6h3(λ), (3.6)

where

h3(λ) = λ5
− (n + 6)λ4

+ (8n + 4)λ3
− (20n − 22)λ2

+ (17n − 26)λ − 3n.

Next by (3.1) and (3.6), we have

Φ(T14; λ) − Φ(G10; λ) = λ2(λ − 1)n−6(n − 5).

So if λ ≥ µ(G10) > n − 2, then

Φ(T14; λ) − Φ(G10; λ) = λ2(λ − 1)n−6(n − 5) > 0.

Thus

µ(T14) < µ(G10). �

Proposition 3.5. Let T ∈ {T3, . . . , T12} (Fig. 2) be a unicyclic graph on n (n ≥ 10) vertices. Then

µ(T ) < n − 2.

Proof. We use µ(T ) ≤ max{di + mi | vi ∈ V (T )} from Lemma 3.2. Assume d1 ≥ d2 ≥ · · · ≥ dn . Then for
T ∈ {T3, . . . , T12} we can check that

d1 = n − 4, d2 ≤ 4, d3 ≤ 3, d4 ≤ 2. (3.7)

Thus if di 6= d1, then 1 ≤ di ≤ 4. Now for each i ∈ {1, . . . , n}, we estimate the quantity di + mi according to the
following cases:

Case 1: di = d1.
Then

d1 + m1 = d1 +

∑
v1v j ∈E

d j

d1
> d1 + 1 = n − 3.
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Case 2: di = 1.
Then

di + mi = 1 +
d j

1
= 1 + d j ≤ d1 + 1.

Case 3: di = 2.
Then from (3.7) we have

di + mi ≤ 2 +
d1 + d2

2
≤ 2 +

n

2
≤ n − 3 = d1 + 1.

Case 4: di = 3.
Then from (3.7) we have

di + mi ≤ 3 +
d1 + d2 + d3

3
≤ 3 +

n + 3
3

≤ n − 3 = d1 + 1.

Case 5: di = 4.
Then from (3.7) we have

di + mi ≤ 4 +
d1 + d2 + d3 + d4

4
≤ 4 +

n + 5
4

≤ n − 3 = d1 + 1.

Combining Cases 1–5, we have

µ(T ) ≤ max{di + mi | vi ∈ V (T )} = d1 + m1

≤ n − 4 +

n∑
j=1

d j − (d1 + ds + dt + dk)

n − 4

≤ n − 4 +
2n − (n − 4 + 1 + 1 + 1)

n − 4

= n − 3 +
5

n − 4
< n − 2. �

Now from the above Propositions 3.2–3.5 and Lemma 3.2, we can obtain the following theorem which settles
Substep 1.1.

Theorem 3.1. Let Ti (i = 1, . . . , 14) (Fig. 2) be a unicyclic graph on n (n ≥ 10) vertices. Then

µ(Ti ) < µ(G10) (i = 1, . . . , 14).

Proof. By using the operation of “grafting pendant edges” in Lemma 3.4 (for the case l = k = 2), we can see that T1
can be transformed to T13. So by Lemma 3.4 we have

µ(T13) ≤ µ(T1).

Also from Proposition 3.5, we have

µ(Ti ) < n − 2 < µ(G10) (i = 3, . . . , 12).

So by combining these two relations with Propositions 3.2–3.4, we have

µ(Ti ) < µ(G10) (i = 1, . . . , 14). �
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4. The exclusions of the unicyclic graphs not in {G1, . . . , G10}

For any connected graph G, let C(G) be the graph obtained from G by contracting all pendant edges of G. It is
easy to see that C(G) is also a unicyclic graph if G is. Sometimes C(G) is called the condensed graph of G.

In this section we will settle Substep 1.2. For this purpose, we will consider different cases according to the value
of d1 + d2, and according to the degree sequence π(G) and the condensed graph C(G).

Let π(G) = (d1, d2, . . . , dn) be the degree sequence of a unicyclic graph G on n vertices where d1 ≥ d2 ≥ · · · ≥

dn . Then we have d1 + · · · + dn = 2n, since G is unicyclic. Also by Lemma 3.1, we have

d1 + d2 ≤ n + 1.

