Available at
WWW.MATHEMATICSwEB.ORG
poweredibyscience @directo
J. Math. Anal. Appl. 282 (2003) 816-825

Positive solutions for $(n-1,1)$ three-point boundary value problems with coefficient that changes sign

Yuji Liu ${ }^{\text {a,b,*,1 }}$ and Weigao Ge ${ }^{\mathrm{b}, 2}$
${ }^{\text {a }}$ Department of Mathematics, Yueyang Teacher's University, Yueyang 414000, PR China
${ }^{\mathrm{b}}$ Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081, PR China
Received 9 October 2002
Submitted by D. O'Regan

Abstract

In this paper, we establish existence results for positive solutions for the $(n-1,1)$ three-point boundary value problems consisting of the equation $$
u^{(n)}+\lambda a(t) f(u(t))=0, \quad t \in(0,1)
$$

with one of the following boundary value conditions:

$$
\begin{aligned}
& u(0)=\alpha u(\eta), \quad u(1)=\beta u(\eta), \\
& u^{(i)}(0)=0 \quad \text { for } i=1,2, \ldots, n-2,
\end{aligned}
$$

and

$$
\begin{aligned}
& u^{(n-2)}(0)=\alpha u^{(n-2)}(\eta), \quad u^{(n-2)}(1)=\beta u^{(n-2)}(\eta), \\
& u^{(i)}(0)=0 \quad \text { for } i=0,1, \ldots, n-3,
\end{aligned}
$$

where $\eta \in(0,1), \alpha \geqslant 0, \beta \geqslant 0$, and $a:(0,1) \rightarrow \mathbb{R}$ may change sign and $\mathbb{R}=(-\infty,+\infty) . f(0)>0$, $\lambda>0$ is a parameter. Our approach is based on the Leray-Schauder degree theory. This paper is motivated by Eloe and Henderson (Nonlinear Anal. 28 (1997) 1669-1680). © 2003 Elsevier Inc. All rights reserved.

Keywords: Higher-order differential equation; Positive solution; Cone; Leray-Schauder degree theory

[^0]
1. Introduction

Three-point boundary value problems for differential equations were presented by Il'in and Moiseev [10,11]. Motivated by the study of Il'in and Moiseev, Gupta in [1,2] and Ma in [3-5] studied certain three-point boundary value problems for nonlinear second-order ordinary differential equations. The solvability of two-point boundary value problems for higher-order ordinary differential equations has been discussed extensively in the literature in the past ten years; see, for example, monograph [8] and the recent paper [6]. To the best of our knowledge, existence results for positive solutions of three-point boundary value problem of higher-order ordinary differential equations, however, have not been studied previously.

In this paper, we study the existence of positive solutions of the following $(n-1,1)$ three-point boundary value problem consisting of the differential equation

$$
\begin{equation*}
u^{(n)}+\lambda a(t) f(u(t))=0, \quad t \in(0,1) \tag{1}
\end{equation*}
$$

with one of the following boundary value conditions:

$$
\begin{align*}
& u(0)=\alpha u(\eta), \quad u(1)=\beta u(\eta) \\
& u^{(i)}(0)=0 \quad \text { for } i=1,2, \ldots, n-2 \tag{2}
\end{align*}
$$

and

$$
\begin{align*}
& u^{(n-2)}(0)=\alpha u^{(n-2)}(\eta), \quad u^{(n-2)}(1)=\beta u^{(n-2)}(\eta), \\
& u^{(i)}(0)=0 \quad \text { for } i=0,1, \ldots, n-3 \tag{3}
\end{align*}
$$

where $\eta \in(0,1), \alpha \geqslant 0, \beta \geqslant 0$, and $a:(0,1) \rightarrow \mathbb{R}$ and $\mathbb{R}=(-\infty,+\infty)$. $f(0)>0, \lambda>0$ is a parameter, $n \geqslant 3$.

For the case where $\alpha=\beta=0$, (1)-(2) becomes

$$
\begin{cases}u^{(n)}+\lambda a(t) f(u)=0, & 0<t<1, \tag{4}\\ u^{(i)}(0)=u(1)=0, & i=0,1,2, \ldots, n-2 .\end{cases}
$$

BVP (4) was studied by Eloe and Henderson [6]. In [6], Eloe and Henderson proved that BVP (4) has positive solutions under the following assumptions (A) and (B) or (A) and (C):
(A) $a:[0,1] \rightarrow[0,+\infty), f:[0,+\infty) \rightarrow[0,+\infty)$ are continuous.
(B) $\lim _{x \rightarrow 0}(f(x) / x)=0$ and $\lim _{x \rightarrow+\infty}(f(x) / x)=+\infty$ (super-linear).
(C) $\lim _{x \rightarrow 0}(f(x) / x)=+\infty$ and $\lim _{x \rightarrow+\infty}(f(x) / x)=0$ (sub-linear).

