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Abstract

We perform the spectral analysis of a zero temperature Pauli–Fierz system for small coupling constants.
Under the hypothesis of Fermi golden rule, we show that the embedded eigenvalues of the uncoupled system
disappear and establish a limiting absorption principle above this level of energy. We rely on a positive
commutator approach introduced by Skibsted and pursued by Georgescu–Gérard–Møller. We complete
some results obtained so far by Dereziński–Jaks̆ić on one side and by Bach–Fröhlich–Sigal–Soffer on the
other side.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Pauli–Fierz operators are often used in quantum physics as generator of approximate dy-
namics of a (small) quantum system interacting with a free Bose gas. They describe typically
a non-relativistic atom interacting with a field of massless scalar bosons. Pauli–Fierz operators
appear also in solid state physics. They are used to describe the interaction of phonons with a
quantum system with finitely many degrees of freedom. This paper is devoted to the justification
of the second-order perturbation theory for a large class of perturbation. For positive temperature
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system, this property is related to the return to equilibrium, see for instance [10] and reference
therein.

This question has been studied in many places, see for instance [3–5,9,11,13,22] for zero
temperature systems and [9,25,27] for positive temperature. We mention also [12,15,24,31] who
studied certain spectral properties using positive commutator techniques. Here, we focus on the
zero temperature setting. In [3], one initiates the analysis using analytic deformation techniques.
In [5] and in [9], one introduces some kind of Mourre estimate approach. In the former, one
enlarges the class of perturbation studied in [3] and in the latter, one introduces another class.
These two classes do not fully overlap. This is due to the choice of the conjugate operator.
In this paper, we enlarge the class of perturbations used in [9] for the question of the Virial
theorem (one-commutator theory) and also for the limiting absorption principal (two-commutator
theory).

Now, we present the model. For the sake of simplicity and as in [9], we start with a n-level
atom. It is described by a self-adjoint matrix K acting on a finite dimensional Hilbert space K .
Let (ki)i=0,...,n be its eigenvalues, with ki < ki+1. On the other hand, we have the Bosonic field
Γs(h) with the 1-particle Hilbert space h := L2(Rd, dk). The Hamiltonian is given by the second
quantization dΓ (ω) of ω, where ω(k) = |k|, see Section 2.1. This is a massless and zero tem-
perature system. The free operator is given by H0 = K ⊗ 1Γ (ω) + 1K ⊗ dΓ (ω) on K ⊗ Γ (h).
Its spectrum is [k0,∞). It has no singularly continuous spectrum. Its point spectrum is the same
as K , with the same multiplicity. Let α ∈ B(K ,K ⊗ h) be a form-factor and φ(α) the field
operator associated to it, see Section 2.2. Under the condition

(I0) (1 ⊗ ω−1/2)α ∈ B(K ,K ⊗ h),

we define the interacting Hamiltonian on K ⊗ Γ (h) by

Hλ := K ⊗ 1Γ (ω) + 1K ⊗ dΓ (ω) + λφ(α), where λ ∈ R. (1.1)

The operator is self-adjoint with domain K ⊗ D(dΓ (ω)).
We now focus on a selected eigenvalue ki0 , with i0 > 0. The aim of this paper is to give

hypotheses on the form-factor α to ensure that Hλ has no eigenvalue in a neighborhood of ki0 for
λ small enough (and non-zero). First, we have to ensure that the perturbation given by the field
operator will really couple the system at energy ki0 ; we have to avoid form factors like α(x) =
1 ⊗ b for all x ∈ K and some b ∈ h, see Section 6. Here comes the second-order perturbation
theory, namely the hypothesis of Fermi golden rule for the couple (H0, α) at energy ki0 :

w- lim
ε→0+ Pφ(α)P Im(H0 − k + iε)−1Pφ(α)P > 0, on PH , (1.2)

where P := Pki0
⊗ PΩ and P := 1 − P . At first sight, this is pretty implicit. We make it explicit

in Appendix A. This condition involves the form factor, the eigenvalues of H0 lower than ki0 and
its eigenfunctions. Therein, we also explain why the ground state energy is tacitly excluded.