Now if d1 + d2 ≤ n − 2, then by Lemma 3.3 and Proposition 3.1, we have

µ(G) ≤ d1 + d2 ≤ n − 2 < µ(G10)

as desired. So in what follows we may assume that n − 1 ≤ d1 + d2 ≤ n + 1, namely,

d1 + d2 = {n − 1, n, n + 1}. (4.1)

We first consider the case d1 + d2 = n + 1.

Theorem 4.1. If G is a unicyclic graph on n (n ≥ 10) vertices with d1 + d2 = n + 1 and G 6∈ {G1, · · · , G10}. Then

µ(G) < µ(G10).

Proof. Since d1 + d2 = n + 1, we have d3 + · · · + dn = n − 1. Thus

π(G) = (d1, d2, 2, 1, . . . , 1).

So C(G) = C3 and

G = U (d1 − 2, d2 − 2, 0).

But G 6∈ {G1, G3, G7}, so d2 − 2 ≥ 3.
Observe that the graph obtained from G by moving all but three pendant edges at v to u and the graph obtained from

G by moving all but three pendant edges at u to v are both isomorphic to U (n −6, 3, 0), where d(u) = d1, d(v) = d2.
So by Corollary 2.1 and Lemma 3.2, we have

µ(G) ≤ µ(U (n − 6, 3, 0)) ≤ n − 3 +
5

n − 4
< n − 2 < µ(G10). �

Secondly, we consider the case d1 + d2 = n.

Theorem 4.2. If G is a unicyclic graph on n (n ≥ 10) vertices with d1 + d2 = n and G 6∈ {G1, . . . , G10}. Then

µ(G) < µ(G10).

Proof. Since d1 + d2 = n, we have d3 + · · · + dn = n and so

π(G) = (d1, d2, 3, 1, . . . , 1) or (d1, d2, 2, 2, 1, . . . , 1).

We consider the following two cases.

Case 1: π(G) = (d1, d2, 3, 1, . . . , 1).
Then we must have d2 ≥ 3 and

G = U (d1 − 2, d2 − 2, 1).

Observe that the graph obtained from G by moving all but one pendant edges at v to u and the graph obtained from G
by moving all but one pendant edges at u to v are both isomorphic to U (n − 5, 1, 1), where d(u) = d1 and d(v) = d2.
So by Corollary 2.1 and Proposition 3.2, we have

µ(G) ≤ µ(U (n − 5, 1, 1)) < µ(G10).
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Fig. 3. The graphs A1 and A2.

Case 2: π(G) = (d1, d2, 2, 2, 1, . . . , 1).
Then the condensed graph C(G) of G is a unicyclic graph of order 4. So

C(G) = U (1, 0, 0) or C4.

Subcase 2.1: C(G) = U (1, 0, 0).
Then d2 ≥ 3 since G 6= G4.

Subcase 2.1.1: There is only one vertex on the cycle having degree 2.
Then G is of the type A1 (Fig. 3).
If d(u) ≥ 4, then G = U (R(d(u) − 3, 1), d(v) − 2, 0).
Now the graph obtained from G by moving all but one pendant edges at v to u and the graph obtained from G by

moving all but one pendant edge among all the pendant paths at u to v are both isomorphic to U (R(n − 6, 1), 1, 0) =

T2. So by Corollary 2.1 and Theorem 3.1, we have

µ(G) ≤ µ(T2) < µ(G10).

If d(u) = 3, then we have G = U (R(0, 1), n − 5, 0) = T14, so by Theorem 3.1, we have

µ(G) = µ(T14) < µ(G10).

Subcase 2.1.2: There are two vertices on the cycle having degree 2.
Then G is of the type A2 (Fig. 3). Also d2 ≥ 4 since G 6∈ {G4, G9, G10}.
If |xu | ≥ |xv|, then the graph obtained from G by moving all but three pendant edges at v to u is isomorphic to

U (R(n − 7, 3), 0, 0) = T5. So by Lemma 2.1 and Theorem 3.1, we have

µ(G) ≤ µ(T5) < µ(G10).

If |xu | ≤ |xv|, then the graph obtained from G by moving all but one pendant edges at u to v is isomorphic to
U (R(1, n − 5), 0, 0) = T8. So by Lemma 2.1 and Theorem 3.1, we have

µ(G) ≤ µ(T8) < µ(G10).

