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Increasingly, confidential medical records are being stored in data centers hosted by hospitals or large
companies. As sophisticated algorithms for predictive analysis on medical data continue to be developed,
it is likely that, in the future, more and more computation will be done on private patient data. While
encryption provides a tool for assuring the privacy of medical information, it limits the functionality
for operating on such data. Conventional encryption methods used today provide only very restricted
possibilities or none at all to operate on encrypted data without decrypting it first. Homomorphic encryp-
tion provides a tool for handling such computations on encrypted data, without decrypting the data, and
without even needing the decryption key.

In this paper, we discuss possible application scenarios for homomorphic encryption in order to ensure
privacy of sensitive medical data. We describe how to privately conduct predictive analysis tasks on
encrypted data using homomorphic encryption. As a proof of concept, we present a working implemen-
tation of a prediction service running in the cloud (hosted on Microsoft’s Windows Azure), which takes as
input private encrypted health data, and returns the probability for suffering cardiovascular disease in
encrypted form. Since the cloud service uses homomorphic encryption, it makes this prediction while
handling only encrypted data, learning nothing about the submitted confidential medical data.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

More and more businesses and individuals confide their data to
cloud services and outsource computational tasks on their data to
third-party service providers. This raises concerns about the
privacy of sensitive information since data is stored in external,
off-premise data centers. In particular in the health sector, sensi-
tive personal patient records need to be kept confidential. Privacy
of sensitive information can be guaranteed, if it is encrypted by the
data owner before being uploaded to a cloud service. In that way,
only the legitimate data owner can access the data by decrypting
it using their private decryption key. But encryption limits the pos-
sibility to outsource computation on the externally stored informa-
tion, especially if the data center does not have access to the
decryption key, since the key, for standard encryption schemes,
is needed to decrypt the data so as to perform a computation upon
it. For example, a very specific task like searching an encrypted
database, without decrypting all of its entries first, requires special
types of encryption schemes with large computational overhead,
and even a simple statistical analysis becomes impossible with
standard methods of encryption.
However, exactly such computational tasks are often crucial to
the business value of maintaining databases of customer or patient
information. For example, a hospital may want to be evaluated on
its performance on the basis of its patients’ health records, but
might not want to disclose the details of all patient records. In
another example, a patient may want to use a web service that
stores and maintains all her medical records in a centralized place,
but she might not trust the cloud service to keep her private health
data confidential. Still, she may want to obtain information about
her health status such as a prediction of whether or not she will
contract a specific disease.

With homomorphic encryption, many such scenarios can
be realized, because a homomorphic encryption scheme allows
computations on encrypted data without decrypting it. This means
that for example a cloud prediction service can predict the likeli-
hood of contracting a disease by only working on an encrypted
medical record. At no time during the computation is it required
to decrypt the data, and the result is produced in encrypted form.
Only after the patient receives the encrypted prediction result on a
local, private device, she decrypts to learn the prediction. This
means that the cloud service only sees data in encrypted form
and never learns any information about the encrypted data values.

Contributions. We present a working implementation of a cloud
service that demonstrates an application of outsourced prediction
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algorithms on encrypted, confidential medical data. The algorithm
we implement predicts the chance of having a heart attack based
on a few body measurements. The service consists of a client appli-
cation on a private device and a cloud application that runs in the
Microsoft Windows Azure cloud service. The client application col-
lects user health data, encrypts it and sends the encrypted record
to the cloud application, which runs the prediction algorithm on
the encrypted record. The cloud produces an encrypted prediction
result, which it sends back to the client application. The user can
then decrypt and learn the likelihood of having a heart attack.
See Fig. 1 for a schematic overview of the implementation. The
Magma code for implementing the homomorphic encryption
schemes used here will be publicly released. A software demon-
stration is available as a live demo of the prediction service at
the link provided at the end of this article.

In addition to the implementation of the homomorphic encryp-
tion scheme and the cloud service, the main contribution of this
work is to give details of using a leveled homomorphic encryption
scheme for real-life predictive analysis. The term leveled refers to
the fact that the homomorphic encryption scheme cannot correctly
and securely carry out an arbitrary computation; instead, the
scheme can only be used to compute functions up to a certain com-
plexity, or level, that is fixed in advance. Such a scheme is typically
more efficient and practical than a scheme that allows arbitrary
computation, in particular if the function to be computed has low
multiplicative complexity. In this case, better performance can be
achieved by tailoring the parameters of the scheme to the specific
computation that is desired. But parameters must be set carefully
to ensure correctness and security, and these parameters depend
on the size of the function to be computed, the size of the inputs,
and the method for encoding real data. The necessity of choosing
the right parameters makes it difficult to implement leveled homo-
morphic encryption for practical applications. We propose practical
methods for handling these aspects of homomorphic encryption
schemes, including a parameter selection algorithm, to realize
valuable functions occurring in predictive analysis, such as logistic
regression and Cox proportional hazard regression. We also give ref-
erences to indicate the extent to which such functions are prevalent
in predictive analytics in health care, and an overview of scenarios
for private computation where such functions are relevant.
2. Scenarios for private computation on medical data

In this section, we outline a number of scenarios in which
private computation on patient medical data is desirable.
Fig. 1. Cloud service for privately predicting cardiovascular disease on encrypted
medical data.
Homomorphic encryption provides a potentially viable solution
for some, but not all, of these scenarios.

2.1. Patient records

Many commercial options exist today for storage and online
access to patients’ electronic medical records (EMR). In [1], patient
controlled encryption (PCE) was proposed, allowing patients to
outsource storage of their personal records in encrypted form. This
proposal included the possibility to use a hierarchical key structure
to enable sharing of keys for only selective branches of the record
(e.g. for only dental records), and a proposal to use searchable
encryption to enable the patient to privately and remotely search
the record. In [2], the authors propose using attribute-based
encryption to achieve a more flexible and dynamic way to share
permissions on selective parts of an EMR. In [3], homomorphic
encryption was proposed to allow a certain amount of computa-
tion on a patient’s encrypted medical data, including for example,
data which has been uploaded in encrypted form from various
sources such as health monitors, labs or doctors. The encrypted
result of the computation can be returned to the patient for
decryption, or to any other designated party with whom the
patient has shared decryption keys, such as a doctor or family
member.