BVP (1)-(2) also contains as special case the following BVP:

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)+\lambda f(t, u)=0, \quad 0<t<1, \tag{5}\\
u(0)=u(1)-\beta u(\eta)=0 .
\end{array}\right.
$$

In [5], Ma proved that BVP (5) has positive solutions under the above conditions $0<\beta<$ $1 / \eta$, (A) and (B) or (A) and (C). Very recently, motivated by [12], the author in [9] proved that it has at least three positive solutions by imposing conditions on f.

In this paper, we make the following assumptions:
$\left(\mathrm{A}_{1}\right) M_{1}=1-\alpha-(\beta-\alpha) \eta^{n-1}>0$.
$\left(\mathrm{A}_{1}^{\prime}\right) M_{2}=1-\alpha-(\beta-\alpha) \eta>0$.
$\left(\mathrm{A}_{2}\right) f:[0,+\infty) \rightarrow[0,+\infty)$ is continuous and $f(0)>0$.
$\left(\mathrm{A}_{3}\right) a:[0,1] \rightarrow \mathbb{R}$ is continuous and there is $k>1$ such that

$$
\int_{0}^{1} G_{i}(t, s) a^{+}(s) d s \geqslant k \int_{0}^{1} G_{i}(t, s) a^{-}(s) d s \quad \text { for } t \in[0,1], i=1,2
$$

where $a^{+}(t)=\max \{0, a(t)\}$ and $a^{-}(t)=\max \{0,-a(t)\}, G_{i}(t, s)$ is defined by

$$
G_{1}(t, s)=\frac{1}{(n-1)!M_{1}}\left\{\begin{array}{c}
(1-s)^{n-1}\left[\alpha \eta^{n-1}-(\alpha-1) t^{n-1}\right] \\
-(t-s)^{n-1}\left[1-\alpha-(\beta-\alpha) \eta^{n-1}\right] \\
-(\eta-s)^{n-1}\left[(\beta-\alpha) t^{n-1}+\alpha\right], \\
0 \leqslant s \leqslant t \leqslant \eta<1 \text { or } 0 \leqslant s \leqslant \eta<t \leqslant 1, \\
(1-s)^{n-1}\left[\alpha \eta^{n-1}-(\alpha-1) t^{n-1}\right] \\
-(\eta-s)^{n-1}\left[(\beta-\alpha) t^{n-1}+\alpha\right], \\
0 \leqslant t \leqslant s \leqslant \eta<1, \\
(1-s)^{n-1}\left[\alpha \eta^{n-1}-(\alpha-1) t^{n-1}\right], \\
0 \leqslant t \leqslant \eta \leqslant s \leqslant 1, \text { or } 0<\eta \leqslant t \leqslant s \leqslant 1, \\
(1-s)^{n-1}\left[\alpha \eta^{n-1}-(\alpha-1) t^{n-1}\right] \\
-(t-s)^{n-1}\left[1-\alpha-(\beta-\alpha) \eta^{n-1}\right] \\
0<\eta \leqslant s \leqslant t \leqslant 1,
\end{array}\right.
$$

for BVP (1)-(2), and

$$
G_{2}(t, s)=\frac{1}{M}\left\{\begin{array}{c}
-(n-2)^{n-1} \\
\quad+\left[(n-2)!(1-\alpha) t^{n-1}+(n-1)!\alpha \eta t^{n-2}\right](1-s) \\
\quad+\left[(n-2)!(\alpha-\beta) t^{n-1}-(n-1)!\alpha t^{n-2}\right](\eta-s) \\
0 \leqslant s \leqslant \eta \leqslant t<1 \text { or } 0 \leqslant s \leqslant t \leqslant \eta<1, \\
-(n-2)^{n-1} \\
\quad+\left[(n-2)!(1-\alpha) t^{n-1}+(n-1)!\alpha \eta t^{n-2}\right](1-s), \\
0 \leqslant \eta \leqslant s \leqslant t \leqslant 1, \\
t^{n-2}(1-s)[(n-2)!(1-\alpha) t+(n-1)!\alpha \eta] \\
0 \leqslant \eta \leqslant t \leqslant s \leqslant 1 \text { or } 0 \leqslant t \leqslant \eta \leqslant s \leqslant 1, \\
(1-s)\left[(n-2)!(1-\alpha) t^{n-1}+(n-1)!\alpha \eta t^{n-2}\right] \\
+(\eta-s)\left[(n-2)!(\alpha-\beta) t^{n-1}-(n-1)!\alpha t^{n-2}\right] \\
0 \leqslant t \leqslant s \leqslant \eta<1,
\end{array}\right.
$$

for BVP (1)-(3), where $M=(n-1)!(n-2)!M_{2}$.
Our main result is as follows.
Theorem 1. Let $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{3}\right)$ hold. Then there is a positive number λ^{*} such that BVP (1)-(2) has at least one positive solution for $\lambda \in\left(0, \lambda^{*}\right)$.

