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Abstract

In this paper, we establish existence results for positive solutions fofthel, 1) three-point
boundary value problems consisting of the equation

u™ +Aa(t)f(u(t)) =0, re(0,1),
with one of the following boundary value conditions:
u(0) = au(n), u(1) = Bu(n),
u©)=0 fori=1,2...,n-2,
and
W20 =au 2wy, w2 @) =pu"2 (),
u®©)=0 fori=0,1,...,n—3,

wheren € (0,1),« >0, 8 >0, anda : (0, 1) — R may change sign arll = (—oo, +00). f(0) > 0,

A > 0 is a parameter. Our approach is based on the Leray—Schauder degree theory. This paper is
motivated by Eloe and Henderson (Nonlinear Anal. 28 (1997) 1669-1680).
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1. Introduction

Three-point boundary value problems for differential equations were presented by II'in
and Moiseev [10,11]. Motivated by the study of II'in and Moiseev, Gupta in [1,2] and Ma
in [3-5] studied certain three-point boundary value problems for nonlinear second-order
ordinary differential equations. The solvability of two-point boundary value problems for
higher-order ordinary differential equations has been discussed extensively in the literature
in the past ten years; see, for example, monograph [8] and the recent paper [6]. To the best
of our knowledge, existence results for positive solutions of three-point boundary value
problem of higher-order ordinary differential equations, however, have not been studied
previously.

In this paper, we study the existence of positive solutions of the following 1, 1)
three-point boundary value problem consisting of the differential equation

u™ +ra(t) f(u()) =0, t€(0,1), 1)
with one of the following boundary value conditions:

u(0) = au(n), u(1) = Bu(n),

u®0)=0 fori=1,2...,n-2, 2)
and

w20 =au"2@m), w2 Q) =pu"2 ),

u®©0)=0 fori=0,1,...,n—3, (3)

wheren € (0,1),« > 0,8 >0, anda:(0,1) > R andR = (—o0, +00). f(0) >0, >0
is a parameter; > 3.
For the case where = 8 =0, (1)-(2) becomes

u®™ +xa(t) f(u)=0, O<t<1,

uD(0)=u(l) =0, i=012..,n-2
BVP (4) was studied by Eloe and Henderson [6]. In [6], Eloe and Henderson proved that
BVP (4) has positive solutions under the following assumptions (A) and (B) or (A) and (C):

(4)

(A) a:[0,1] — [0, +00), f:[0, +00) — [0, +00) are continuous.
(B) limy_o(f(x)/x) =0 and lim._ 4 (f (x)/x) = +00 (super-linear).
(C) limy_o(f(x)/x) =400 and lim,_, ;oo (f (x)/x) = 0 (sub-linear).

BVP (1)-(2) also contains as special case the following BVP:

{u’/(t)+)\f(t,u)=0, O<r<1, 5)

u(0)=u(l) — pu(n) =0.
In [5], Ma proved that BVP (5) has positive solutions under the above conditieng &
1/n, (A) and (B) or (A) and (C). Very recently, motivated by [12], the author in [9] proved
that it has at least three positive solutions by imposing conditiong.on
In this paper, we make the following assumptions:
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(A1) Mi=1—a—(B—a)y" t>0.

(A}) Ma=1—a—(B—a)n>0.

(A2) f:[0,+00) — [0, +00) is continuous angd (0) > 0.

(A3) a:[0,1] — Ris continuous and there ks> 1 such that
1 1

/Gi(t, s)at(s)ds > k/G,-(t, s)a”(s)ds forte[0,1],i=1,2,
0 0
wherea™ (1) = max0, a(¢)} anda~(t) = max0, —a(t)}, G;(¢, s) is defined by