In this paper, we are establishing an extended Mourre estimate, in the spirit of [16,31]; this is
an extended version of the positive commutator technique initiated by E. Mourre, see [1,28] and
[19,21] for recent developments. Due to the method, we make further hypotheses on the form-
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factor. To formulate them, we shall take advantage of the polar coordinates and of the unitary
map:

T :=
{

L2
(
R

d , dk
) −→ L2

(
R

+, dr
) ⊗ L2

(
Sd−1, dθ

) := h̃,

u �−→ T u := (r, θ) �→ r(d−1)/2u(rθ).
(1.3)

We identify h and h̃ through this transformation. We write ∂r for ∂r ⊗ 1. We first give meaning
to the commutator via:

(I1a) α ∈ B(K ,K ⊗ Ḣ 1(R+) ⊗ L2(Sd−1)), 1 ⊗ ω−1/2∂rα ∈ B(K ,K ⊗ h).

Here, the dot means the completion of C∞
c (R+) under the norm given by the space. We denote

by ‖ · ‖2 the L2 norm. Recall the norm of H 1 is given by ‖ · ‖2 + ‖∂r · ‖2.
We explain the method on a formal level. We start by choosing a conjugate operator so as to

obtain some positivity of the commutator. We choose A := 1K ⊗dΓ (i∂|r|). Note this operator is
not self-adjoint and only maximal symmetric. We set N := 1K ⊗ dΓ (Id), the number operator.
Thanks to (I1a), one obtains

[Hλ, iA] = N + 1K ⊗ PΩ︸ ︷︷ ︸
�1

+λφ(∂rα) − 1K ⊗ PΩ︸ ︷︷ ︸
Hλ-bounded

=: M + S.

Consider a compact interval J . Since dΓ (ω) is non-negative, we have:

EJ (H0) =
∑

0�i�sup(J )

Pki
⊗ EJ −ki

(
dΓ (ω)

)
. (1.4)

We infer (1K ⊗ PΩ)EJ (H0) = 0 if and only if J contains no eigenvalues of K . We evaluate
the commutator at an energy J which contains ki0 and no other ki . Thus,

M + EJ (H0)SEJ (H0) � 1 + (−1 + O(λ)
)
EJ (H0) � O(λ)EJ (H0), (1.5)

since φ(i∂rα) is H0-bounded. We keep M outside the spectral measure as it is not Hλ-bounded.
Note we have no control on the sign of O(λ) so far. We have not yet used the Fermi golden rule
assumption. We follow an idea of [5] and set

Bε := Im
(
(H0 − ki0)

2 + ε2)−1
Pφ(α)P.

Observe that (1.2) implies there exists c > 0 such that

P [Hλ, iλBε]P = λ2

ε
Pφ(α)P Im(H0 − ki0 + iε)−1Pφ(α)P � cλ2

ε
P,

holds true for ε small enough. Let Â := A + λBε and Ŝ := S + λ[Hλ, iBε]. We have [Hλ, iÂ] =
M + Ŝ. We go back to (1.5) and infer:

M + EJ (H0)ŜEJ (H0) �
(
cλ2/ε + O(λ)

)
EJ (H0) + error terms. (1.6)
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By taking ε := ε(λ), one hopes to obtain the positivity of the constant in front of EJ (H0), to
control the errors terms and to replace the spectral measure by the one of Hλ. Using the Feshbach
method and with a more involved choice of conjugate operator, we show in Section 6 that there
are λ0, c

′, η > 0 so that

M + EJ (Hλ)ŜEJ (Hλ) � c′|λ|1+ηEJ (Hλ), for all |λ| � λ0, (1.7)

on the sense of forms on D(N1/2).
One would like to deduce there is no eigenvalue in J from (1.7). To apply a Virial theorem,

one has at least to check that the eigenvalues of Hλ are in the domain of N1/2. One may proceed
like in [27]. In this article, we follow [15,31] and construct a sequence of approximated conjugate
operators Ân such that [Hλ, iÂn] is Hλ-bounded, converges to [Hλ, iÂ] and such that one may
apply the Virial theorem with An. To justify these steps, we make a new assumption:

(I1b) 1K ⊗ ω−aα ∈ B(K ,K ⊗ h), for some a > 1.