Theorem 2. Let $\left(\mathrm{A}_{1}^{\prime}\right)$ and $\left(\mathrm{A}_{2}\right)-\left(\mathrm{A}_{3}\right)$ hold. Then there is a positive number λ^{*} such that $B V P(1)-(3)$ has at least one positive solution for $\lambda \in\left(0, \lambda^{*}\right)$.

The organization of the paper is as follows. In Section 2, we prove Theorems 1 and 2. We now present an example.

Example 1. Consider $(n-1,1)$ three-point boundary value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime \prime}(t)+\lambda a(t) f(u)=0, \quad 0<t<1, \tag{6}\\
u(0)=u\left(\frac{1}{2}\right), \quad u(1)=\frac{1}{2} u\left(\frac{1}{2}\right), \quad u^{\prime}(0)=0,
\end{array}\right.
$$

where $a(t)=3 / 4-t$ for $t \in[0,1]$ and f satisfies $\left(\mathrm{A}_{2}\right)$. We see $M_{1}=1-\alpha-(\beta-\alpha) \eta^{n-1}$ $=1 / 8>0$. Again, it is easy to check that

$$
\int_{0}^{1} G_{1}(t, s) a^{-}(s) d s= \begin{cases}\frac{1}{4^{5}}, & 0 \leqslant t \leqslant \frac{3}{4} \\ \frac{59}{4^{5} \times 6}-\frac{1}{24} t^{4}+\frac{1}{8} t^{3}+\frac{9}{64} t^{2}-\frac{9}{128} t, & \frac{3}{4} \leqslant t \leqslant 1\end{cases}
$$

and

$$
\int_{0}^{1} G_{1}(t, s) a^{+}(s) d s= \begin{cases}\frac{11644}{4^{6} \times 30}+\frac{1}{24} t^{4}-\frac{1}{8} t^{3}+\frac{2}{4^{4} \times 15} t^{2}, & 0 \leqslant t \leqslant \frac{3}{4} \\ \frac{7564}{4^{6} \times 30}-\frac{58}{4^{4} \times 15} t^{2}+\frac{9}{4^{3} \times 2} t, & \frac{3}{4} \leqslant t \leqslant 1\end{cases}
$$

Hence, one has

$$
k=\inf _{t \in[0,1]} \frac{\int_{0}^{1} G_{1}(t, s) a^{+}(s) d s}{\int_{0}^{1} G_{1}(t, s) a^{-}(s) d s}>2
$$

Applying Theorem 1, we know that there is a number $\lambda^{*}>0$ such that (6) has at least one positive solution for $\lambda \in\left(0, \lambda^{*}\right)$. The results in $[3-6,9]$ cannot be applied to this equation. Our theorems are new and different from [3-6,9] and are easy to check. Particularly, we do not need the assumptions that f is either super-linear or sub-linear, which was supposed in [3-6].

By the way, the proofs of the theorems are based on the Leray-Schauder fixed point theorem and motivated by [8]. In [8], Hai studied the existence of positive solutions for elliptic equation

$$
\Delta u+\lambda a(t) g(u)=0,\left.\quad u\right|_{\partial \Omega}=0
$$

where a may change sign. We note that the techniques in our paper are well known for certain nonlinear BVP problems, see [7] and references cited therein.

2. Proofs of theorems

In order to prove Theorem 1, we need the following lemmas.
Lemma 1. Suppose that $M_{1}=1-\alpha-(\beta-\alpha) \eta^{n-1} \neq 0$. Then for $y \in C[0,1]$, the problem

$$
\left\{\begin{array}{l}
u^{(n)}+y(t)=0, \quad t \in(0,1), \tag{7}\\
u(0)=\alpha u(\eta), \quad u(1)=\beta u(\eta), \quad u^{(i)}(0)=0 \quad \text { for } i=1,2, \ldots, n-2,
\end{array}\right.
$$

has unique solution

$$
u(t)=\int_{0}^{1} G_{1}(t, s) y(s) d s
$$

where $G_{1}(t, s)$ is defined in Section 1.
Proof. To the purpose, we let

$$
\begin{equation*}
u(t)=-\int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} y(s) d s+A t^{n-1}+B+\sum_{i=1}^{n-2} A_{i} t^{i} \tag{8}
\end{equation*}
$$