L=9)" oyt — (@ — D"
—(t—5)""Hl—a—(B—a)y" Y
—( =" B - +al,
O<s<t<y<lor0O<s<n<r<l,

(1 —5)" Yo"t — (@ — "1

Gilt.s) = — = —(n = )" H(B-a)"* +al,

’ (n—1D!'Mq 0<r<s<n<l,

1 =9)" oyt — (@ — D71,
O0<r<n<s<l or0<np<r<s <],

L=9)" oyt — (@ — D"
—(t—s)""Hl—a—(B—a)y" 1,
O<n<s<r<l,

for BVP (1)-(2), and

=M —a— B -l —s"*
+Hn =2 A=) T+ (n = Dlant"2)(L— )
+[(n =2l — Pr" L — (n — D0et" 21 (n — 5),
O<s<n<tr<lor0<s<r<n<l,

—n=21—a—(B—amlt—s)"t

G 1 +(n—=2!A—a)" L4 (n — Dlan"?)(1 —s),

20.5)=371 o<n<s<r<i,

21— $)[(n — 2L — )t + (n — Dlan],
O<y<r<s<lor0<r<n<s <1,

A=) =2 A= )" L+ (n— Dlant™2)
+( =) — 2 a — "1 — (n — Dlar" 2],
O0<r<s<n<l,

for BVP (1)—(3), whereM = (n — 1)!(n — 2)! M>.

Our main result is as follows.

Theorem 1. Let(A1)—(A3) hold. Then there is a positive numbersuch that BVR1)—(2)
has at least one positive solution fore (0, ).

Theorem 2. Let (A}) and (A2)—(A3) hold. Then there is a positive numbef such that
BVP (1)—(3)has at least one positive solution fbre (0, A*).
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The organization of the paper is as follows. In Section 2, we prove Theorems 1 and 2.
We now present an example.

Example 1. Consider(n — 1, 1) three-point boundary value problem

{u"’(t)+ka(t)f(u) =0, O0<t<1,

6
w©®=u(d), u@®=21ud), w©O=0 6)

wherea(r) = 3/4—1tfort € [0, 1] and f satisfiesA,). WeseeM; =1 — o — (8 — )"t
=1/8> 0. Again, it is easy to check that

1
_ g 0<r<3,
CUEDTWOE=) 50 14 13,02 9, 3,1
9 %6 24 8 64 128 2SS S
and
1 11644 , 1,4 1,3 2 .2 3
+ xa0 Tl — B Tt 0s1<g
G1(t,s)a™ (s)ds =
7564 58 2, 9 3¢r<t
45%30  4%x15 352" 4xPx

0
Hence, one has
1
G1(t,s)at(s)d
inf fol 1 ar®ds
1€[0,1] fo G1(t,s)a=(s)ds

k=

Applying Theorem 1, we know that there is a numb&e- 0 such that (6) has at least one
positive solution for € (0, A*). The results in [3—6,9] cannot be applied to this equation.
Our theorems are new and different from [3—6,9] and are easy to check. Particularly, we do
not need the assumptions thyats either super-linear or sub-linear, which was supposed in
[3-6].

By the way, the proofs of the theorems are based on the Leray—Schauder fixed point
theorem and motivated by [8]. In [8], Hai studied the existence of positive solutions for
elliptic equation

Au+ra(t)gu) =0, ulsg=0,

wherea may change sign. We note that the technigues in our paper are well known for
certain nonlinear BVP problems, see [7] and references cited therein.

2. Proofsof theorems

In order to prove Theorem 1, we need the following lemmas.

Lemma 1. Suppose thatf; = 1—a — (8 — )1 £ 0. Then fory € C[0, 1], the problem

{u(")—i-y(f):O, tE(O, 1)7

u@©)=oau(n), u@)=pu@m), u®O0=0 fori=12,....n—2, (7)
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has unique solution
1
u(r) = / Ga(t,5)y(s)ds,
0
whereG1(t, s) is defined in Sectiofh.