2.2. Medical databases for research

When a large amount of data from many different patients, rel-
evant to a particular disease (such as cancer) is available, building
predictive models from that data using machine learning can con-
tribute substantially to medical science and the public good. Such
models can help to identify both genetic and environmental risk
factors and to form the basis for predictive analysis. However, pri-
vacy concerns, even when the data is anonymized, need to be
weighed in the balance (see [4] for a recent study on re-identifica-
tion of data in this context where certain high-profile individuals
are re-identified). A recent news article in Science [5] juxtaposes
different points of view on issues of genomic privacy and summa-
rizes the approach presented here to protecting privacy while
allowing computation. Different challenges arise and different
solutions are possible depending on whether the data is publicly
available for research or whether the data is privately compiled
or controlled by a single hospital or company:

� Publicly Available Databases. This setting allows the greatest
access to the data, thereby creating the steepest privacy chal-
lenge. Differential privacy-preserving techniques are potentially
applicable. Differential privacy is implemented directly on
unencrypted data, and works by providing approximate
answers to queries to partially obscure exact information. See
[6] for an overview of differential privacy techniques. It seems
likely that differential privacy could be used to approximately
answer queries based on a publicly known trained model, how-
ever, it is less clear how well differential privacy would succeed
when building trained models with machine learning tech-
niques. Differential privacy can be considered orthogonal to
the solutions based on homomorphic encryption considered
here, since it works on plaintext data. An outstanding research
question is to design solutions which effectively combine differ-
ential privacy with homomorphic encryption in a useful way.
Another possibility for achieving anonymity is to use a syntactic
approach, which typically offers much higher data utility. The
recent paper [7]discusses the advantages and limitations of syn-
tactic approaches and differential privacy. For publicly available
databases, aside from the above, recent advances in crypto-
graphic research suggest other potential solutions for building
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trained models using secure multi-party computation (MPC) or
multi-key homomorphic systems. In another direction, earlier
recommendations were given in [8] for protecting privacy in
population-based studies through the mechanisms of policy,
consent, and regulation.
� Privately Compiled Databases. The following two scenarios are

more suitable than the above scenario for homomorphic
encryption. Firstly, private companies developing and deploy-
ing tools for genetic research amass data through their business.
Depending on agreements with customers, they may be bound
to maintain confidentiality of patient data when outsourcing
computation on such databases. Secondly, hospitals or clinics
also maintain patient records, but are bound by regulations
and patient agreements to handle this data confidentially.
In both of these settings, the hospital or company may seek to
improve their business by learning from their data. A cloud ser-
vice provider can offer storage and/or analysis on this privately
held data, applying machine learning techniques to learn from
the data to build predictive models. Homomorphic encryption
allows the outsourcing of computation on the data, encrypted
under the key of the hospital or company. In [9] it was demon-
strated that basic machine learning algorithms such as the lin-
ear means classifier and Fisher’s linear discriminant classifier
can be performed efficiently to build encrypted models from
encrypted data on a small scale, although efficiency degrades
rapidly as the size of the database grows. So to summarize, an
untrusted cloud service can provide both training of new mod-
els ([9]) and prediction based on known models (the present
work) when given access to the data in homomorphically
encrypted form.

2.3. Direct-to-patient services

This is the application which we demonstrate in the present
paper. A cloud service may wish to offer genetic analysis or predic-
tive services over the internet without compromising the con-
sumer’s privacy. Using homomorphic encryption, it is possible to
offer confidential analysis or predictive services based on a learned
predictive model. The consumer uploads the data in encrypted
form, and the cloud service computes a result in encrypted form,
which is then returned to the customer in encrypted form. The pre-
dictive model may be publicly known, as in the cardiovascular dis-
ease application we present here, or it may be a proprietary model,
learned from privately held data, such as in the scenario labeled
Privately compiled databases above. In the applications demon-
strated here, it is assumed that the predictive model is publicly
known. The next section describes a number of publicly known
models which have been developed over time to predict the likeli-
hood of various diseases.

2.4. Verifiability

Verifiability is an issue which is relevant for outsourced compu-
tation of any kind. Cryptographic schemes for verifying outsourced
computation have been proposed and are just beginning to become
practical ([10,11]). However such schemes do not apply directly to
homomorphically encrypted data in an efficient way, and much
work remains to be done to effectively combine these techniques.
In many scenarios we propose, however, a naive solution is reason-
able: simply outsource computation to multiple servers and check
locally that the outputs agree once the computations are returned
and decrypted. This solution provides no guarantees against multi-
ple colluding adversaries, but makes sense when a cloud service
provider is modeled as a rational economic player who wants to
build trust in the service it provides. In that case, outsourcing
multiple copies and checking multiple computations for agree-
ment simply serves as a partial defense against accidental errors,
deletions, and denial of service attacks.
3. Models for predictive analysis in health care

Over the last 50 years, a number of powerful mathematical
models have been developed, studied, and used to perform valu-
able predictive analysis in health care. In this section, we detail
common models and explain how to implement them for use with
homomorphic encryption. We focus on logistic regression and the
Cox proportional hazard model as representative examples. Logis-
tic regression has been commonly used to predict whether a
patient will suffer from a particular disease, like cardiovascular dis-
ease (CVD) [12] or diabetes [13]. Logistic regression has also been
proposed as a tool to predict the probability of survival in blunt
trauma, and has been used as the basis for calculating the Trauma
and Injury Severity Score (TRISS) for trauma audit [14].

In [15], numerous examples of medical uses of logistic regres-
sion in the study of cardiovascular disease and diabetes are noted,
including testing gender as a predictor of mortality after certain
types of heart surgery [16], correlating certain genotypes with
the risk of cardiovascular disease [17], and relating certain protein
abnormalities with occurrence of diabetes [18].

In the Framingham heart study [19], risk functions for CVD were
calculated using various models, including linear regression, logis-
tic regression, and Cox proportional hazard regression. Linear
regression models were used to relate the risk of stroke to poor
cognitive function [20]. First the discriminant model and logistic
regression and then the Cox proportional hazard regression model
were used to build the Framingham Risk functions, which are now
widely available for predicting the likelihood of heart attacks
[19,12].

