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Abstract

In this paper, we establish existence results for positive solutions for the(n − 1,1) three-point
boundary value problems consisting of the equation

u(n) + λa(t)f
(
u(t)

) = 0, t ∈ (0,1),

with one of the following boundary value conditions:

u(0) = αu(η), u(1) = βu(η),

u(i)(0) = 0 for i = 1,2, . . . , n − 2,

and

u(n−2)(0) = αu(n−2)(η), u(n−2)(1) = βu(n−2)(η),

u(i)(0) = 0 for i = 0,1, . . . , n − 3,

whereη ∈ (0,1), α � 0, β � 0, anda : (0,1) → R may change sign andR = (−∞,+∞). f (0) > 0,
λ > 0 is a parameter. Our approach is based on the Leray–Schauder degree theory. This
motivated by Eloe and Henderson (Nonlinear Anal. 28 (1997) 1669–1680).
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1. Introduction

Three-point boundary value problems for differential equations were presented b
and Moiseev [10,11]. Motivated by the study of Il’in and Moiseev, Gupta in [1,2] and
in [3–5] studied certain three-point boundary value problems for nonlinear second
ordinary differential equations. The solvability of two-point boundary value problem
higher-order ordinary differential equations has been discussed extensively in the lite
in the past ten years; see, for example, monograph [8] and the recent paper [6]. To t
of our knowledge, existence results for positive solutions of three-point boundary
problem of higher-order ordinary differential equations, however, have not been s
previously.

In this paper, we study the existence of positive solutions of the following(n − 1,1)
three-point boundary value problem consisting of the differential equation

u(n) + λa(t)f
(
u(t)

) = 0, t ∈ (0,1), (1)

with one of the following boundary value conditions:

u(0) = αu(η), u(1) = βu(η),

u(i)(0) = 0 for i = 1,2, . . . , n − 2, (2)

and

u(n−2)(0) = αu(n−2)(η), u(n−2)(1) = βu(n−2)(η),

u(i)(0) = 0 for i = 0,1, . . . , n − 3, (3)

whereη ∈ (0,1), α � 0, β � 0, anda : (0,1) → R andR = (−∞,+∞). f (0) > 0, λ > 0
is a parameter,n � 3.

For the case whereα = β = 0, (1)–(2) becomes{
u(n) + λa(t)f (u) = 0, 0< t < 1,
u(i)(0) = u(1) = 0, i = 0,1,2, . . . , n− 2.

(4)

BVP (4) was studied by Eloe and Henderson [6]. In [6], Eloe and Henderson prove
BVP (4) has positive solutions under the following assumptions (A) and (B) or (A) and

(A) a : [0,1] → [0,+∞), f : [0,+∞) → [0,+∞) are continuous.
(B) limx→0(f (x)/x) = 0 and limx→+∞(f (x)/x) = +∞ (super-linear).
(C) limx→0(f (x)/x) = +∞ and limx→+∞(f (x)/x) = 0 (sub-linear).

BVP (1)–(2) also contains as special case the following BVP:{
u′′(t) + λf (t, u) = 0, 0< t < 1,
u(0) = u(1)− βu(η) = 0.

(5)

In [5], Ma proved that BVP (5) has positive solutions under the above conditions 0< β <

1/η, (A) and (B) or (A) and (C). Very recently, motivated by [12], the author in [9] pro
that it has at least three positive solutions by imposing conditions onf .

In this paper, we make the following assumptions:
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(A1) M1 = 1− α − (β − α)ηn−1 > 0.
(A′

1) M2 = 1− α − (β − α)η > 0.
(A2) f : [0,+∞) → [0,+∞) is continuous andf (0) > 0.
(A3) a : [0,1] → R is continuous and there isk > 1 such that

1∫
0

Gi(t, s)a
+(s) ds � k

1∫
0

Gi(t, s)a
−(s) ds for t ∈ [0,1], i = 1,2,

wherea+(t) = max{0, a(t)} anda−(t) = max{0,−a(t)}, Gi(t, s) is defined by

G1(t, s) = 1

(n − 1)!M1




(1− s)n−1[αηn−1 − (α − 1)tn−1]
−(t − s)n−1[1− α − (β − α)ηn−1]
−(η − s)n−1[(β − α)tn−1 + α],
0� s � t � η < 1 or 0� s � η < t � 1,