Since $u^{(i)}(0)=0$ for $i=1,2, \ldots, n-2$, one gets $A_{i}=0$ for $i=1,2, \ldots, n-2$. Now, we solve for A and B. By $u(0)=\alpha u(\eta)$ and $u(1)=\beta u(\eta)$, it follows that

$$
\left\{\begin{array}{l}
B=-\alpha \int_{0}^{\eta} \frac{(\eta-s)^{n-1}}{n-1)!} y(s) d s+\alpha A \eta^{n-1}+\alpha B \\
-\int_{0}^{1} \frac{(1-s)^{n-1}}{(n-1)!} y(s) d s+A+B=-\beta \int_{0}^{\eta} \frac{(\eta-s)^{n-1}}{(n-1)!} y(s) d s+\beta A \eta^{n-1}+\beta B
\end{array}\right.
$$

Solving the above equations, we get

$$
\left\{\begin{array}{l}
A=\frac{1}{M_{1}}\left[(1-\alpha) \int_{0}^{1} \frac{(1-s)^{n-1}}{(n-1)!} y(s) d s-(\beta-\alpha) \int_{0}^{\eta} \frac{(\eta-s)^{n-1}}{(n-1)!} y(s) d s\right], \\
B=\frac{1}{M_{1}}\left[-\alpha \int_{0}^{\eta} \frac{(\eta-s)^{n-1}}{(n-1)!} y(s) d s+\alpha \eta^{n-1} \int_{0}^{1} \frac{(1-s)^{n-1}}{(n-1)!} y(s) d s\right] .
\end{array}\right.
$$

Substituting A and B into (8), one has

$$
\begin{aligned}
u(t)= & -\int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} y(s) d s \\
& +\frac{1}{M_{1}}\left[-\alpha \int_{0}^{\eta} \frac{(\eta-s)^{n-1}}{(n-1)!} y(s) d s+\alpha \eta^{n-1} \int_{0}^{1} \frac{(1-s)^{n-1}}{(n-1)!} y(s) d s\right] \\
& +\frac{t^{n-1}}{M_{1}}\left[(1-\alpha) \int_{0}^{1} \frac{(1-s)^{n-1}}{(n-1)!} y(s) d s-(\beta-\alpha) \int_{0}^{\eta} \frac{(\eta-s)^{n-1}}{(n-1)!} y(s) d s\right] \\
= & \int_{0}^{1} G_{1}(t, s) y(s) d s .
\end{aligned}
$$

Lemma 2. Let $M_{1}>0$. If $y \in C[0,1]$ and $y(t) \geqslant 0$, then the unique solution of (7) satisfies $u(t) \geqslant 0$ for all $t \in[0,1]$.

Proof. It suffices to prove that

$$
\begin{equation*}
G_{1}(t, s) \geqslant 0 \quad \text { for }(t, s) \in[0,1] \times[0,1] . \tag{9}
\end{equation*}
$$

We consider four cases.
Case 1: $0 \leqslant s \leqslant t \leqslant \eta<1$ or $0 \leqslant s \leqslant \eta \leqslant t \leqslant 1$.

$$
\begin{aligned}
&(1-s)^{n-1}\left[\alpha \eta^{n-1}-(\alpha-1) t^{n-1}\right]-(t-s)^{n-1}\left[1-\alpha-(\beta-\alpha) \eta^{n-1}\right] \\
& \quad-(\eta-s)^{n-1}\left[(\beta-\alpha) t^{n-1}+\alpha\right] \\
&=(1-s)^{n-1}\left\{\left[\alpha \eta^{n-1}-(\alpha-1) t^{n-1}\right]-\left(\frac{t-s}{1-s}\right)^{n-1}\left[1-\alpha-(\beta-\alpha) \eta^{n-1}\right]\right. \\
&\left.-\left(\frac{\eta-s}{1-s}\right)^{n-1} \quad\left[(\beta-\alpha) t^{n-1}+\alpha\right]\right\} \\
& \geqslant(1-s)^{n-1}\left\{\left[\alpha \eta^{n-1}-(\alpha-1) t^{n-1}\right]-t^{n-1}\left[1-\alpha-(\beta-\alpha) \eta^{n-1}\right]\right. \\
& \quad\left.-\eta^{n-1}\left[(\beta-\alpha) t^{n-1}+\alpha\right]\right\} \geqslant 0 .
\end{aligned}
$$