Subcase 2.2: C(G) = C4.
Then G is either U (d1 − 2, d2 − 2, 0, 0) or U (d1 − 2, 0, d2 − 2, 0).
Since G 6∈ {G2, G5, G8}, we have d2 ≥ 4.

Subcase 2.2.1: If G = U (d1 − 2, d2 − 2, 0, 0), then the graph obtained from G by moving all but two pendant
edges at v to u and the graph obtained from G by moving all but two pendant edges at u to v are both isomorphic to
U (n − 6, 2, 0, 0), where d(u) = d1, d(v) = d2. So by Corollary 2.1 and Lemma 3.2, we have

µ(G) ≤ µ(U (n − 6, 2, 0, 0)) ≤ n − 3 +
4

n − 4
< n − 2 < µ(G10).

Subcase 2.2.2: If G = U (d1 − 2, 0, d2 − 2, 0), then the graph obtained from G by moving all but two pendant
edges at v to u and the graph obtained from G by moving all but two pendant edges at u to v are both isomorphic to
U (n − 6, 0, 2, 0), where d(u) = d1, d(v) = d2. So by Corollary 2.1 and Lemma 3.2, we have

µ(G) ≤ µ(U (n − 6, 0, 2, 0)) ≤ n − 3 +
2

n − 4
< n − 2 < µ(G10).

So combining Cases 1, 2, we have

µ(G) < µ(G10). �
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Fig. 4. The graph U (R(0, 1), 0, 0).

Fig. 5. The graphs U (1, 0, 0) and B1–B5.

Thirdly, we consider the case d1 + d2 = n − 1.
Let G ∈ Un with d1 + d2 = n − 1, then we have d3 + · · · + dn = n + 1 and so

π(G) = (d1, d2, 4, 1, . . . , 1) or (d1, d2, 3, 2, 1, . . . , 1) or (d1, d2, 2, 2, 2, 1, . . . , 1).

(a) If π(G) = (d1, d2, 4, 1, . . . , 1), then the condensed graph C(G) = C3 and so G = U (d1 − 2, d2 − 2, 2);
(b) If π(G) = (d1, d2, 3, 2, 1, . . . , 1), then the condensed graph C(G) is a unicyclic graph of order 4, so C(G) =

U (1, 0, 0) or C4;
(c) If π(G) = (d1, d2, 2, 2, 2, 1, . . . , 1), then the condensed graph C(G) is a unicyclic graph of order 5, and so

C(G) ∈ {U (2, 0, 0), U (1, 1, 0), U (R(0, 1), 0, 0), U (1, 0, 0, 0), C5}, (4.2)

where U (R(0, 1), 0, 0) is the graph of order 5 obtained by identifying one vertex of C3 with one end vertex of P3
(see Fig. 4).

These cases will be considered in Lemmas 4.1–4.4 and Theorem 4.3, respectively.
In what follows, dG(v) will denote the degree of the vertex v in the graph G.

Lemma 4.1. If G is a unicyclic graph of order n (n ≥ 10) with π(G) = (d1, d2, 3, 2, 1, . . . , 1) and C(G) =

U (1, 0, 0), then

(1) G is of one of the types B1–B5 as shown in Fig. 5.
(2) µ(G) < µ(G10).

Proof. Suppose C(G) = U (1, 0, 0) as shown in Fig. 5.

(1) If dG(y) = 2 and dG(v) ≥ 4 (then dG(u) = 3 or dG(w) = 3), then G is of the type B1;
If dG(y) = 2 and dG(v) = 3, then G is of the type B2;
If dG(w) = 2 (or dG(u) = 2) and dG(v) = 3, then G is of the type B3;
If dG(w) = 2 and dG(u) = 3 (or dG(u) = 2 and dG(w) = 3), then G is of the type B4;
If dG(w) = 2 (or dG(u) = 2) and dG(y) = 3, then G is of the type B5.
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Fig. 6. The graphs U (2, 0, 0), C1 and C2.

(2) Since π(G) = (d1, d2, 3, 2, 1, . . . , 1), then we have d2 ≥ 3.
Case 1: If G is of the type B1, then the graph obtained from G by moving all the pendant edges at u to v and the
graph obtained from G by moving all the pendant paths at v to u are both isomorphic to U (R(n−6, 1), 1, 0) = T2.
So by Corollary 2.1 and Theorem 3.1, we have

µ(G) ≤ µ(T2) < µ(G10).