(1− s)n−1[αηn−1 − (α − 1)tn−1]
−(η − s)n−1[(β − α)tn−1 + α],
0� t � s � η < 1,

(1− s)n−1[αηn−1 − (α − 1)tn−1],
0� t � η � s � 1, or 0< η � t � s � 1,

(1− s)n−1[αηn−1 − (α − 1)tn−1]
−(t − s)n−1[1− α − (β − α)ηn−1],
0< η � s � t � 1,

for BVP (1)–(2), and

G2(t, s) = 1

M




−(n− 2)![1− α − (β − α)η](t − s)n−1

+[(n− 2)!(1− α)tn−1 + (n− 1)!αηtn−2](1− s)

+[(n− 2)!(α − β)tn−1 − (n− 1)!αtn−2](η − s),

0 � s � η � t < 1 or 0� s � t � η < 1,

−(n− 2)![1− α − (β − α)η](t − s)n−1

+[(n− 2)!(1− α)tn−1 + (n− 1)!αηtn−2](1− s),

0 � η � s � t � 1,

tn−2(1− s)[(n− 2)!(1− α)t + (n− 1)!αη],
0 � η � t � s � 1 or 0� t � η � s � 1,

(1− s)[(n− 2)!(1− α)tn−1 + (n− 1)!αηtn−2]
+(η − s)[(n − 2)!(α − β)tn−1 − (n − 1)!αtn−2],
0 � t � s � η < 1,

for BVP (1)–(3), whereM = (n− 1)!(n− 2)!M2.

Our main result is as follows.

Theorem 1. Let (A1)–(A3) hold. Then there is a positive numberλ∗ such that BVP(1)–(2)
has at least one positive solution forλ ∈ (0, λ∗).

Theorem 2. Let (A′
1) and (A2)–(A3) hold. Then there is a positive numberλ∗ such that

BVP(1)–(3)has at least one positive solution forλ ∈ (0, λ∗).
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The organization of the paper is as follows. In Section 2, we prove Theorems 1
We now present an example.

Example 1. Consider(n− 1,1) three-point boundary value problem{
u′′′(t) + λa(t)f (u) = 0, 0< t < 1,

u(0) = u
(1

2

)
, u(1) = 1

2u
( 1

2

)
, u′(0) = 0,

(6)

wherea(t) = 3/4− t for t ∈ [0,1] andf satisfies(A2). We seeM1 = 1− α − (β − α)ηn−1

= 1/8> 0. Again, it is easy to check that

1∫
0

G1(t, s)a
−(s) ds =

{ 1
45 , 0 � t � 3

4,

59
45×6

− 1
24t

4 + 1
8t

3 + 9
64t

2 − 9
128t,

3
4 � t � 1,

and

1∫
0

G1(t, s)a
+(s) ds =

{ 11644
46×30

+ 1
24t

4 − 1
8t

3 + 2
44×15

t2, 0 � t � 3
4,

7564
46×30

− 58
44×15

t2 + 9
43×2

t, 3
4 � t � 1.

Hence, one has

k = inf
t∈[0,1]

∫ 1
0 G1(t, s)a

+(s) ds∫ 1
0 G1(t, s)a−(s) ds

> 2.

Applying Theorem 1, we know that there is a numberλ∗ > 0 such that (6) has at least o
positive solution forλ ∈ (0, λ∗). The results in [3–6,9] cannot be applied to this equat
Our theorems are new and different from [3–6,9] and are easy to check. Particularly,
not need the assumptions thatf is either super-linear or sub-linear, which was suppose
[3–6].

By the way, the proofs of the theorems are based on the Leray–Schauder fixed
theorem and motivated by [8]. In [8], Hai studied the existence of positive solution
elliptic equation

∆u + λa(t)g(u) = 0, u|∂� = 0,

wherea may change sign. We note that the techniques in our paper are well know
certain nonlinear BVP problems, see [7] and references cited therein.

2. Proofs of theorems

In order to prove Theorem 1, we need the following lemmas.

Lemma 1. Suppose thatM1 = 1−α− (β −α)ηn−1 �= 0. Then fory ∈ C[0,1], the problem{
u(n) + y(t) = 0, t ∈ (0,1),

(i) (7)

u(0) = αu(η), u(1) = βu(η), u (0) = 0 for i = 1,2, . . . , n− 2,
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has unique solution

u(t) =
1∫

0

G1(t, s)y(s) ds,

whereG1(t, s) is defined in Section1.