Case 2: $0 \leqslant t \leqslant s \leqslant \eta<1$.

$$
\begin{aligned}
& (1-s)^{n-1}\left[\alpha \eta^{n-1}-(\alpha-1) t^{n-1}\right]-(\eta-s)^{n-1}\left[(\beta-\alpha) t^{n-1}+\alpha\right] \\
& \quad=(1-s)^{n-1}\left\{\left[\alpha \eta^{n-1}-(\alpha-1) t^{n-1}\right]-\left(\frac{\eta-s}{1-s}\right)^{n-1}\left[(\beta-\alpha) t^{n-1}+\alpha\right]\right\} \\
& \quad \geqslant(1-s)^{n-1}\left\{\left[\alpha \eta^{n-1}-(\alpha-1) t^{n-1}\right]-\eta^{n-1}\left[(\beta-\alpha) t^{n-1}+\alpha\right]\right\} \\
& \quad=(1-s)^{n-1} t^{n-1}\left[1-\alpha-(\beta-\alpha) \eta^{n-1}\right] \geqslant 0
\end{aligned}
$$

Case 3: $0 \leqslant t \leqslant \eta \leqslant s \leqslant 1$ or $0<\eta \leqslant t \leqslant s \leqslant 1$.

$$
\begin{aligned}
& (1-s)^{n-1}\left[\alpha \eta^{n-1}-(\alpha-1) t^{n-1}\right] \\
& \quad \geqslant\left\{\begin{array}{l}
0, \quad 0 \leqslant \alpha \leqslant 1, \\
\eta^{n-1}(1-s)^{n-1} \geqslant 0, \quad \alpha>1 \text { and } t \leqslant \eta, \\
(1-s)^{n-1}\left[\alpha \eta^{n-1}-\alpha+1 \geqslant \beta \eta^{n-1}(1-s)^{n-1}\right] \geqslant 0, \quad \alpha>1 \text { and } 1 \geqslant t \geqslant \eta
\end{array}\right.
\end{aligned}
$$

Case 4: $0<\eta \leqslant s \leqslant t \leqslant 1$.

$$
\begin{aligned}
& (1-s)^{n-1}\left[\alpha \eta^{n-1}-(\alpha-1) t^{n-1}\right]-(t-s)^{n-1}\left[1-\alpha-(\beta-\alpha) \eta^{n-1}\right] \\
& \quad=(1-s)^{n-1}\left\{\left[\alpha \eta^{n-1}-(\alpha-1) t^{n-1}\right]-\left(\frac{t-s}{1-s}\right)^{n-1}\left[1-\alpha-(\beta-\alpha) \eta^{n-1}\right]\right\} \\
& \geqslant(1-s)^{n-1}\left\{\left[\alpha \eta^{n-1}-(\alpha-1) t^{n-1}\right]-t^{n-1}\left[1-\alpha-(\beta-\alpha) \eta^{n-1}\right]\right\} \\
& \quad=(1-s)^{n-1}\left[\alpha \eta^{n-1}\left(1-t^{n-1}\right)+\beta \eta^{n-1} t^{n-1}\right] \geqslant 0 .
\end{aligned}
$$

The proof is complete.
Lemma 3. Suppose that $\left(\mathrm{A}_{1}\right)-\left(\mathrm{A}_{3}\right)$ hold. Then for every $0<\delta<1$, there exists a positive number $\bar{\lambda}$ such that, for $\lambda \in(0, \bar{\lambda})$, the equation

$$
\left\{\begin{array}{l}
u^{(n)}+\lambda a^{+}(t) f(u(t))=0, \quad t \in(0,1), \tag{10}\\
u(0)=\alpha u(\eta), \quad u(1)=\beta u(\eta), \quad u^{(i)}(0)=0 \quad \text { for } i=1,2, \ldots, n-2,
\end{array}\right.
$$

has a positive solution \bar{u}_{λ} with $\left\|\bar{u}_{\lambda}\right\| \rightarrow 0$ as $\lambda \rightarrow 0$ and

$$
\begin{equation*}
\bar{u}_{\lambda} \geqslant \lambda \delta f(0)\|p(t)\|, \tag{11}
\end{equation*}
$$

where

$$
p(t)=\int_{0}^{1} G_{1}(t, s) a^{+}(s) d s
$$

Proof. We know that $p(t) \geqslant 0$ for $t \in \mathbb{R}$ and (10) is equivalent to the integral equation

$$
\begin{equation*}
u(t)=\lambda \int_{0}^{1} G(t, s) a^{+}(s) f(u(s)) d s:=T u(t) \tag{12}
\end{equation*}
$$

where $u \in X:=C[0,1]$. It is easy to prove that T is completely continuous, $T X \subset X$ and the fixed points of T are solutions of (1)-(2). We shall apply the Leray-Schauder fixed point theorem to prove T has at least one fixed point for small λ.