Case 2: If G is of the type B2, then the graph obtained from G by moving all the pendant edges at u to w and the
graph obtained from G by moving all the pendant edges at w to u are both isomorphic to U (R(0, 1), n − 5, 0) =

T14. So by Corollary 2.1 and Theorem 3.1, we have

µ(G) ≤ µ(T14) < µ(G10).

Case 3: Suppose that G is of the type B3.
If |xu | ≥ |xy |, then the graph obtained from G by moving all but one pendant edges at y to u is isomorphic to

U (R(0, 1), n − 5, 0) = T14. So by Lemma 2.1 and Theorem 3.1, we have

µ(G) ≤ µ(T14) < µ(G10).

If |xu | ≤ |xy |, then the graph obtained from G by moving all but one pendant edges at u to y is isomorphic to
U (R(0, n − 5), 1, 0) = T9. So by Lemma 2.1 and Theorem 3.1, we have

µ(G) ≤ µ(T9) < µ(G10).

Case 4: Suppose that G is of the type B4.
If |xv| ≥ |xy |, then the graph obtained from G by moving all but one pendant edges at y to v is isomorphic to

U (R(n − 6, 1), 1, 0) = T2. So by Lemma 2.1 and Theorem 3.1, we have

µ(G) ≤ µ(T2) < µ(G10).

If |xv| ≤ |xy |, then the graph obtained from G by moving all the pendant edges at v to y is isomorphic to
U (R(0, n − 5), 1, 0) = T9. So by Lemma 2.1 and Theorem 3.1, we have

µ(G) ≤ µ(T9) < µ(G10).

Case 5: Suppose that G is of the type B5.
If |xu | ≥ |xv|, then the graph obtained from G by moving all the pendant edges at v to u is isomorphic to

U (R(0, 2), n − 6, 0) = T10. So by Lemma 2.1 and Theorem 3.1, we have

µ(G) ≤ µ(T10) < µ(G10).

If |xu | ≤ |xv|, then the graph obtained from G by moving all but one pendant edges at u to v is isomorphic to
U (R(n − 7, 2), 1, 0) = T6. So by Lemma 2.1 and Theorem 3.1, we have

µ(G) ≤ µ(T6) < µ(G10).

So combining Cases 1–5, we have

µ(G) < µ(G10). �

Lemma 4.2. If G is a unicyclic graph of order n (n ≥ 10) with π(G) = (d1, d2, 2, 2, 2, 1, . . . , 1) and C(G) =

U (2, 0, 0), then

(1) G is of one of the types C1, C2 as shown in Fig. 6.
(2) µ(G) < µ(G10).
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Fig. 7. The graphs U (R(0, 1), 0, 0) and D1–D3.

Proof. Suppose C(G) = U (2, 0, 0) as shown in Fig. 6.

(1) If dG(y) = dG(z) = 2 and dG(w) = 2 (or dG(u) = 2), then G is of the type C1;
If dG(u) = dG(w) = 2 and dG(y) = 2 (or dG(z) = 2), then G is of the type C2.

(2) Since d3 = 2, we have d2 ≥ 2.

Case 1: G is of the type C1.
Observe that the graph obtained from G by moving all the pendant edges at u to v and the graph obtained from G

by moving all the pendant paths at v to u are both isomorphic to T1. So by Corollary 2.1 and Theorem 3.1, we have

µ(G) ≤ µ(T1) < µ(G10).

Case 2: G is of the type C2.
From Figs. 6 and 3 it is not difficult to see that for any graph G of the type C2, there exists some graph G ′ of the

type A2 such that G ′ can be transformed to G by using the operation of “grafting pendant edges”. So by Lemma 3.4
and the Subcase 2.1.2 of Theorem 4.2, we have

µ(G) ≤ µ(G ′) < µ(G10).

So combining Cases 1, 2, we have

µ(G) < µ(G10). �

Lemma 4.3. If G is a unicyclic graph of order n (n ≥ 10) with π(G) = (d1, d2, 2, 2, 2, 1, . . . , 1) and C(G) =

U (R(0, 1), 0, 0), then

(1) G is of one of the types D1–D3 as shown in Fig. 7.
(2) µ(G) < µ(G10).