We now give our first result, based on the Virial theorem, see Proposition 4.11.

Theorem 1.1. Let I be an open interval containing ki0 and no other ki . Assume the Fermi golden
rule hypothesis (1.2) at energy ki0 . Suppose that (I0), (I1a) and (I1b) are satisfied. Then, there is
λ0 > 0 such that Hλ has no eigenvalue in I , for all |λ| ∈ (0, λ0).

We now give more information on the resolvent Rλ(z) := (Hλ − z)−1 as the imaginary part
of z tends to 0. We show it extends to an operator in some weighted spaces around the real
axis. This is a standard result in the Mourre theory, when one supposes some 2-commutators-
like hypothesis, see [1]. Here, as the commutator is not Hλ-bounded, one relies on an adapted
theory. We use [15] which is a refined version of [31]. We check the hypotheses (M1)–(M5)
given in Appendix C and deduce a limiting absorption principle, thanks to Theorem C.8. Using
again (1.3), we state our class of form factors:

(I2) α ∈ B(K ,K ⊗ Ḃ1,1
2 (R+) ⊗ L2(Sd−1)).

Recall that the dot denotes the completion of C∞
c . One choice of norm for B1,1

2 is:

‖f ‖
B1,1

2 (R+)
= ‖f ‖2 +

1∫
0

∥∥f (2t + ·) − 2f (t + ·) + f (·)∥∥2

dt

t2
.

We refer to [1,32] for Besov spaces and real interpolation. To express the weights, consider b̃ the
square root of the Dirichlet Laplacian on L2(R+, dr). Using (1.3), we define b := 1K ⊗T −1b̃T

in H . Set Ps := 1K ⊗ (dΓ (b) + 1)−s(N + 1)1/2.

Theorem 1.2. Let I be an open interval containing ki0 and no other ki . Assume the Fermi golden
rule hypothesis (1.2) at energy ki0 . Suppose that (I0), (I1a) and (I2) (and not necessarily (I1b)),
there is λ0 > 0 such that Hλ has no eigenvalue in I , for all |λ| ∈ (0, λ0). Moreover, Hλ has no
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singularly continuous spectrum in I . For each compact interval J included in I , and for all
s ∈ (1/2,1], the limits

P∗
s Rλ(x ± i0)Ps := lim

y→0+ P∗
s Rλ(x ± iy)Ps

exist in norm uniformly in x ∈ J . Moreover the maps:

J 
 x �→ P∗
s Rλ(x ± i0)Ps

are Hölder continuous of order s − 1/2 for the norm topology of B(H )

To our knowledge, the condition (I2) is new, even for the question far from the thresholds. We
believe it to be optimal in the Besov scale associated to L2 for limiting absorption principle.

We now compare our result with the literature. In [9, Theorem 6.3], one shows the ab-
sence of embedded eigenvalues by proving a limiting absorption principal with the weights
1K ⊗ (dΓ (b) + 1)−s , for s > 1/2, without any contribution in N . They suppose essentially
(I0) and that α ∈ B(K ,K ⊗ Ḣ s(R+) ⊗ L2(Sd−1)), for s > 1. The class of perturbations is
chosen in relation with the weights. Their strategy is to take advantage the Fermi golden rule at
the level of the limiting absorption principle, with the help of the Feshbach method. The draw-
back is that they are limited by the relation weight/class of form-factors and they cannot give
a Virial-type theorem. On the other hand, their method allows to cover some positive tempera-
ture systems and we do not deal with this question. Their method leads to fewer problems with
domains questions. We mention that they do not suppose the second condition of (I1a).