3.1. The Cox proportional hazard model

The Framingham heart study [19] followed roughly 5000
patients from Framingham, Massachusettes, for many decades
starting in 1948, adding another cohort of 5000 of their offspring
and spouses in 1971, and several other cohorts of 5000 since then.
The risk models they computed are publicly available, and we
describe some of them here. The study computed models for the
10-year risk of general cardiovascular disease (CVD), where the
population of interest consists of individuals 30–74 years old and
without CVD at the baseline examination. The 6 predictive vari-
ables (risk factors) are: age, diabetes, smoking, systolic blood pres-
sure, cholesterol, and HDL cholesterol. The predictive model for
women is given by the function

PFðfXigÞ ¼ 1� 0:95012
exp

X
i

biXi�26:1931

 !
;

where exp() is the exponential function, bi is the regression coeffi-
cient and Xi is the input for each risk factor. The risk for men is given
as

PMðfXigÞ ¼ 1� 0:88936
exp

X
i

biXi�23:9802

 !
:

The regression coefficients for the model for women are given as
follows:X

i

biXi ¼ 2:32888 � logðAÞ þ 1:20904 � logðCÞ � 0:70833 � logðHDLÞ

þ 2:76157 � logðSBPÞ þ 0:52873 � Sþ 0:69154 � D;
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where A denotes the age, D denotes the presence of diabetes, S
denotes whether or not an individual is a smoker, SBP denotes
the systolic blood pressure, C denotes the cholesterol level, and
HDL denotes the HDL cholesterol level. The above risk functions
can be expressed as a Taylor series. Truncating the Taylor series
gives us a polynomial with rational coefficients which can be used
to approximate the risk.

3.2. Logistic regression model

A predictive equation to screen for diabetes was developed
based on logistic regression in [13]. The equation was computed
from data on more than 1;000 Egyptian patients with no history
of diabetes. The predictive variables used were: age (a), sex, BMI,
number of hours since the last food or drink (PT: postprandial
time), and random capillary plasma glucose level (RPG). The study
was cross-validated on a sample of more than 1000 American
patients. The predictive equation calculated is

PðxÞ ¼ ex

ex � 1
;

with the following logistic regression parameters:

x ¼ �10:0382þ 0:0331 � aþ 0:0308 � RPGþ 0:2500 � PT
þ 0:5620 � ðif femaleÞ þ 0:0346 � BMI;

where age is given in years, random plasma glucose (RPG) in mg/dl,
and postprandial time (PT) in hours. Undiagnosed diabetes is pre-
dicted if the value is greater than 0:20 (20%). Thus only one digit
of accuracy is required beyond the decimal point when computing
the value of the predictive function approximately.

Logistic regression was also used to develop earlier Framing-
ham Risk Functions [12], but has been superseded in [19] by mod-
els based on Cox proportional hazard analysis. To demonstrate
logistic regression analysis, in our implementation we used the
model computed in another study, which measured only 200 male
patients, over an observation period which remains unclear [21].
The resulting logistic regression model predicted the likelihood
to have a heart attack in an unspecified period, only for men. The
six predictive variables are: age (a), height (ht), weight (wt), the
systolic blood pressure (sys), the diastolic blood pressure (dia),
and the cholesterol (chol) level. As above, the predictive model is
given by the logistic regression function

PðxÞ ¼ ex

ex þ 1
;

where x is the sum of the variables weighted by the logistic
regression coefficients, i.e.

x ¼ 0:072 � aþ 0:013 � sys� 0:029 � diaþ 0:008 � chol� 0:053 � ht

þ 0:021 �wt:

This function can be approximated by a Taylor series

PðxÞ ¼ ex

ex þ 1
¼ 1

2
þ 1

4
x� 1

48
x3 þ 1

480
x5 � 17

80640
x7

þ 31
1451520

x9 þ Oðx11Þ:

Using terms in the Taylor expansion up to degree 7 we get roughly 2
digits of accuracy to the right of the decimal, which gives us an
accurate percentage.

4. Practical homomorphic encryption

In 2009, Gentry [22] proposed the first fully homomorphic
encryption (FHE) scheme. An FHE scheme makes it possible to
encrypt data and then carry out arbitrary computations on the
encrypted data by operating on ciphertexts only without the need
to decrypt the data first, and without knowledge of the secret
decryption key. The result of the computation is given in encrypted
form and can only be decrypted by a legitimate owner of the pri-
vate decryption key. The key to allowing arbitrary computations
is that an FHE scheme allows both homomorphic addition and
multiplication operations on the encrypted data. Previous
homomorphic encryption schemes only provided one of the two
operations and therefore were not fully homomorphic. Ciphertexts
of current FHE schemes inherently contain a certain amount of
noise, which grows during homomorphic operations. This noise
‘‘pollutes’’ the ciphertext and if it grows too large, makes correct
decryption impossible, even with the legitimate decryption key.
These schemes have at their core a so-called somewhat homomor-
phic encryption scheme that can handle a certain amount of
homomorphic computation. To enable an unlimited number of
operations, ciphertexts need to be refreshed by a costly recrypt
procedure called bootstrapping.

In Gentry’s initial work and many follow-up papers, the stan-
dard way of encrypting data is bitwise. This means that the encryp-
tion procedure takes each bit of the data separately and produces a
corresponding ciphertext. Addition and multiplication of bits
(modulo 2) corresponds to bitwise XOR and AND operations and
thus allows to evaluate any boolean circuit, i.e. carry out arbitrary
computation, by first expressing the computation in XOR and AND
gates. But breaking down a computation into bit operations can
quickly lead to a complicated and deep circuit that cannot be han-
dled by the somewhat homomorphic scheme and requires
bootstrapping.

Functions such as those presented in the previous section, how-
ever, can be approximated by polynomial expressions in integer
values, and do not necessarily need to be expressed in a bitwise
manner. Some of the more efficient FHE schemes allow to encrypt
polynomials that can encode such integer values. The advantage of
this approach is that a single ciphertext now contains much more
information than just a single bit of plaintext, but restricts the pos-
sible operations to arithmetic circuits in these polynomials. Fur-
thermore, these functions are often simple enough such that the
expensive bootstrapping procedure can be avoided.