Proof. To the purpose, we let

( _s)n 1 1 n—2 ;
u(t) = / Ty ) ds + Ar +B+§A,¢. 8)

Sinceu?(0)=0fori =1,2,...,n—2,0negetsA; =0fori =1,2,...,n — 2. Now, we
solve forA andB. By u(0) = au(n) andu(1) = Bu(n), it follows that

_n-1

B=—« (;’(’7(ns)l), y(s)ds +aAn*1 +aB,
1 n—1 _

/s (1(,15)1), y()ds+A+B=—B [ <"n‘>l), y(s)ds + BAn""1 + BB.

Solving the above equations, we get

Al - fp Gy () ds — (B —a) fg U2y (s) ds).

n—1 _ 1 (1— 1
B_—l[ o 67('7(’;)1)! y(s)ds +an"t 0 ((ni)l)! y(s)ds].

SubstitutingA and B into (8), one has

t

_ -1
u(t):—/wy(s)ds
0

(n—1)!
U] 1
1 (n—s)n1t w1 [(A—s)71t
+ﬁ1|: o Wy(s)dS‘i‘Oln Wy(s)ds
0
1 n
tn—l (1_ s)n—l (77 _ s)n—l
+ M |:(1—0l) W)’(S)ds -(B—a) Wy(s) ds
0 0
1
:/Gl(t,s)y(s)ds. O
0

Lemma2. LetM1 > 0. If y € C[0, 1]andy(z) > 0, then the unique solution ¢¥) satisfies
u(t) > 0forall r € [0, 1].

Proof. It suffices to prove that

Gi(t,s) >0 for(t,s)e[0,1] x [0, 1]. (9)
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We consider four cases.
Casel: 0<s<r<n<lorO<s<n<r <1,
A=) Han" P —@—Dr" -t —)" l—a— (B —a)y" ]
— (=" B - +a]

n—1
=(1- s)"l{ [an"fl —(a — 1)t"71] — (t—_s) [1 —a—(B— Ol)rlnil]

1—s
n—s n—1
- ( ) [(B— )"t +a]}

1-—s
> (1_ S)n_l{[()lnn_l _ (O[ _ 1)[n_1] _ tn_l[l— o — (ﬂ _ O{)T}n_l]
—n"MB - +al} 20
Case2: 0<r<s<n<1.

A—)"Han" P —@—D" = m—9" B -a)" +a]

n—1
—1- s)"—l{ [t = (@ — D" ] - (” :j) [(B— )"t + a]}

1
> Q=" Hon" =@ = D" ] =y (B )" +a])
= (1 _ s)ﬂ—lti’l—l[l —a - (,8 _ (X)T}n_l] 2 0
Case3: 0<r<n<s<lor0<n<r<s <L
L—9)"Han" ' = (@ - D" Y]
0, 0<a<l,
>

77"_1(1 — s)"_1 >0, a>1landr<n,
A=) Yo"t —a+1> 8" 11-5)""1>0, a>landlzr>n.

Cased: 0<n<s<r <1,

a- s)”fl[an"*l —(a— 1)t”71] — (- s)"71[1 —a—(B— a)n”il]

n—1
== s>"‘1{ [en" ™ = (@ = D" ] = (i%) [1-a—(- a)n"_l]}

> (1_ S)n_l{[()lnn_l _ (O[ _ 1)[n_1] _ tn_l[l— o — (ﬂ _ Ol)?’}n_l]}
— (1 _ S)n_l[()ﬁ’}n_l(l _ tn_l) + ﬁnn_ltn_l] > 0.
The proof is complete. O

Lemma 3. Suppose thatA1)—(A3) hold. Then for ever9) < § < 1, there exists a positive
numberx such that, for € (0, A), the equation

u®™ +rat (@) fu@) =0, te(0,1), (20)
u©=au@m), u@=pu@m, u?©=0 fori=12...n-2

has a positive solution, with ||z, || — 0asi — 0 and
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i, = A8 )| p(@)|

where

: (11)

1

p(t) = / G1(t,s)a™ (s)ds.
0

Proof. We know thatp(¢) > 0 for ¢t € R and (10) is equivalent to the integral equation