Proof. Suppose C(G) = U3(R(0, 1), 0, 0) as shown in Fig. 7.

(1) If dG(y) = dG(z) = dG(w) = 2 (or dG(y) = dG(z) = dG(u) = 2), then G is of the type D1;
If dG(u) = dG(w) = dG(z) = 2, then G is of the type D2;
If dG(u) = dG(w) = dG(y) = 2, then G is of the type D3.

(2) We consider the following cases.

Case 1: G is of the type D1.
Observe that the graph obtained from G by moving all the pendant edges at u to v and the graph obtained from G

by moving all the pendant paths at v to u are both isomorphic to T13. So by Corollary 2.1 and Theorem 3.1, we have

µ(G) ≤ µ(T13) < µ(G10).

Case 2: G is of the type D2.
If |xv| ≥ |xy |, then the graph obtained from G by moving all but one pendant edges at y to v is isomorphic to T13.

So by Lemma 2.1 and Theorem 3.1, we have

µ(G) ≤ µ(T13) < µ(G10).

If |xv| ≤ |xy |, then the graph obtained from G by moving all the pendant edges at v to y is isomorphic to T11. So
by Lemma 2.1 and Theorem 3.1, we have

µ(G) ≤ µ(T11) < µ(G10).
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Fig. 8. The graphs U (1, 0, 0, 0) and E1–E3.

Case 3: G is of the type D3.
From Figs. 7 and 3 it is not difficult to see that for any graph G of the type D3, there exists some graph G ′ of the

type A2 such that G ′ can be transformed to G by using the operation of “grafting pendant edges”. So by Lemma 3.4
and the Subcase 2.1.2 of Theorem 4.2, we have

µ(G) ≤ µ(G ′) < µ(G10).

Combining Cases 1–3, we have

µ(G) < µ(G10). �

Lemma 4.4. Let G be a unicyclic graph of order n (n ≥ 10) with π(G) = (d1, d2, 2, 2, 2, 1, . . . , 1) and C(G) =

U (1, 0, 0, 0), then

(1) G is of one of the types E1–E3 as shown in Fig. 8.
(2) If G 6= G6, then µ(G) < µ(G10).

Proof. Suppose C(G) = U (1, 0, 0, 0) as shown in Fig. 8.

(1) If dG(z) = dG(u) = dG(w) = 2, then G is of the type E1;
If dG(y) = dG(w) = dG(z) = 2 (or dG(y) = dG(u) = dG(z) = 2), then G is of the type E2;
If dG(u) = dG(w) = dG(y) = 2, then G is of the type E3.

(2) Since G 6= G6, then we have d2 ≥ 3.

Case 1: G is of the type E1.
If |xv| ≥ |xy |, then the graph obtained from G by moving all but two pendant edges at y to v is isomorphic to

U (R(n − 7, 2), 0, 0, 0) = T7. So by Lemma 2.1 and Theorem 3.1, we have

µ(G) ≤ µ(T7) < µ(G10).

If |xv| ≤ |xy |, then the graph obtained from G by moving all the pendant edges at v to y is isomorphic to
U (R(0, n − 5), 0, 0, 0) = T12. So by Lemma 2.1 and Theorem 3.1, we have

µ(G) ≤ µ(T12) < µ(G10).

Case 2: G is of the type E2.
If d(v) ≥ 4, then the graph obtained from G by moving all but one pendant edges at u to v and the graph

obtained from G by moving all but one pendant edge among all the pendant paths at v to u are both isomorphic to
U (R(n − 7, 1), 1, 0, 0) = T3. So by Corollary 2.1 and Theorem 3.1, we have

µ(G) ≤ µ(T3) < µ(G10).

If d(v) = 3, then G = U (R(0, 1), n − 6, 0, 0). So by Lemma 3.2, we have

µ(G) ≤ n − 3 +
3

n − 4
< n − 2 < µ(G10).