Proof. To the purpose, we let

u(t) = −
t∫

0

(t − s)n−1

(n − 1)! y(s) ds + Atn−1 +B +
n−2∑
i=1

Ait
i . (8)

Sinceu(i)(0) = 0 for i = 1,2, . . . , n − 2, one getsAi = 0 for i = 1,2, . . . , n− 2. Now, we
solve forA andB. By u(0) = αu(η) andu(1) = βu(η), it follows that


B = −α

∫ η

0
(η−s)n−1

(n−1)! y(s) ds + αAηn−1 + αB,

− ∫ 1
0

(1−s)n−1

(n−1)! y(s) ds + A+ B = −β
∫ η

0
(η−s)n−1

(n−1)! y(s) ds + βAηn−1 + βB.

Solving the above equations, we get


A = 1
M1

[
(1− α)

∫ 1
0

(1−s)n−1

(n−1)! y(s) ds − (β − α)
∫ η

0
(η−s)n−1

(n−1)! y(s) ds
]
,

B = 1
M1

[−α
∫ η

0
(η−s)n−1

(n−1)! y(s) ds + αηn−1
∫ 1

0
(1−s)n−1

(n−1)! y(s) ds
]
.

SubstitutingA andB into (8), one has

u(t) = −
t∫

0

(t − s)n−1

(n− 1)! y(s) ds

+ 1

M1

[
−α

η∫
0

(η − s)n−1

(n− 1)! y(s) ds + αηn−1

1∫
0

(1− s)n−1

(n− 1)! y(s) ds

]

+ tn−1

M1

[
(1− α)

1∫
0

(1− s)n−1

(n − 1)! y(s) ds − (β − α)

η∫
0

(η − s)n−1

(n − 1)! y(s) ds

]

=
1∫

0

G1(t, s)y(s) ds. ✷

Lemma 2. LetM1 > 0. If y ∈ C[0,1] andy(t) � 0, then the unique solution of(7) satisfies
u(t) � 0 for all t ∈ [0,1].

Proof. It suffices to prove that

G1(t, s) � 0 for (t, s) ∈ [0,1] × [0,1]. (9)
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e

We consider four cases.
Case1: 0� s � t � η < 1 or 0� s � η � t � 1.

(1− s)n−1[αηn−1 − (α − 1)tn−1] − (t − s)n−1[1− α − (β − α)ηn−1]
− (η − s)n−1[(β − α)tn−1 + α

]
= (1− s)n−1

{[
αηn−1 − (α − 1)tn−1] −

(
t − s

1− s

)n−1[
1− α − (β − α)ηn−1]

−
(
η − s

1− s

)n−1[
(β − α)tn−1 + α

]}
� (1− s)n−1{[αηn−1 − (α − 1)tn−1] − tn−1[1− α − (β − α)ηn−1]

− ηn−1[(β − α)tn−1 + α
]}

� 0.

Case2: 0� t � s � η < 1.

(1− s)n−1[αηn−1 − (α − 1)tn−1] − (η − s)n−1[(β − α)tn−1 + α
]

= (1− s)n−1
{[

αηn−1 − (α − 1)tn−1] −
(
η − s

1− s

)n−1[
(β − α)tn−1 + α

]}
� (1− s)n−1{[αηn−1 − (α − 1)tn−1] − ηn−1[(β − α)tn−1 + α

]}
= (1− s)n−1tn−1[1− α − (β − α)ηn−1] � 0.

Case3: 0� t � η � s � 1 or 0< η � t � s � 1.

(1− s)n−1[αηn−1 − (α − 1)tn−1]
�




0, 0 � α � 1,

ηn−1(1− s)n−1 � 0, α > 1 andt � η,

(1− s)n−1[αηn−1 − α + 1 � βηn−1(1− s)n−1] � 0, α > 1 and 1� t � η.

Case4: 0< η � s � t � 1.

(1− s)n−1[αηn−1 − (α − 1)tn−1] − (t − s)n−1[1− α − (β − α)ηn−1]
= (1− s)n−1

{[
αηn−1 − (α − 1)tn−1] −

(
t − s

1− s

)n−1[
1− α − (β − α)ηn−1]}

� (1− s)n−1{[αηn−1 − (α − 1)tn−1] − tn−1[1− α − (β − α)ηn−1]}
= (1− s)n−1[αηn−1(1− tn−1) + βηn−1tn−1] � 0.