Let $\epsilon>0$ be such that

$$
\begin{equation*}
f(t) \geqslant \delta f(0) \quad \text { for } 0 \leqslant t \leqslant \epsilon \tag{13}
\end{equation*}
$$

Suppose that

$$
0<\lambda<\frac{\epsilon}{2\|p\| \bar{f}(\epsilon)}:=\bar{\lambda},
$$

where $\bar{f}(t)=\max _{0 \leqslant s \leqslant t} f(s)$, since

$$
\lim _{t \rightarrow 0^{+}} \frac{\bar{f}(t)}{t}=+\infty
$$

again $\bar{f}(\epsilon) / \epsilon<1 /(2\|p\| \lambda)$, there is $r_{\lambda} \in(0, \epsilon)$ such that

$$
\frac{\bar{f}\left(r_{\lambda}\right)}{r_{\lambda}}=\frac{1}{2 \lambda\|p\|} .
$$

We note that this implies $r_{\lambda} \rightarrow 0$ as $\lambda \rightarrow 0$.
Now, consider the homotopy equation

$$
u=\theta T u, \quad \theta \in(0,1) .
$$

Let $u \in X$ and $\theta \in(0,1)$ be such that $u=\theta T u$. We claim that $\|u\| \neq r_{\lambda}$. In fact,

$$
u(t)=\theta \lambda \int_{0}^{1} G_{1}(t, s) a^{+}(s) f(u(s)) d s
$$

Set

$$
w(t)=\theta \lambda \int_{0}^{1} G_{1}(t, s) a^{+}(s) \bar{f}(\|u\|) d s \leqslant \theta \lambda \bar{f}(\|u\|) p(t) .
$$

Then by $f(u) \leqslant \bar{f}(\|u\|)$, we know that $u(t) \leqslant w(t)$ for all $t \in \mathbb{R}$. Moreover, we have

$$
\|u\| \leqslant \lambda\|p\| \bar{f}(\|u\|)
$$

i.e.,

$$
\frac{\bar{f}(\|u\|)}{\|u\|} \geqslant \frac{1}{\lambda\|p\|}
$$

which implies that $\|u\| \neq r_{\lambda}$. Thus by Leray-Schauder fixed point theorem, T has a fixed point \bar{x}_{λ} with

$$
\left\|\bar{u}_{\lambda}\right\| \leqslant r_{\lambda}<\epsilon
$$

Moreover, combining (12) and (13), we get

$$
\begin{equation*}
\bar{u}_{\lambda} \geqslant \lambda \delta f(0) p(t), \quad t \in \mathbb{R} . \tag{14}
\end{equation*}
$$

This completes the proof.
Proof of Theorem 1. Let

$$
\begin{equation*}
q(t)=\int_{0}^{1} G_{1}(t, s) a^{-}(s) d s \tag{15}
\end{equation*}
$$

Then $q(t) \geqslant 0$. Since $p(t) / q(t) \geqslant k>1$. Choosing $d \in(0,1)$ such that $k d>1$. There is $c>0$ such that $|f(y)| \leqslant k d f(0)$ for $y \in[0, c]$, then

$$
q(t)|f(y)| \leqslant d p(t) f(0), \quad t \in \mathbb{R}, y \in[0, c] .
$$

Fix $\delta \in(d, 1)$ and let $\lambda^{*}>0$ be such that

$$
\begin{equation*}
\left\|\bar{u}_{\lambda}\right\|+\lambda \delta f(0)\|p\| \leqslant c, \quad \lambda \in\left(0, \lambda^{*}\right) \tag{16}
\end{equation*}
$$

where \bar{u}_{λ} is given by Lemma 1 and

$$
\begin{equation*}
|f(x)-f(y)| \leqslant f(0) \frac{\delta-d}{2} \tag{17}
\end{equation*}
$$

for $x, y \in[-c, c]$ with $|x-y| \leqslant \lambda^{*} \delta f(0)\|p\|$.
Let $\lambda \in\left(0, \lambda^{*}\right)$; we look for a solution x_{λ} of the form $\bar{u}_{\lambda}+y_{\lambda}$ such that y_{λ} solves the following equation:

$$
\left\{\begin{array}{l}
y^{(n)}+\lambda a^{+}(t)\left[f\left(\bar{u}_{\lambda}+y\right)-f\left(\bar{u}_{\lambda}\right)\right]-\lambda a^{-}(t) f\left(\bar{u}_{\lambda}+y\right)=0, \quad 0<t<1 \tag{18}\\
y(0)=\alpha y(\eta), \quad y(1)=\beta y(\eta), \quad y^{(i)}(0)=0 \quad \text { for } i=1,2, \ldots, n-2
\end{array}\right.
$$