Therefore, concerning merely the disappearance of the eigenvalues, the conditions (I1a) and
(I1b) do not imply α to be better than Ḣ 1(R+), in the Sobolev scale. Hence, Theorem 1.1 is a
new result. We point out that the condition (I2) is weaker than the one used in [9]. The weights
obtained in the limiting absorption principle are also better than the ones given in [9]. We mention
that one could improve them by using some Besov spaces, see [15]. To simplify the presentation,
we do not present them here. We believe they could hardly be reached by the method exposed in
[9] due to the interplay between weights and form-factors.

In [16] and in [31], one cares about showing that the point spectrum is locally finite, i.e. with-
out clusters and of finite multiplicity. Here, they use a Virial theorem. Between the eigenvalues,
one shows a limiting absorption principle, and uses a hypothesis on the second commutator,
something stronger than (I2), see Section 4.5. In our approach, we use the Virial theorem and the
limiting absorption principle in an independent way. In particular, if one is interested only in the
limiting absorption principle, one does not need to suppose the more restrictive condition (I1b)
but only (I0), (I1a) and (I2). This is due to the fact that we are showing a strict Mourre estimate,
i.e. without compact contribution.

In [5], one proves some version of Theorems 1.1 and 1.2 for a different class of perturbation.
They use the second quantization of the generator of dilatation:

Adil := i1K ⊗ dΓ (k · ∇k + ∇k · k),

which is a self-adjoint operator. One motivation being that:

[Hλ, iAdil] = 1K ⊗ dΓ (ω) + O(λ).
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Then, one modifies the conjugate operator in the same way as we do but the choice of parameters
is more involved. Note that the commutator is Hλ-bounded if and only if the dimension of K is
finite. When the dimension is not finite, like in QED models, θ(Hλ)[Hλ, iAdil]θ(Hλ) is bounded
when the support of θ contains only a finite number of eigenvalues of K . This approach leads to
less questions of domains than in this paper but one relies on another alternate Mourre theory,
see [30].

We point out this choice of conjugate operator has proved to be better to treat the infrared
singularities present in QED. By choosing a function Gx acting in h and depending on x ∈ X,
where K = L2(X), one may consider

φ(α) =
∫

Gx(k) ⊗ a∗(k) + Gx(k) ⊗ a(k) dk,

where a and a∗ are the standard photon creation and annihilation operators. They are operator-
valued distribution in h. In QED, the behavior of ω−1Gx near k = 0 determines the infrared
problem. One has Gx(k) ≈ |k|−1/2 in the vicinity of k = 0, in this case. Since applying Adil

recreates this singularity, this somehow explains why the generator of dilatation is efficient with
infrared problems. The choice of conjugate operator A is inferior in this regard. The first condi-
tion (I1a) requires α to be bounded; This can be fulfilled if the atomic part has a particular shape
by using some gauge transformations, see for instance [16, Section 2.4] and [9, Section 1.6].
After this, one considers Gx(k) ≈ |k|1/2. The problem dwells in the second condition of (I1a)
which cannot be checked. Albeit one is not able to recover the physical case, this choice of con-
jugate operator remains popular in the literature. From mathematical standpoint, note the classes
of perturbation induced by the two operators do not cover one another.

We now give the plan of the paper. In Section 2, we recall some definitions and properties of
Pauli–Fierz models. In Section 3, we construct the conjugate operators. In Section 4, we prove
the regularity properties so that one may apply the Mourre theory. The Virial theorem is discussed
in Section 4.4. In Section 5, we establish the extended Mourre estimate far from the thresholds
for small coupling constants, we explain in Remark 5.3 why the method should be improved to
obtain the result above a threshold. In Section 6, we settle the extended Mourre estimate above the
thresholds under the hypotheses of a Fermi golden rule. In Appendix A, we explain how to check
the Fermi golden rule and why this hypothesis is compatible with the hypothesis (I0), (I1a), (I1b)
and (I2). In Appendix B, we gather some properties of C0-semigroups and in Appendix C we
recall the properties of the C 1 class in this setting and the hypotheses so as to apply the extended
Mourre theory.