The proof is complete. ✷
Lemma 3. Suppose that(A1)–(A3) hold. Then for every0< δ < 1, there exists a positiv
numberλ̄ such that, forλ ∈ (0, λ̄), the equation{

u(n) + λa+(t)f (u(t)) = 0, t ∈ (0,1),
u(0) = αu(η), u(1) = βu(η), u(i)(0) = 0 for i = 1,2, . . . , n− 2,

(10)

has a positive solution̄uλ with ‖ūλ‖ → 0 asλ → 0 and
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xed
ūλ � λδf (0)
∥∥p(t)∥∥, (11)

where

p(t) =
1∫

0

G1(t, s)a
+(s) ds.

Proof. We know thatp(t) � 0 for t ∈ R and (10) is equivalent to the integral equation

u(t) = λ

1∫
0

G(t, s)a+(s)f
(
u(s)

)
ds := T u(t), (12)

whereu ∈ X := C[0,1]. It is easy to prove thatT is completely continuous,TX ⊂ X and
the fixed points ofT are solutions of (1)–(2). We shall apply the Leray–Schauder fi
point theorem to proveT has at least one fixed point for smallλ.

Let ε > 0 be such that

f (t) � δf (0) for 0 � t � ε. (13)

Suppose that

0< λ<
ε

2‖p‖f̄ (ε)
:= λ̄,

wheref̄ (t) = max0�s�t f (s), since

lim
t→0+

f̄ (t)

t
= +∞,

againf̄ (ε)/ε < 1/(2‖p‖λ), there isrλ ∈ (0, ε) such that

f̄ (rλ)

rλ
= 1

2λ‖p‖ .

We note that this impliesrλ → 0 asλ → 0.
Now, consider the homotopy equation

u = θT u, θ ∈ (0,1).

Let u ∈ X andθ ∈ (0,1) be such thatu = θT u. We claim that‖u‖ �= rλ. In fact,

u(t) = θλ

1∫
0

G1(t, s)a
+(s)f

(
u(s)

)
ds.

Set

w(t) = θλ

1∫
G1(t, s)a

+(s)f̄
(‖u‖) ds � θλf̄

(‖u‖)p(t).

0
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Then byf (u) � f̄ (‖u‖), we know thatu(t) � w(t) for all t ∈ R. Moreover, we have

‖u‖ � λ‖p‖f̄ (‖u‖),
i.e.,

f̄ (‖u‖)
‖u‖ � 1

λ‖p‖ ,

which implies that‖u‖ �= rλ. Thus by Leray–Schauder fixed point theorem,T has a fixed
point x̄λ with

‖ūλ‖ � rλ < ε.

Moreover, combining (12) and (13), we get

ūλ � λδf (0)p(t), t ∈ R. (14)

This completes the proof.✷
Proof of Theorem 1. Let

q(t) =
1∫

0

G1(t, s)a
−(s) ds. (15)

Thenq(t) � 0. Sincep(t)/q(t) � k > 1. Choosingd ∈ (0,1) such thatkd > 1. There is
c > 0 such that|f (y)| � kdf (0) for y ∈ [0, c], then

q(t)
∣∣f (y)

∣∣ � dp(t) f (0), t ∈ R, y ∈ [0, c].
Fix δ ∈ (d,1) and letλ∗ > 0 be such that

‖ūλ‖ + λδf (0)‖p‖ � c, λ ∈ (0, λ∗), (16)

whereūλ is given by Lemma 1 and∣∣f (x)− f (y)
∣∣ � f (0)

δ − d

2
(17)

for x, y ∈ [−c, c] with |x − y| � λ∗δf (0)‖p‖.
Let λ ∈ (0, λ∗); we look for a solutionxλ of the formūλ + yλ such thatyλ solves the

following equation:{
y(n) + λa+(t)

[
f (ūλ + y)− f (ūλ)

] − λa−(t)f (ūλ + y) = 0, 0< t < 1,
y(0) = αy(η), y(1) = βy(η), y(i)(0) = 0 for i = 1,2, . . . , n− 2.