1
u(t) =A/G(t,s)a+(s)f(u(s))ds =Tu(t), (12)
0

whereu € X := C[0, 1]. It is easy to prove thaf is completely continuoud, X C X and
the fixed points ofl" are solutions of (1)—(2). We shall apply the Leray—Schauder fixed
point theorem to prov& has at least one fixed point for small
Lete > 0 be such that
f@) =80 forO<r<e. (13)
Suppose that
€ _
A< ———— =4,
2|lpll f(e)
wheref (1) = max<,<: f (), since
lim & = 400,
t—0t 1
againf(e)/e < 1/(2||p|lr), there isr;, € (0, ) such that
fi) 1
L9} 21 lIpll”

We note that this implieg, — 0 asi — 0.
Now, consider the homotopy equation

u=0Tu, 6¢e(0,1).
Letu € X and6 € (0, 1) be such that = 6Tu. We claim thatjju| # r,. In fact,

1
u(t) =0 / Ga(t,5)a™ (s) f (u(s)) ds.
0

Set
1

w(?) =9A/G1<r,s>a+(s>f(||u||)ds <OAS (lull) p@@).
0
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Then by f (1) < f(|lul)), we know that:(r) < w(z) for all r € R. Moreover, we have

lull < Allplf(llull),
ie.,

f(||u||>> 1

lull = Alpl

which implies thatju|| # r,. Thus by Leray—Schauder fixed point theordimhas a fixed
pointx;, with

i |l <7 <e.

Moreover, combining (12) and (13), we get
i) =22 f(Q)p), teR. (14)

This completes the proof.O0

Proof of Theorem 1. Let
1

q () :/Gl(t,s)a_(s) ds. (15)
0
Theng(t) > 0. Sincep(t)/q(t) > k > 1. Choosingd € (0, 1) such thattd > 1. There is
¢ > 0suchthatf(y)| < kdf(0) for y € [0, c], then
g|f (| <dp®) f(0), 1€R, yelO,cl.
Fix 8 € (d, 1) and letA* > 0 be such that

laxll +23f Olipll <e, 1€ (0,07, (16)

whereu; is given by Lemma 1 and

6—d
|f(X)—f(y)|<f(0)T 17)

for x, y € [—c, c] with [x — y| < A*8£(0)| pl.
Let 1 € (0, A*); we look for a solutionx; of the formu;, + y, such thaty, solves the
following equation:

{ Y Rt OLf G+ ) = f@)] —2a” O f @+ =0, 0<t <1 g
YO =aym, y@=pym), yP0)=0 fori=12,....n-2.

For eachy € C[0, 1], letw = Ty be the solution o € (0, A*); we look for a solutionx;,
of the formu;, + y, such thaty, solves the following equation:

{ w® +rat (O f@n+y) — fl@)] —ra= (@) f(a,+y)=0, O0<r<1,
w0 =aw(), wl)=pwk), w0 =0 fori=1,2....n—2.

ThenT is completely continuous. Lete X andd € (0, 1) be such thay =0Ty; then we
have
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Yy +20aT ([ f s+ y) — f@)] —ra= () fG@, +v) =0, O<r<Ll

We claim that)|y|| # A8/ (0)|| pl|. Suppose to the contrary thigg || = A5 (0)|| p||. Then by
(16) and (17), we get

it + vl < liall + 1yl < c (19)
and
_ _ §—d
| £+ y) — fa)| < FO——. (20)

Using (12) and; (1)| f ()| < dp (1) f(0), we get
1

/ Ga(t.)a ([ f (i(s) + y()) — £ (iiz(5))] ds

0

ly®] =2

1

+ A/Gl(t, s)a” (s) f(itx(s) + y(s)) ds
0
1 1

/Gl(t,s)a+(s)f(0)8_dds—i-k/Gl(t,s)a(s)%df(O)ds

<A 5
0 0

§—d §+d
<0 +1df O p() =225 FOp(),

In particular,

s+d
Iyl é)\%f(o)llpll <A8f Ollpll. (21)

a contradiction and the claim is proved. Thus by Leray—Schauder fixed point theorem,
T has a fixed poiny;, with

yall < 28/ Q) lipll.