Case 3: G is of the type E3.
If d(v) ≥ 4, then the graph obtained from G by moving all but one pendant edges at z to v and the graph

obtained from G by moving all but one pendant edge among all the pendant paths at v to z are both isomorphic
to U (R(n − 7, 1), 0, 1, 0) = T4. So by Corollary 2.1 and Theorem 3.1, we have

µ(G) ≤ µ(T4) < µ(G10).
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If d(v) = 3, then G = U (R(0, 1), 0, n − 6, 0). So by Lemma 3.2, we have

µ(G) ≤ n − 3 +
2

n − 4
< n − 2 < µ(G10).

So combining Cases 1–3, we have

µ(G) < µ(G10). �

Theorem 4.3. If G is a unicyclic graph on n (n ≥ 10) vertices with d1 + d2 = n − 1 and G 6∈ {G1, . . . , G10}, then

µ(G) < µ(G10).

Proof. We will divide the proof into eight cases according to the degree sequence π(G) and the condensed graph
C(G).

Case 1: π(G) = (d1, d2, 4, 1, . . . , 1).
Then we have d2 ≥ 4 and G = U (d1 − 2, d2 − 2, 2).
Observe that the graph obtained from G by moving all but one pendant edges at v to u and the graph obtained from

G by moving all but one pendant edges at u to v are both isomorphic to U (n − 6, 2, 1), where d(u) = d1, d(v) = d2.
So by Corollary 2.1 and Lemma 3.2, we have

µ(G) ≤ µ(U (n − 6, 2, 1)) ≤ n − 3 +
5

n − 4
< n − 2 < µ(G10).

Case 2: π(G) = (d1, d2, 3, 2, 1, . . . , 1) and C(G) = U (1, 0, 0).
By Lemma 4.1, we have µ(G) < µ(G10).

Case 3: π(G) = (d1, d2, 3, 2, 1, . . . , 1) and C(G) = C4.
Then we have d2 ≥ 3 and

G = U (d1 − 2, d2 − 2, 0, 1) or U (d1 − 2, 1, d2 − 2, 0).

Subcase 3.1: G = U (d1 − 2, d2 − 2, 0, 1).
Suppose that d(u) = d1, d(v) = d2.
If |xu | ≥ |xv|, then the graph obtained from G by moving all but one pendant edges at v to u is isomorphic to

U (n − 6, 1, 0, 1). So by Corollary 2.1 and Lemma 3.2, we have

µ(G) ≤ µ(U (n − 6, 1, 0, 1)) ≤ n − 3 +
4

n − 4
< n − 2 < µ(G10).

If |xu | ≤ |xv|, then the graph obtained from G by moving all but one pendant edges at u to v is isomorphic to
U (n − 6, 0, 1, 1). So by Corollary 2.1 and Lemma 3.2, we have

µ(G) ≤ µ(U (n − 6, 0, 1, 1)) ≤ n − 3 +
3

n − 4
< n − 2 < µ(G10).

Subcase 3.2: G = U (d1 − 2, 1, d2 − 2, 0).
Observe that the graph obtained from G by moving all but one pendant edges at v to u and the graph obtained from

G by moving all but one pendant edges at u to v are both isomorphic to U (n−6, 0, 1, 1), where d(u) = d1, d(v) = d2.
So by Corollary 2.1 and Lemma 3.2, we have

µ(G) ≤ µ(U (n − 6, 0, 1, 1)) ≤ n − 3 +
3

n − 4
< n − 2 < µ(G10).

Case 4: π(G) = (d1, d2, 2, 2, 2, 1, . . . , 1) and C(G) = U (2, 0, 0).
By Lemma 4.2, we have µ(G) < µ(G10).

Case 5: π(G) = (d1, d2, 2, 2, 2, 1, . . . , 1) and C(G) = U (1, 1, 0).
Then G is of the type F = U (R(d(u) − 3, 1), R(d(v) − 3, 1), 0) as shown in Fig. 9, so d2 ≥ 3.
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Fig. 9. The graph F .

Observe that the graph obtained from G by moving all the pendant paths at u to v and the graph obtained from G
by moving all the pendant paths at v to u are both isomorphic to T1. So by Corollary 2.1 and Theorem 3.1, we have

µ(G) ≤ µ(T1) < µ(G10).

Case 6: π(G) = (d1, d2, 2, 2, 2, 1, . . . , 1) and C(G) = U3(R(0, 1), 0, 0).
By Lemma 4.3, we have µ(G) < µ(G10).