(18)

For eachy ∈ C[0,1], let w = Ty be the solution ofλ ∈ (0, λ∗); we look for a solutionxλ
of the formūλ + yλ such thatyλ solves the following equation:{

w(n) + λa+(t)
[
f (ūλ + y)− f (ūλ)

] − λa−(t)f (ūλ + y) = 0, 0< t < 1,
w(0) = αw(η), w(1) = βw(η), w(i)(0) = 0 for i = 1,2, . . . , n − 2.

ThenT is completely continuous. Lety ∈ X andθ ∈ (0,1) be such thaty = θTy; then we
have



824 Y. Liu, W. Ge / J. Math. Anal. Appl. 282 (2003) 816–825

orem,
y(n) + λθa+(t)
[
f (ūλ + y)− f (ūλ)

] − λθa−(t)f (ūλ + v) = 0, 0< t < 1.

We claim that‖y‖ �= λδf (0)‖p‖. Suppose to the contrary that‖y‖ = λδf (0)‖p‖. Then by
(16) and (17), we get

‖ūλ + y‖ � ‖ūλ‖ + ‖y‖ � c (19)

and ∣∣f (ūλ + y) − f (ūλ)
∣∣ � f (0)

δ − d

2
. (20)

Using (12) andq(t)|f (y)| � dp(t) f (0), we get

∣∣y(t)∣∣ = λ

∣∣∣∣∣
1∫

0

G1(t, s)a
+(s)

[
f

(
ūλ(s) + y(s)

) − f
(
ūλ(s)

)]
ds

+ λ

1∫
0

G1(t, s)a
−(s)f

(
ūλ(s) + y(s)

)
ds

∣∣∣∣∣
� λ

∣∣∣∣∣
1∫

0

G1(t, s)a
+(s)f (0)

δ − d

2
ds + λ

1∫
0

G1(t, s)a
−(s)

p(t)

q(t)
df (0) ds

∣∣∣∣∣
� λ

δ − d

2
p(t) + λdf (0)p(t) = λ

δ + d

2
f (0)p(t).

In particular,

‖y‖ � λ
δ + d

2
f (0)‖p‖ < λδf (0)‖p‖, (21)

a contradiction and the claim is proved. Thus by Leray–Schauder fixed point the
T has a fixed pointyλ with

‖yλ‖ � λδf (0)‖p‖.
Using Lemma 1 and (21), we obtain

uλ(t) � ūλ − ‖yλ‖ � λδf (0)p(t) − λ
δ + d

2
f (0)p(t) = λ

δ − d

2
f (0)p(t) > 0,

i.e.,uλ is a positiveT -periodic solution. The proof of Theorem 1 is complete.✷
Proof of Theorem 2. Similarly, let t ∈ C[0,1]. The unique solution of the equation


u(n) + y(t) = 0, t ∈ (0,1),
u(n−2)(0) = αu(n−2)(η), u(n−2)(1) = βu(n−2)(η),

u(i)(0) = 0 for i = 0,1,2, . . . , n − 3,
(22)

has unique solution
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ry dif-
u(t) =
1∫

0

G2(t, s)y(s) ds,

whereG2(t, s) is defined as follows:

G2(t, s) = 1

M




−(n− 2)![1− α − (β − α)η](t − s)n−1

+[(n− 2)!(1− α)tn−1 + (n− 1)!αηtn−2](1− s)

+[(n− 2)!(α − β)tn−1 − (n− 1)!αtn−2](η − s),

0� s � η � t < 1 or 0� s � t � η < 1,

−(n− 2)![1− α − (β − α)η](t − s)n−1

+[(n− 2)!(1− α)tn−1 + (n− 1)!αηtn−2](1− s),

0� η � s � t � 1,

tn−2(1− s)[(n− 2)!(1− α)t + (n − 1)!αη],
0� η � t � s � 1 or 0� t � η � s � 1,

(1− s)[(n− 2)!(1− α)tn−1 + (n− 1)!αηtn−2]
+ (η − s)[(n− 2)!(α − β)tn−1 − (n − 1)!αtn−2],
0� t � s � η < 1,

whereM = (n− 1)!(n− 2)!M2 = (n− 1)!(n− 2)!(1−α− (β −α)η). It is easy to see tha
if y(t) � 0, thenu(t) � 0 for all t ∈ [0,1]. The proof is similar to that of Theorem 1 an
thus is omitted. ✷
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