Using Lemma 1 and (21), we obtain

5+d §—d
up(t) Zup — vl 2 28 O)p(t) — K%f(O)p(t) =)»7f(0)p(t) >0,

i.e.,uy is a positiveT -periodic solution. The proof of Theorem 1 is completel

Proof of Theorem 2. Similarly, letz € C[0, 1]. The unique solution of the equation

u™ +y(r)=0, 1e(01),
u"=2(0) = au"=2 (n), w2 (1) = pu"=2 (), (22)
u0)=0 fori=0,1,2,...,n—3,

has unique solution
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1

u(t)=/G2(t,S)y(S)ds,
0
whereGs(z, s) is defined as follows:

—n—=21—a—(B—a)mlt—s)"t
+H(n=2!A—a)" L4+ (n— Dlan"?)(1 - s)
+[(n =2 — Pt = (n — D9at""2)(n — 5),
O<s<n<tr<lor0<s<r<n<1,
—m—=21l—a—(B—amlt—s)"t
+Hm =2 A=) " T+ (n = Dlant"2)(L— ),
0<n<s<r<],
M2 —5)[(n — 21— )t + (n — Dlan],
0<n<r<s<lor0<r<n<s<l,
AL=—9)[(n—2!A—a)" L+ (= Dlant" 2
+ (=) — 2 — B)t" L — (n — Dlar" 2],
0<r<s<n<l,
whereM =(n—1D)!(n—2)!Moa=n—1)!n—2)!(1—a— (B —a)n). Itis easy to see that
if y(t) >0, thenu(z) > 0 for all € [0, 1]. The proof is similar to that of Theorem 1 and
thus is omitted. O

1
GZ([,S) = M

References

[1] C.P. Gupta, Solvability of a three point nonlinear boundary value problem for a second order ordinary dif-
ferential equation, J. Math. Anal. Appl. 168 (1992) 540-551.
[2] C.P. Gupta, A sharper condition for the solvability of a three-point second order boundary value problem,
J. Math. Anal. Appl. 205 (1997) 579-586.
[3] R.Y. Ma, Existence theorems for a second order three-point boundary value problems, J. Math. Anal.
Appl. 212 (1997) 430-442.
[4] R.Y. Ma, Existence theorems for a second ordepoint boundary value problems, J. Math. Anal. Appl. 211
(1997) 545-555.
[5] R.Y. Ma, Positive solutions of nonlinear three point boundary value problem, Electron. J. Differential Equa-
tions 34 (1998) 1-8.
[6] P.W. Eloe, J. Henderson, Positive solutions fer— 1, 1) conjugate boundary value problems, Nonlinear
Anal. 28 (1997) 1669-1680.
[7] N.P. Cac, J.A. Catica, X. Li, Positive solutions to semilinear problems with coefficient that changes sign,
Nonlinear Anal. 37 (1999) 505-510.
[8] R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Positive Solutions of Differential, Difference, and Integral Equa-
tions, Kluwer Academic, Dordrecht, 1999.
[9] X. He, W. Ge, Triple solutions for second order three-point boundary value problems, J. Math. Anal.
Appl. 268 (2002) 256-265.
[10] V.A. I'in, E.l. Moiseev, Nonlocal boundary value problem of the second kind for a Sturm-Liouville opera-
tor, Differential Equations 23 (1987) 979-987.
[11] V.A. Il'in, E.I. Moiseev, Nonlocal boundary value problem of the second kind for a Sturm—Liouville operator
in its differential and finite difference aspects, Differential Equations 23 (1987) 803-810.
[12] R.l. Avery, C.J. Chyan, J. Henderson, Twin positive solutions of boundary value problem for ordinary dif-
ferential equations and finite difference equations, Comput. Math. Appl. 42 (2001) 695-704.