Notation. Given a borelian set J , we denote by EJ (A) the spectral measure associated to a
self-adjoint operator A at energy J . Given Hilbert spaces H ,K , we denote by B(H ,K ) the
set of bounded operator from H to K . We simply write B(H ), when H = K . We denote by
σ(H) the spectrum of H . We set 〈x〉 := (1 + x2)1/2. We denote by ‖ · ‖H and by 〈·,·〉H the
norm and the scalar product of H , respectively. We omit the indices when no confusion arises.
We denote by w-lim and s-lim the weak and strong limit, respectively. A dot over a Besov or a
Sobolev space denotes the closure of the set C∞

c of smooth functions with compact support, with
respect to the norm of the space.



S. Golénia / Journal of Functional Analysis 256 (2009) 2587–2620 2593
2. The Pauli–Fierz model

Pauli–Fierz operators are often used in quantum physics as generator of approximate dy-
namics of a (small) quantum system interacting with a free Bose gas. They describe typically
a non-relativistic atom interacting with a field of massless scalar bosons. The quantum system
is given by a (separable) complex Hilbert space K . The Hamiltonian describing the system is
denoted by a self-adjoint operator K , which is bounded from below. We will suppose that K

has some discrete spectrum. One may consider purely discrete spectrum, like [16], or not, like
in [31]. To do not mutter the presentation, we will take K = RanEI (K), where I contains a
finite number of eigenvalues and consider the restriction of K to this space. Hence, we restrict
the analysis to a self-adjoint matrix K acting in a Hilbert space K of finite dimension. This cor-
responds to analyze n level atoms. Doing so, we avoid some light problems of domains, which
are already discussed in details in [16,31] and gain in clarity of presentation.

2.1. The bosonic field

We refer to [6,7,29] for a more thorough discussion of these matters. The bosonic field is
described by the Hilbert space Γ (h), where h is a Hilbert space. We recall its construction.
Set h0⊗ = C and hn⊗ = h ⊗ · · · ⊗ h. Given a closed operator A, we define the closed operator
An⊗ defined on hn⊗ by A0⊗ = 1 if n = 0 and by A ⊗ · · · ⊗ A otherwise. Let Sn be the group of
permutation of n elements. For each σ ∈ Sn, one defines the action on hn⊗ by σ(fi1 ⊗· · ·⊗fin) =
fσ−1(i1)

⊗ · · · ⊗ fσ−1(in), where (fi) is a basis of h. The action extends to hn⊗ by linearity to a
unitary operator. The definition is independent of the choice of the basis. On hn⊗, we set

Πn := 1

n!
∑
σ∈Sn

σ and Γn(h) := Πn

(
hn⊗)

. (2.1)

Note that Πn is an orthogonal projection. We call Γn(h) the n-particle bosonic space. The bosonic
space is defined by

Γ (h) :=
∞⊕

n=0

Γn(h).

We denote by Ω the vacuum, the element (1,0,0, . . .) and by PΩ := Γ (h) → Γ0(h) the pro-
jection associated to it. We define Γfin(h) the set of finite particle vectors, i.e. Ψ = (Ψ1,Ψ2, . . .)

such that Ψn = 0 for n big enough.
We now define the second quantized operators. We recall that a densely defined operator A

is closable if and only if its adjoint A∗ is densely defined. Given a closable operator q in h. We
define Γfin(q) acting from Γfin(D(q)) into Γfin(h) by

Γfin(q)
∣∣
Πn(D(q)n⊗)

:= q ⊗ · · · ⊗ q.