The most efficient homomorphic encryption schemes of this
type (see [23–26]) operate in polynomial rings and have their secu-
rity based on hard problems in lattices, in particular the ring ver-
sion of the learning with errors problem. These often provide a
leveled homomorphic scheme, which can evaluate more initial
computation than a somewhat homomorphic scheme before boot-
strapping becomes necessary. In particular, when using a leveled
homomorphic scheme it is possible, for a given computational task,
to choose parameters that allow to evaluate the computation with
the leveled scheme without bootstrapping. The solution we use in
our implementation here is a lattice-based scheme from [26]. We
describe how the scheme works in the following subsection.
4.1. The homomorphic encryption scheme

In our implementation we use the more practical variant of the
homomorphic encryption scheme recently proposed in [26,
Section 5] (it is based on the schemes from [27,28], with an
improvement from [29]). The scheme is described in a specialized
version below. It operates in the ring R ¼ Z½X�=ðXn þ 1Þ for n being a
power of 2, i.e. the objects the scheme uses are all polynomials
with integer coefficients of degree less than n. In particular, plain-
texts and ciphertexts are such polynomials. An element a 2 R has

the form a ¼
Pn�1

i¼0 aiX
i; ai 2 Z. Computing on elements of R means

that we add and multiply polynomials modulo Xn þ 1. The key
generation and encryption functions make use of two probability
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distributions vkey and verr on R for generating small elements. The
distribution vkey is used in key generation, in this case it is the uni-
form distribution on polynomials with coefficients in f�1;0;1g.
Sampling an element according to this distribution means sam-
pling all its coefficients uniformly from f�1;0;1g. The distribution
verr is a discrete Gaussian distribution, which is used to sample
small noise or error polynomials (the main contributing terms to
the noise inherent in ciphertexts mentioned above). For more spe-
cific details we refer to [26].The reader can simply think of ele-
ments sampled according to these distributions as polynomials in
R with small integer coefficients.

The scheme is a public key encryption scheme and consists
of the following algorithms: a key generation algorithm
KeyGenðn; q; t;vkey;verrÞ that, on input the system parameters, gen-
erates a public/private key pair and an evaluation key, which is
needed for the homomorphic multiplication operation and con-
tains information about the private key in encrypted form; an
encryption algorithm Encryptðh;mÞ that encrypts a message m
using the public key h; a decryption algorithm Decryptðf ; cÞ that
decrypts a ciphertext c with the private key f and returns the plain-
text message m that was encrypted in c; a homomorphic addition
function Addðc1; c2Þ that produces a ciphertext encrypting the sum
m1 þm2 2 R=tR modulo t from two ciphertexts c1 and c2, encrypt-
ing the messages m1 and m2, respectively; and finally a homomor-
phic multiplication function that, given encryptions of m1 and m2,
outputs a ciphertext encrypting the product m1m2 modulo t. In
more detail, these algorithms are given below. Note that some
operations reduce coefficients of polynomials in R modulo an inte-
ger modulus q, this operation is denoted by ½��q. The plaintext space
for encrypting is R=tR, i.e. polynomials in R with coefficients
reduced modulo the integer plaintext modulus t < q. This means
that data to be encrypted must be encoded as a polynomial ½m�t
(for m 2 R) with coefficients reduced modulo t. The number bq=tc
is the largest integer not exceeding q=t.

� KeyGenðn; q; t;vkey;verrÞ: On input the degree n and moduli q and
t, the key generation algorithm samples small polynomials
f 0; g  vkey from the key distribution and sets f ¼ ½tf 0 þ 1�q. If f

is not invertible modulo q, it chooses a new f 0. It computes

h ¼ ½tgf�1�q, where f�1 2 R is the inverse of f modulo q, and out-

puts the public and private key pair ðpk; skÞ ¼ ðh; f Þ 2 R2

together with an evaluation key evk 2 Rdlog2ðqÞe that is used in
the homomorphic multiplication algorithm. For more details
see [26, Section 6].
� Encryptðh;mÞ: The encryption algorithm samples small error

polynomials s; e verr, and outputs the ciphertext
c ¼ ½bq=tc½m�t þ eþ hs�q 2 R.
� Decryptðf ; cÞ: Given a ciphertext c and the private decryption key

f, the decryption algorithm computes m ¼ t
q � ½fc�q
j mh i

t
2 R.

� Addðc1; c2Þ: Given two ciphertexts c1 and c2, output the cipher-
text cadd ¼ ½c1 þ c2�q.
� Multðc1; c2; evkÞ: Given two ciphertexts c1 and c2 and the evalu-

ation key evk, compute ~cmult ¼ t
q c1c2

j mh i
q

and output

KeySwitchð~cmult; evkÞ, where the key switching function
KeySwitch is needed to transform the ciphertext so that it can
be decrypted with the original secret key. Again, for more
details, we refer to [26].

4.2. Encoding real numbers

For the applications described in Section, it is necessary to
encode real numbers as elements of the encryption scheme’s plain-
text space. As mentioned above, recent papers [22,29] presenting
homomorphic encryption schemes usually assume that the data
to be encoded and encrypted is handled bitwise, with a separate
ciphertext for each bit (or sometimes with an optimization to pack
many bits into each ciphertext as first described in [30] and used in
[31]). But for example representing integers as a collection of bits
requires a deep circuit just to do a simple integer multiplication
when done bitwise. Before we describe how to encode real num-
bers, let us first consider integer values only. We use a technique
for encoding integers which has already been described in [3]
and has been used for machine learning algorithms in [9]. An inte-
ger is encoded as a polynomial m 2 R=tR (for the definition of R=tR
see Section 4.1) via its bit representation. Namely, let z 2 Z be an

integer and let z ¼ ð�1Þ
Pl

i¼0zi2
i; zi 2 f0;1g be its binary represen-

tation, where l ¼ blog2ðjzjÞc þ 1. Then, as long as l < n one can
encode the plaintext message z as the polynomial

m ¼ ð�1Þ
Pl

i¼0ziX
i. Such a polynomial can be decoded to give back

an integer by evaluating it at 2, i.e. z ¼ mð2Þ. For example, the inte-
ger 11 is encoded as the polynomial 1þ X þ X3.