For each $y \in C[0,1]$, let $w=T y$ be the solution of $\lambda \in\left(0, \lambda^{*}\right)$; we look for a solution x_{λ} of the form $\bar{u}_{\lambda}+y_{\lambda}$ such that y_{λ} solves the following equation:

$$
\left\{\begin{array}{l}
w^{(n)}+\lambda a^{+}(t)\left[f\left(\bar{u}_{\lambda}+y\right)-f\left(\bar{u}_{\lambda}\right)\right]-\lambda a^{-}(t) f\left(\bar{u}_{\lambda}+y\right)=0, \quad 0<t<1, \\
w(0)=\alpha w(\eta), \quad w(1)=\beta w(\eta), \quad w^{(i)}(0)=0 \quad \text { for } i=1,2, \ldots, n-2 .
\end{array}\right.
$$

Then T is completely continuous. Let $y \in X$ and $\theta \in(0,1)$ be such that $y=\theta T y$; then we have

$$
y^{(n)}+\lambda \theta a^{+}(t)\left[f\left(\bar{u}_{\lambda}+y\right)-f\left(\bar{u}_{\lambda}\right)\right]-\lambda \theta a^{-}(t) f\left(\bar{u}_{\lambda}+v\right)=0, \quad 0<t<1
$$

We claim that $\|y\| \neq \lambda \delta f(0)\|p\|$. Suppose to the contrary that $\|y\|=\lambda \delta f(0)\|p\|$. Then by (16) and (17), we get

$$
\begin{equation*}
\left\|\bar{u}_{\lambda}+y\right\| \leqslant\left\|\bar{u}_{\lambda}\right\|+\|y\| \leqslant c \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f\left(\bar{u}_{\lambda}+y\right)-f\left(\bar{u}_{\lambda}\right)\right| \leqslant f(0) \frac{\delta-d}{2} . \tag{20}
\end{equation*}
$$

Using (12) and $q(t)|f(y)| \leqslant d p(t) f(0)$, we get

$$
\begin{aligned}
|y(t)|= & \lambda \mid \int_{0}^{1} G_{1}(t, s) a^{+}(s)\left[f\left(\bar{u}_{\lambda}(s)+y(s)\right)-f\left(\bar{u}_{\lambda}(s)\right)\right] d s \\
& +\lambda \int_{0}^{1} G_{1}(t, s) a^{-}(s) f\left(\bar{u}_{\lambda}(s)+y(s)\right) d s \mid \\
& \leqslant \lambda\left|\int_{0}^{1} G_{1}(t, s) a^{+}(s) f(0) \frac{\delta-d}{2} d s+\lambda \int_{0}^{1} G_{1}(t, s) a^{-}(s) \frac{p(t)}{q(t)} d f(0) d s\right| \\
& \leqslant \lambda \frac{\delta-d}{2} p(t)+\lambda d f(0) p(t)=\lambda \frac{\delta+d}{2} f(0) p(t)
\end{aligned}
$$

In particular,

$$
\begin{equation*}
\|y\| \leqslant \lambda \frac{\delta+d}{2} f(0)\|p\|<\lambda \delta f(0)\|p\| \tag{21}
\end{equation*}
$$

a contradiction and the claim is proved. Thus by Leray-Schauder fixed point theorem, T has a fixed point y_{λ} with

$$
\left\|y_{\lambda}\right\| \leqslant \lambda \delta f(0)\|p\|
$$

Using Lemma 1 and (21), we obtain

$$
u_{\lambda}(t) \geqslant \bar{u}_{\lambda}-\left\|y_{\lambda}\right\| \geqslant \lambda \delta f(0) p(t)-\lambda \frac{\delta+d}{2} f(0) p(t)=\lambda \frac{\delta-d}{2} f(0) p(t)>0
$$

i.e., u_{λ} is a positive T-periodic solution. The proof of Theorem 1 is complete.