Case 7: π(G) = (d1, d2, 2, 2, 2, 1, . . . , 1) and C(G) = U (1, 0, 0, 0).
By Lemma 4.4, we have µ(G) < µ(G10).

Case 8: π(G) = (d1, d2, 2, 2, 2, 1, . . . , 1) and C(G) = C5.
Then we have

G = U (d1 − 2, d2 − 2, 0, 0, 0) or U (d1 − 2, 0, d2 − 2, 0, 0).

Observe that the graph obtained from G by moving all the pendant edges at u to v and the graph obtained from G by
moving all the pendant edges at v to u are both isomorphic to U (n − 5, 0, 0, 0, 0), where d(u) = d1, d(v) = d2. So
by Corollary 2.1 and Proposition 3.2, we have

µ(G) ≤ µ(U (n − 5, 0, 0, 0, 0)) < µ(G10).

So combining Cases 1–8, we obtain the desired result. �

Combining Theorems 4.1–4.3, we immediately obtain the following main result of this section.

Theorem 4.4. If G is a unicyclic graph on n (n ≥ 10) vertices and G 6∈ {G1, . . . , G10}, then

µ(G) < µ(G10).

5. The ordering of the graphs in G5–G10

In this section, we will settle Step 2. Namely we will show that

µ(G10) = µ(G9) < µ(G8) < µ(G7) < µ(G6) < µ(G5).

Theorem 5.1. For n ≥ 4, we have

µ(G10) = µ(G9) < µ(G8).

Proof. By Lemma 3.5, we can see that

µ(G8) > 1(G8) + 1 = n − 2.

It is not difficult to calculate recursively that

Φ(G8; λ) = λ(λ − 2)(λ − 1)n−6h8(λ), (5.1)

where

h8(λ) = λ4
− (n + 4)λ3

+ (6n − 4)λ2
− (8n − 12)λ + 2n.
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By Proposition 3.1, we have

µ(G9) = µ(G10).

By (3.1) we have

Φ(G10; λ) − Φ(G8; λ) = λ(λ − 1)n−6g2(λ),

where

g2(λ) = 2λ2
− (2n − 3)λ + n = (2λ − 1)[λ − (n − 2)] + 2.

Thus we have g2(λ) > 0 if λ ≥ n − 2. So for λ ≥ n − 2, we have

Φ(G10; λ) − Φ(G8; λ) = λ(λ − 1)n−6g2(λ) > 0.

So we have

µ(G10) = µ(G9) < µ(G8). �

By using a similar method as in Theorem 5.1, we can prove the following theorems.

Theorem 5.2. For n ≥ 6, we have

µ(G8) < µ(G7).

Proof. It is not difficult to calculate recursively that

Φ(G7; λ) = λ(λ − 1)n−5h7(λ),

where

h7(λ) = λ4
− (n + 5)λ3

+ (7n − 3)λ2
− (11n − 17)λ + 3n.

Then by (5.1), we have

Φ(G8; λ) − Φ(G7; λ) = λ(λ − 1)n−6g3(λ), (5.2)

where

g3(λ) = 2λ3
− 2nλ2

+ (4n − 7)λ − n.

Now we have

2h8(λ) = 2λ4
− 2(n + 4)λ3

+ 2(6n − 4)λ2
− 2(8n − 12)λ + 4n

= (λ − 4)[2λ3
− 2nλ2

+ (4n − 7)λ − n] − λ2
+ (n − 4)λ

= (λ − 4)g3(λ) − λ[λ − (n − 4)]

and µ(G8) > µ(G10) > n − 2 by Theorem 5.1 and Proposition 3.1, so for n ≥ 6,

g3(µ(G8)) > 0.

Thus from (5.2), we have

Φ(G7; µ(G8)) < 0.

So we have µ(G8) < µ(G7) as desired. �

Theorem 5.3. For n ≥ 10, we have

µ(G7) < µ(G6).

Proof. By Lemma 3.5, we can see that

µ(G7) > 1(G7) + 1 = n − 2,
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and also that µ(G7) is the largest root of h7(λ) = 0. Since for n ≥ 10,

h7(0) = 3n > 0, h7(1) = −2(n − 5) < 0,

h7(2) = n − 2 > 0, h7(n − 2) = −2(n − 5) < 0,

h7

(
n −

7
4

)
=

1
256

(64n3
− 784n2

+ 2348n − 707) > 0,

we have µ(G7) < n −
7
4 .