With this encoding, integer multiplication corresponds to direct
multiplication of polynomials whenever t is large enough such that
the coefficients of the resulting polynomial are all smaller than t
and its degree does not exceed the maximal degree of polynomials
in the ring used in the scheme. The latter two conditions need to be
ensured, because homomorphic multiplication corresponds to
multiplication of polynomials in R=tR. This is a polynomial
multiplication followed by reductions modulo the ring polynomial
Xn þ 1 to reduce the degree below n and modulo t in the coeffi-
cients of the result. If these conditions are satisfied, a homomorphic
multiplication of two ciphertexts corresponds directly to multipli-
cation of the encrypted integers, not requiring a deep circuit to
execute. Note that the internal representation of integers during
and after a computation is redundant in that polynomials will rep-
resent integers via a 2-adic representation as above, but possibly
with integer coefficients larger other than 0 or 1, depending on
the specific computation. This does not change the fact that evalu-
ation at 2 yields the corresponding integer result that is encoded by
the polynomial. For example, the polynomial �3þ X þ 3X2 also
encodes the integer �3þ 2þ 3 � 22 ¼ 11 and could be the result
of a computation on polynomials with binary coefficients.

Using the encoding technique for integers, we can now encode
real numbers that are approximated to a given precision by
rational numbers. For the entire computation, a fixed precision is
chosen in advance, and real numbers at that precision are scaled
by the corresponding factor, e.g. a power of 10 or a power of 2,
to make them integers, which are then encoded as just described.
At the end of the computation and after decryption, the result is
converted back to a real number by dividing by that power of 10.
How much precision is needed, depends on the accuracy required
in the answer and on the complexity of the function to be com-
puted. Also, the fact that we work with multiples of the actual data
needs to be accounted for in the computation, which might have to
be adjusted to produce the desired results.

The restriction to arithmetic circuits in R together with our
encoding of numbers also means that we cannot carry out divisions
of integers or real numbers. To avoid such divisions in our opera-
tions on encrypted data, we assume that our function is approxi-
mated by a polynomial with rational coefficients and that it is
normalized by multiplying by an integer to clear all denominators.
After decryption, the answer can be divided by the same integer to
obtain the result.
4.3. How to set parameters

In practice, it is not necessary to use homomorphic encryption
schemes that can handle arbitrary large amounts of computation



Table 1
We give two sets of parameters, P1 and P2 , for choices of integer moduli q and t and
the degree n in R ¼ Z½X�=ðXn þ 1Þ. Parameter set P1 is chosen to allow the computation
of the exponent in the logistic regression function. P2 is chosen to allow the
computation of the Taylor series up to degree 7, to approximate the output of the
logistic regression function. Both sets provide 80 bits of security, which means that

the algorithms to break the scheme that are considered in [26] take time at least 280.

log2ðqÞ t n

P1 128 210 212

P2 512 240 214

Table 2
Performance results for the core operations used in our homomorphic encryption
using parameter set P1 and P2 . The results are expressed in milliseconds. These results
were obtained on a laptop (Intel Core i7-3520M at 2893.484 MHz).

Operation P1 P2

Encryption 13 577
Decryption 11 549
Addition of ciphertexts <1 1
Multiplication of ciphertexts 39 5056
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(such as the fully-homomorphic encryption schemes mentioned
earlier, which can be realized using the extremely costly bootstrap-
ping step from Gentry’s blueprint [22]). Instead, the required func-
tionality can be achieved by choosing a leveled homomorphic
scheme and fine-tuning the parameters to the specific computation,
such that security and correctness are guaranteed. This leads to a
more efficient scheme, but only allows for a finite amount of com-
putation on encrypted data. The security requirement demands
that the best known attacks to break the encryption scheme take
at least a certain amount of time fixed in advance (also referred
to as the security level). From that, bounds on the parameters are
deduced to ensure this requirement. For a given desired amount
of computation, the correctness condition is derived from the inher-
ent noise growth, and also leads to bounds on the parameters,
which have to be met to ensure that the inherent noise does not
grow too large and decryption still works correctly. A combination
of these two conditions leads to concrete intervals from which the
parameters need to be chosen. The amount of computation allowed
for a given parameter set, while still ensuring correctness and secu-
rity, is fixed in advance, and depends on the size of the inputs and
the complexity of the function to be computed, as well as on the
homomorphic encryption scheme.

For the particular function considered here, we estimate the
parameters based on the analysis given in the theorems and
appendices of [26]. This approach is particularly well-suited for
the application described here, direct-to-patient services, where
there is a fixed function to be computed and a fixed amount of data
input from the patient. Also, there is a cost to the above approach
to encoding integers which we now explain. Our method of encod-
ing allows for multiplication of integers but not division, thus the
need to clear denominators to avoid fractions. We also need to
ensure that our parameters are set large enough so that the com-
putation on the encoded integers does not correspond to polyno-
mials with coefficients exceeding the modulus t. If a reduction
modulo t occurs in the plain text space, the computation does
not represent the corresponding integer operations any more. Thus
we set t to be a large power of 2, to allow for the coefficients of
polynomials representing the results to grow that large. As t grows,
to maintain security we must increase both the size of the modulus
q, which determines the coefficient space for the polynomial ring,
and the dimension of the lattice, which determines the degree of
the polynomials to be handled. The performance of the scheme is
proportional to the cost of multiplying polynomials in this polyno-
mial ring, thus performance degrades as the complexity of the
function and the size of the input grows. We follow the analysis
in [26] and present two parameter sets in Table 1 that allow differ-
ent amounts of computation. While the first parameter set P1 only
allows a quadratic polynomial in the input data to be correctly
evaluated, the second parameter set P2 can be used to evaluate
polynomials of higher degree (such as 8).