Proof of Theorem 2. Similarly, let $t \in C[0,1]$. The unique solution of the equation

$$
\left\{\begin{array}{l}
u^{(n)}+y(t)=0, \quad t \in(0,1), \tag{22}\\
u^{(n-2)}(0)=\alpha u^{(n-2)}(\eta), \quad u^{(n-2)}(1)=\beta u^{(n-2)}(\eta), \\
u^{(i)}(0)=0 \quad \text { for } i=0,1,2, \ldots, n-3
\end{array}\right.
$$

has unique solution

$$
u(t)=\int_{0}^{1} G_{2}(t, s) y(s) d s
$$

where $G_{2}(t, s)$ is defined as follows:

$$
G_{2}(t, s)=\frac{1}{M}\left\{\begin{array}{c}
-(n-2)^{n-1} \\
\quad+\left[(n-2)!(1-\alpha) t^{n-1}+(n-1)!\alpha \eta t^{n-2}\right](1-s) \\
\quad+\left[(n-2)!(\alpha-\beta) t^{n-1}-(n-1)!\alpha t^{n-2}\right](\eta-s), \\
0 \leqslant s \leqslant \eta \leqslant t<1 \text { or } 0 \leqslant s \leqslant t \leqslant \eta<1, \\
-(n-2)^{n-1} \\
\quad+\left[(n-2)!(1-\alpha) t^{n-1}+(n-1)!\alpha \eta t^{n-2}\right](1-s), \\
0 \leqslant \eta \leqslant s \leqslant t \leqslant 1, \\
t^{n-2}(1-s)[(n-2)!(1-\alpha) t+(n-1)!\alpha \eta], \\
0 \leqslant \eta \leqslant t \leqslant s \leqslant 1 \text { or } 0 \leqslant t \leqslant \eta \leqslant s \leqslant 1, \\
(1-s)\left[(n-2)!(1-\alpha) t^{n-1}+(n-1)!\alpha \eta t^{n-2}\right] \\
\\
\quad(\eta-s)\left[(n-2)!(\alpha-\beta) t^{n-1}-(n-1)!\alpha t^{n-2}\right] \\
0 \leqslant t \leqslant s \leqslant \eta<1,
\end{array}\right.
$$

where $M=(n-1)!(n-2)!M_{2}=(n-1)!(n-2)!(1-\alpha-(\beta-\alpha) \eta)$. It is easy to see that if $y(t) \geqslant 0$, then $u(t) \geqslant 0$ for all $t \in[0,1]$. The proof is similar to that of Theorem 1 and thus is omitted.

References

[1] C.P. Gupta, Solvability of a three point nonlinear boundary value problem for a second order ordinary differential equation, J. Math. Anal. Appl. 168 (1992) 540-551.
[2] C.P. Gupta, A sharper condition for the solvability of a three-point second order boundary value problem, J. Math. Anal. Appl. 205 (1997) 579-586.
[3] R.Y. Ma, Existence theorems for a second order three-point boundary value problems, J. Math. Anal. Appl. 212 (1997) 430-442.
[4] R.Y. Ma, Existence theorems for a second order m-point boundary value problems, J. Math. Anal. Appl. 211 (1997) 545-555.
[5] R.Y. Ma, Positive solutions of nonlinear three point boundary value problem, Electron. J. Differential Equations 34 (1998) 1-8.
[6] P.W. Eloe, J. Henderson, Positive solutions for $(n-1,1)$ conjugate boundary value problems, Nonlinear Anal. 28 (1997) 1669-1680.
[7] N.P. Cac, J.A. Catica, X. Li, Positive solutions to semilinear problems with coefficient that changes sign, Nonlinear Anal. 37 (1999) 505-510.
[8] R.P. Agarwal, D. O'Regan, P.J.Y. Wong, Positive Solutions of Differential, Difference, and Integral Equations, Kluwer Academic, Dordrecht, 1999.
[9] X. He, W. Ge, Triple solutions for second order three-point boundary value problems, J. Math. Anal. Appl. 268 (2002) 256-265.
[10] V.A. Il'in, E.I. Moiseev, Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator, Differential Equations 23 (1987) 979-987.
[11] V.A. Il'in, E.I. Moiseev, Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator in its differential and finite difference aspects, Differential Equations 23 (1987) 803-810.
[12] R.I. Avery, C.J. Chyan, J. Henderson, Twin positive solutions of boundary value problem for ordinary differential equations and finite difference equations, Comput. Math. Appl. 42 (2001) 695-704.

[^0]: * Corresponding author.

 E-mail address: liuyuji888@sohu.com (Y. Liu).
 ${ }^{1}$ Y. Liu was supported by the Science Foundation of Educational Committee of Hunan Province.
 ${ }^{2}$ W. Ge was supported by the National Natural Sciences Foundation of PR China.