It is not difficult to calculate recursively that

Φ(G6; λ) = λ(λ − 2)(λ − 1)n−7h6(λ), (5.3)

where

h6(λ) = λ5
− (n + 5)λ4

+ (7n + 1)λ3
− (15n − 17)λ2

+ (10n − 8)λ − 2n.

Now we have

Φ(G6; λ) − Φ(G7; λ) = λ(λ − 1)n−7g4(λ),

where

g4(λ) = 3λ4
− (3n + 3)λ3

+ (8n − 5)λ2
− (5n + 1)λ + n.

Then

g′

4(λ) = 12λ3
− 9(n + 1)λ2

+ 2(8n − 5)λ − (5n + 1).

It is easy to calculate that for n ≥ 10

g′

4(0) = −(5n + 1) < 0, g′

4(1) = 2(n − 4) > 0, g′

4(3) = −3(3n − 13) < 0,

g′

4(n − 2) = 3n3
− 29n2

+ 97n − 113 > 0.

It follows that g′

4(λ) > 0 for all λ ≥ n − 2 (for otherwise g′

4(λ) would have at least 4 different roots, a contradiction).
So g4(λ) is an increasing function in [n − 2, ∞). But µ(G7) < n −

7
4 and

g4

(
n −

7
4

)
= −

1
256

(64n3
− 1360n2

+ 6412n − 7847) < 0,

so g4(µ(G7)) < 0. Thus

Φ(G6; µ(G7)) = µ(G7)[µ(G7) − 1]
n−7g4(µ(G7)) < 0.

So we have

µ(G7) < µ(G6). �

Theorem 5.4. For n ≥ 5, we have

µ(G6) < µ(G5).

Proof. By Lemmas 3.2 and 3.5, we have

n − 2 = 1(G5) + 1 < µ(G5) < n − 1,

n − 2 = 1(G6) + 1 < µ(G6) < n − 1.

It is not difficult to calculate recursively that

Φ(G5; λ) = λ(λ − 1)n−5h5(λ), (5.4)

where

h5(λ) = λ4
− (n + 5)λ3

+ (7n − 1)λ2
− (13n − 19)λ + 4n.
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By (5.3), we have

Φ(G6; λ) − Φ(G5; λ) = λ2(λ − 1)n−7g5(λ),

where

g5(λ) = λ3
− (n + 1)λ2

+ (3n − 3)λ − n − 3 = [λ − (n − 2)](λ2
− 3λ + 3) + 2n − 9. (5.5)

So g5(λ) > 0 if λ ≥ n − 2. Thus from (5.5) if λ ≥ n − 2, we have

Φ(G6; λ) − Φ(G5; λ) = λ2(λ − 1)n−7g5(λ) > 0.

So we have

µ(G6) < µ(G5).

Combining Theorem 4.4, Theorems 5.1–5.4 and [1], we can obtain our main result of this paper.

Theorem 5.5. If G is a unicyclic graph of order n ≥ 10, G1–G10 are graphs as shown in Fig. 1, then

(1) µ(G) < µ(G10), for any G 6∈ {G1, . . . , G10}.
(2) µ(G10) = µ(G9) < µ(G8) < µ(G7) < µ(G6) < µ(G5) < µ(G4) < µ(G3) < µ(G2) < µ(G1).
(3) µ(G9) = µ(G10) is the largest real root of the equation h(λ) = 0, where

h(λ) = λ3
− (n + 2)λ2

+ (4n − 7)λ − n

and µ(Gi ) is the largest real root of the equation hi (λ) = 0 (i = 5, . . . , 8) respectively, where

h5(λ) = λ4
− (n + 5)λ3

+ (7n − 1)λ2
− (13n − 19)λ + 4n,

h6(λ) = λ5
− (n + 5)λ4

+ (7n + 1)λ3
− (15n − 17)λ2

+ (10n − 8)λ − 2n,

h7(λ) = λ4
− (n + 5)λ3

+ (7n − 3)λ2
− (11n − 17)λ + 3n,

h8(λ) = λ4
− (n + 4)λ3

+ (6n − 4)λ2
− (8n − 12)λ + 2n.
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