5. Performance numbers

Due to the simple function we compute, and the small amount
of data computed on, we have been able to implement a practical
version of the homomorphic encryption scheme presented in [26].
As becomes clear from Table 1, even the small parameter set P1

requires computation with relatively large polynomials (in this
case degree 4096) where each coefficient is of size 128 bits. When
computing with such large polynomials it makes sense to switch
from methods based on ‘‘schoolbook’’ multiplication (with run-
time complexity Oðn2Þ for degree n polynomials) to computation
of the discrete Fourier transform using the fast Fourier transform
(FFT) [32] (with a run-time complexity Oðn log nÞ of arithmetic
operations). Due to the special shape of the ring we use,
R ¼ Z½X�=ðXn þ 1Þ, where n ¼ 2m is a power of 2, we can use the
FFT algorithm by Nussbaumer [33] based on recursive negacyclic
convolution (see [34, Exercise 4.6.4.59] for more details). The neg-
acyclic convolution of two sequences ðx0; x1; . . . ; x2m�1Þ and
ðy0; y1; . . . ; y2m�1Þ is the sequence ðz0; z1; . . . ; z2m�1Þ with

zk ¼ x0yk þ . . .þ xky0 � ðxkþ1y2m�1 þ . . .þ x2m�1ykþ1Þ:

Note that computing such a negacyclic convolution is equivalent to
polynomial multiplication modulo X2m

þ 1 (where the different xk

are regarded as coefficients of a polynomial). The novelty of this
algorithm is that it performs an FFT on the coefficient polynomials,
see [35] for more details. Note that other asymptotic fast multipli-
cation algorithms can be used as well, examples are the Schönhage–
Strassen algorithm [36] or any other multiplication methods based
on a number theoretic transform. We choose the algorithm from
[33] since it is especially efficient for computations in Z½X�=ðXn þ 1Þ.

We implemented and deployed the homomorphic scheme from
[26] as a cloud service to compute on encrypted data, where we fol-
low the steps as outlined in Fig. 1 and we show a scenario which is
typical of functions used for predictive analysis in health care. We
have benchmarked the various core operations of this scheme on
a modern laptop (Intel Core i7-3520M at 2893.484 MHz), the per-
formance results are summarized in Table 2. All these core opera-
tions are stated in terms of milliseconds and can be considered
practical. The encryption and decryption operations are performed
by the user before and after sending the data to the cloud. The cloud
receives the encrypted data, performs the additions and multiplica-
tions on this data in encrypted form, and sends the encrypted result
back to the client. The size of the encrypted data is relatively large:
using the parameters P1, a single encrypted value is 64 kilobytes
(4096 coefficients of 128-bit). Thus the communication overhead
with the cloud service provider (Microsoft’s Windows Azure) dom-
inates the time spent in the entire computation. In practice the tim-
ings for outsourcing the computation vary from less than a second
up to two seconds: this is significantly more than the time spent on
encrypting, decrypting and computing on the data, but still practi-
cal. Note that when using the parameter set P2, the size of one
ciphertext grows to roughly one megabyte (16384 coefficients of
512-bit). In that case, the network overhead is more significant,
but the computation cost is also greater since a multiplication of
ciphertexts requires around five seconds with this scheme. Overall,
computing the Taylor series up to degree 7 takes more than
30 seconds since computing the powers of x already requires 6
multiplications at 5 seconds each. Given that all other operations
in the outsourced computation are rather cheap, the overall
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computation time for the cloud service including the network over-
head is significantly below 1 minute.

Note that in our performance numbers based on the scheme in
[26], the homomorphic multiplication operation includes a costly
key switching step that increases the time for homomorphic multi-
plication, while decreasing the size of ciphertexts. It guarantees
that ciphertexts do not grow and are decryptable by the original
secret key. Thus there is a trade-off to consider when evaluating
low-degree polynomials homomorphically, as in our current sce-
nario. Namely, using a different scheme such as the one in [24]
could result in significantly faster homomorphic multiplication, at
the cost of allowing ciphertexts to grow during homomorphic mul-
tiplication. For a low-degree computation, it might not be beneficial
to implement the modulus switching technique that is required for
deeper circuits. Thus, overall, homomorphic multiplication might
be significantly more efficient than the timings here suggest.

In a recent work [37] the homomorphic encryption scheme
used here was also implemented. See [37] for performance details
and the publicly available C++ software implementation.

6. Automatic parameter selection module

The above discussion makes clear that an important aspect of
designing such a system is the selection of appropriate parameters
for implementing the homomorphic encryption scheme to ensure
its security and correctness for the computation to be performed.
We propose an automatic parameter selection module which com-
putes these parameters. For the reasons explained in Section 4, we
assume that the function to be computed is approximated by a poly-
nomial with rational coefficients. And we assume also that denomi-
nators are cleared to transform the function into a polynomial with
integer coefficients, that the amount of real precision that is
required for the computation is fixed, and all real numbers are
scaled to integers corresponding to that amount of precision. Then
the module selects parameters depending on the following inputs:

1. the choice of a homomorphic encryption scheme,
2. the degree of the normalized polynomial to be evaluated and

the size of its coefficients,
3. the size of the scaled inputs.

In this work, we use the more practical variant of the scheme
from [26], but a similar analysis also applies to related schemes
(e.g. the one in [25]).

In certain application scenarios for homomorphic encryption,
the function to be computed might be proprietary. In that case,
the parameters for the encryption scheme need to be provided
by the function owner, along with specified bounds on the size of
allowable inputs. We cannot accurately estimate the correct
parameters without knowing the degree of the polynomia that is
being evaluated and the size of its coefficients. Thus, for the
remainder of our discussion and the detailed analysis of the func-
tion implemented in this paper, we assume that the function to be
evaluated on encrypted data is public. This means that all its poly-
nomial coefficients are known and each scalar multiplication can
be implemented as an optimized sequence of additions of cipher-
texts. The steps of parameter setting are as follows.

6.1. Correctness

First, the plaintext modulus t must be chosen large enough such
that it is bigger than the coefficients of the polynomial that
encodes the integer result of the computation. This is important
in order to guarantee that they are not reduced modulo t to
something smaller. If integers are encoded as polynomials with
binary coefficients (in the way shown in Section 4.2), then adding
such a polynomial to itself s times results in a polynomial with
integer coefficients at most s, where the degree of the polynomial
remains the same. More general, when adding s polynomials with
coefficients of size at most B, then the resulting polynomial has
coefficients of size at most sB and its degree is the same. In contrast
to the addition operation, multiplication of such polynomials
results in much faster coefficient growth due to the multiplication
of cross-terms. Note also that the degrees of the polynomials being
multiplied add up to the degree of the product polynomial. So, how
large do these coefficients get after L levels of multiplications, i.e.
when evaluating a polynomial function (or a monomial) on
encrypted data of degree 2L? When starting with integers less than

2d that are encoded as binary polynomials (of degree d), the
coefficients of the resulting polynomial can be as large as

d2L�122L�L�1, and its degree can be up to 2Lðd� 1Þ. Thus, to receive
a meaningful result which reflects the actual computation on inte-

gers, we need to ensure that t > d2L�122L�L�1, and also that the
degree n is chosen large enough so as to be greater than
2Lðd� 1Þ. In fact, to evaluate a function represented by a polyno-
mial of degree 2L, we need to choose t somewhat larger than this
bound to account for the scalar multiplications and additions.

As mentioned in Section 4, in most lattice-based encryption
schemes, encryption involves adding noise, in the form of an error
vector or error polynomial, to a (possibly noisy) inner product;
thus the reason for the name of the hardness assumption learning
with errors (LWE). As ciphertexts are added and multiplied, the
noise term contained in the resulting ciphertexts grows. At the
end of the computation, the overall noise must be small enough
to still allow for correct decryption. This means that it must be
small enough compared to the ratio of q to t;D ¼ bq=tc, in particu-
lar for the scheme we consider here, roughly less than D=2 (see [26,
Lemma 1]).

So for a given initial noise size and a given degree of the poly-
nomial to be evaluated, the ratio of q to t has to be large enough
to allow the amount of noise growth incurred by the computation.
For given t and n, the size of the initial noise and a fixed number of
levels of multiplications, using [26, Theorem 4 and Lemma 4] we
can estimate the size of the resulting noise, and we can then set
q large enough to allow for correct decryption ([26, Theorem 5]).
We give more details below.
6.2. Security

In addition to the above conditions to guarantee correctness,
there is a delicate balance between these parameters q; t;n and
the size of the noise to achieve the desired security. The best
known attacks on lattice-based systems work by finding a short
vector in a lattice. One can use such a short vector to distinguish
pairs of uniform random ring elements from LWE samples. To dis-
tinguish an instance of the LWE problem from uniform random
with advantage �, an attacker needs to find a vector of length at
most aðq=rÞ, where a is a constant which depends on � and r is
the standard deviation of the error distribution. Thus for a given
security requirement, the shortest vector obtained through the
best lattice reduction algorithms must be longer than a vector
which could give an adversary a non-negligible advantage in the
Ring-LWE distinguishing problem. This gives us an inequality
which must be satisfied involving q;n, and r (see [26, Appendix
K] for more details and the precise inequality, and [37, Section 3]
for a more recent approach). In our example here (as in [26,
Table 1]), we calculate parameters to achieve 80 bits of security,
allowing a distinguishing advantage of 2�80.

Taking into account all the bounds and requirements to achieve
correctness and security for homomorphically evaluating a given
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function on inputs of a given size, we propose an automatic param-
eter selection module which determines the minimum parameters
as required.

6.3. Algorithm to select parameters for a computation under
homomorphic encryption

We outline an algorithm that works for the evaluation of poly-
nomials in one variable. With slight alterations, the algorithm can
be generalized to the case of multivariate polynomials. Let

FðzÞ ¼
Pdeg

i¼0cizi; ci 2 Z be the polynomial function to be evaluated
under the homomorphic encryption scheme.

Input:

1. deg: the degree of FðzÞ, the polynomial to be evaluated on
encrypted data, i.e. deg < 2L,

2. s: the maximum of the coefficients of FðzÞ, i.e. ci < s, for all i,
3. d: the size of integers to be handled, i.e. all inputs are integers z

with absolute value less than 2d, encoded as polynomials with
binary coefficients,

4. k: the desired security level, i.e. the best lattice attack runs in
time > 2k and distinguishes with advantage less than 2�k,

5. r: the standard deviation r for the error distribution, typically
r ¼ 8, determining the bound on the error distribution, Berr ,
typically 6r,

6. Bkey: the bound on the key distribution, which can be chosen to
be 1 in practice,

7. w: the word size for the evaluation key, for example w ¼ 232,
8. d: the expansion factor, which is d ¼ n since n is a power of 2.

Output: parameters ðt; q;nÞ for the homomorphic encryption
scheme that ensure correctness and security.

Stage 1 In the first stage, set t large enough to allow for correct-
ness of operations modulo t, i.e. such that no reductions modulo t
occur in the coefficients of the plaintext polynomials. For multipli-

cations only, the condition on t is t > d2L�1 � 22L�L�1, as explained

above. However, to evaluate the polynomial FðzÞ ¼
Pdeg

i¼0ci � zi, we
also need additions of ciphertexts. Here, the zi correspond to

polynomials with coefficients less than d2L�1 � 22L�L�1. These zi are
multiplied by a scalar which is at most s and then these deg terms
are added together, so the resulting coefficients are at most

s � deg �d2L�1 � 22L�L�1 < s � 2L � d2L�1 � 22L�L�1 ¼ s � d2L�1 � 22L�1:

So set

t > s � d2L�1 � 22L�1:

Note that this assumes a naive way of multiplying by scalars. We
also need to keep in mind that for multiplications to represent inte-
ger multiplications, we need the degree condition n > 2L � ðd� 1Þ to
avoid reductions in the ring modulo Xn þ 1.

Stage 2 In this stage, we estimate the error growth to ensure
correctness. Assume that t was chosen in Stage 1 and is now fixed.
The final size e of the error must be less than D=2, where D ¼ bq=tc,
so set q such that 2e < D which means that we roughly have
q > 2e � t. Theorem 4 and Lemma 4 in [26] show that multiplication
of two ciphertexts with noise of size V results in a ciphertext with
noise of size E, where

E < dtð4þ dtBkeyÞV þ d2t2BkeyðBkey þ tÞ þ d2tlogwðqÞwBerrBkey:

In order to evaluate the function FðzÞ, which has degree deg < 2L,
we carry out at most deg additions of terms of degree less than
2L. Using the lower bound on D from [26, Theorem 5], and taking
into account the noise growth resulting from the additions and
coefficients of FðzÞ, we get the following lower bound on q to ensure
correctness:

q > 2t � s � deg �ð1þ �1ÞL�1n2Lt2L�1BL
key

� ð1þ �1Þnt2Bkeyð2Berr þ t=2Þ þ LðtðBkey þ tÞ þ logwðqÞwBerrÞ
� �

;

where �1 ¼ 4ðdtBkeyÞ�1, V has been replaced by the upper bound
dtBkeyð2Berr þ t=2Þ on the noise in a fresh ciphertext (see [26,
Lemma 2]) and we have used d ¼ n. Here, we see the dependence
on d ¼ n in the noise bound that determines the bound on q. To
satisfy security requirements, n must be much smaller than q. At this
point, we can fix an initial value for n, for example n ¼ 212, then set q
according to the bound just given, and then proceed to the next stage
to check that the bounds implied by security are satisfied.

Unfortunately, the above bound is not completely independent
of q because of the term logwðqÞ. In practice, we choose w with
respect to the expected size of q such that this term is rather small,
so we can treat the bound as a lower bound on q. However, it
should be checked with the concrete chosen parameters in the end.

Stage 3 In this stage, we assure that the desired security level is
met. To distinguish with an advantage of � in the RLWE problem,
an adversary is required to find vectors of length at most
a � ðq=rÞ where a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=�Þ=p

p
. In our specific parameter exam-

ples, we use � ¼ 2�80, which results in a � 4:201. We refer to
[37] for a more complete description of a distinguishing attack
and the precise lattices we are required to find short vectors in.
Section 3 in [37] describes in detail a parameter selection approach
that uses a simulation algorithm for the currently most efficient
lattice-basis reduction algorithm BKZ 2.0 presented in [38]. To find
a short vector in the n-dimensional target lattice, it is embedded
into a lattice of higher dimension m > n. For given m and a fixed
security level k (e.g. k ¼ 80), this method determines the minimal
root-Hermite factor cðmÞ that can be achieved running BKZ 2.0
for time 2k. The factor cðmÞ determines the size of the shortest
vector that can be found with that specific setting of the BKZ 2.0
algorithm, which is cðmÞm � qn=m. To distinguish with advantage �,
one needs cðmÞm � qn=m ¼ a � ðq=rÞ. This means that for security
we require (see [37, Section 3.3])

log2ðqÞ 6min
m>n

m2 � log2ðcðmÞÞ þm � log2ðr=aÞ
m� n

;

and in terms of q, this yields

q 6 qmaxðn; �Þ :¼ min
m>n

2
m2 �log2 ðcðmÞÞþm�log2ðr=aÞ

m�n :

In order to determine qmaxðn; �Þ, various cðmÞ values for different
security levels and dimensions can be found in [37, Table 1].

Stage 4 In this final stage, we combine the bounds from the pre-
vious two stages to choose n and q. The computations in Stages 2
and 3 yield an upper and lower bound on q, both of which involve
n. To ensure a simultaneous solution, we set n to a power of two
such that

qmaxðn; �Þ > 2t � s � deg �ð1þ �1ÞL�1d2Lt2L�1BL
key

� ð1þ �1Þdt2Bkeyð2Berr þ t=2Þ
�
þ LðtðBkey þ tÞ þ logwðqÞwBerrÞ

�
;

i.e. such that we get a non-trivial interval for q. Finally, we select an
appropriate q in this interval.

6.3.1. Example
Using the model for predicting the likelihood of having a heart

attack given in [21], and normalizing the functions and inputs as
described above, we evaluate the function

FðzÞ ¼ �17z7 þ 168z5 � 1680z3 þ 20160zþ 40320;
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where the input z is computed as

z ¼ 72 � aþ 13 � sys� 29 � diaþ 8 � chol� 53 � htþ 21 �wt:

Inputs to z are encoded as polynomials as described above.
The input to F is the sum of 6 scaled values, where the scalars

are all less than 72 and the inputs are at most 400. So each input
can be represented as a polynomial of degree at most 8 with binary
coefficients, and each scalar multiplication can be achieved
through at most 72 additions. So the result is represented by a
ciphertext corresponding to a polynomial of degree at most 8 with
coefficients at most 6 � 72, and taking into account the error growth
for homomorphic additions, the computation of the input to the
function F can be achieved with a small value of t, for example
t ¼ 210 will suffice.

The input to the function F is at most 6 � 72 � 400 (which is an
overestimate), and could thus be represented as a polynomial of
degree at most d ¼ blog2ð6 � 72 � 400Þc ¼ 17 with binary coeffi-
cients. But since this input is not a freshly encrypted ciphertext,
i.e. is not a freshly encoded integer, its coefficients may already
be larger. Namely, the output of the homomorphic additions in
the first step result in a ciphertext corresponding to a polynomial
of degree 8 with coefficients up to size 432. Also, this corresponds
to an integer which is 1000 times what the actual input is sup-
posed to be, so the coefficients of F need to be scaled to account
for this, making them even larger once they are normalized. One
alternative is to have the client reencrypt the input to the function
F. If the client inputs a freshly encrypted value for x where the
ciphertext is represented as a polynomial of degree at most
d ¼ 17 with binomial coefficients, then to evaluate the function F
on this input requires 3 levels of multiplication, so using the lower
bound on t for L ¼ 3 given above, t > 8d7, we see that to achieve
correctness for this computation we need to set t to be at least
t ¼ 232.
7. Conclusion

In this paper, we demonstrated a working implementation of a
cloud service for performing private predictive analysis tasks on
encrypted health data using homomorphic encryption. The cloud
service makes predictions while handling only encrypted data,
learning nothing about the submitted confidential medical data.
In addition to the efficient implementation of the homomorphic
encryption scheme and the cloud service, the main contribution
of this work is to give details of using a practical homomorphic
encryption scheme for real-life predictive analysis. Namely, we
propose an automatic parameter selection module for determining
safe parameters for the practical homomorphic encryption scheme
to assure correctness and security of the results when evaluating
functions used in predictive analysis such as logistic regression
and Cox proportional hazard regression. We also indicate the
extent to which such functions are prevalent in predictive analytics
in health care, and provide an overview of scenarios for private
computation where such functions are relevant. Future work will
focus on improving the performance and increasing the scalability
of systems to operate on encrypted health data. This includes
improving the performance of practical homomorphic encryption
schemes at scale and enlarging the class of functions which practi-
cal homomorphic encryption schemes can successfully evaluate.

Software demonstration: A live demo of the prediction service is
available at the link given in [39].
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