Since q is closable, q∗ is densely defined. Using that Γfin(q
∗) ⊂ Γfin(q)∗, we see that Γfin(q) is

closable and we denote by Γ (q) its closure. Note that Γ (q) is bounded if and only if ‖q‖ � 1.
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Let b be a closable operator on h. We define dΓfin(b) : Γfin(D(b)) → Γfin(h) by

dΓfin(b)
∣∣
Πn(D(b)n⊗)

:=
n∑

j=1

1 ⊗ · · · ⊗ 1 ⊗ b︸︷︷︸
j th

⊗1 ⊗ · · · ⊗ 1.

As above, dΓfin(b) is closable and dΓ (b) denotes also its closure. We link the objects.

Lemma 2.1. Let R
+ 
 t �→ wt ∈ B(h) be a C0-semigroup of contractions (resp. of isometries),

with generator a. Then R
+ 
 t �→ Γ (wt ) ∈ B(Γ (h)) is a C0-semigroup of contractions (resp. of

isometries) whose generator is dΓ (a).

Proof. It is easy to see that Wt := Γ (wt ) is a C0-semigroup of contractions (resp. of isometries).
Let A be its generator. Immediately, one gets dΓfin(a) ⊂ A. Since Γfin(D(a)) is dense in dΓ (h)

and invariant under Wt , the Nelson lemma gives that Γfin(D(a)) is dense in D(A) for the graph
norm and also that dΓ (a) = A. �
2.2. The interacting system

Given a self-adjoint operator ω in h and a finite dimensional Hilbert space K . One defines
the free Hamiltonian H0 acting on the Hilbert space H := K ⊗ Γ (h) by

H0 := K ⊗ 1Γ (h) + 1K ⊗ dΓ (ω). (2.2)

We recall also the definition of the number operator N := 1K ⊗ dΓ (Id).
We now define the interaction. Let α be an element B(K ,K ⊗ h). This is a form-factor. We

define b(α) on H by b(α) := K ⊗ hn⊗ → K ⊗ h(n−1)⊗, where

b(α)(Ψ ⊗ φ1 ⊗ · · · ⊗ φn) := α∗(Ψ ⊗ φ1) ⊗ φ2 ⊗ · · · ⊗ φn,

for n � 1 and by 0 otherwise. This operator is bounded and its norm is given by ‖α‖B(K ,K ⊗h).
We define the annihilation operator on K ⊗ Γ (h) with domain K ⊗ Γfin(h) by

a(α) := (N + 1)1/2b(α)(1 ⊗ Π),

where Π := ∑
n Πn, see (2.1). As above, it is closable and its closure is denoted by a(α). Its

adjoint is the creation operator. It acts as a∗(α) = b∗(α)(N + 1)1/2 on H . Note that b∗(α)(ψ ⊗
φ1 ⊗ · · · ⊗ φn) = (αφ) ⊗ φ1 ⊗ · · · ⊗ φn.

The (Segal,) Field operator is defined by

φ(α) := 1√
2

(
a(α) + a∗(α)

)
.

We consider its closure on K ⊗ D(N1/2). We have the two elementary estimates:∥∥(N + 1)−1/2a(∗)(α)
∥∥ � ‖α‖, ∥∥(N + 1)−1/2φ(α)

∥∥ �
√

2‖α‖. (2.3)

An assertion containing (∗) holds with and without ∗.
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We give the following Nτ -estimate and refer to [9, Proposition 4.1] for a proof of (i). The
point (ii) is a direct consequence of the Kato–Rellich lemma. This kind of estimates comes back
to [20]. See also [3]. We refer to [18, Appendix A] and [16, Proposition 3.7] for unbounded K .

Proposition 2.2. Let ω be a non-negative, injective, self-adjoint operator on h. Let β ∈
B(K ,K ⊗ D(ω−1/2)).

(i) Then φ(β) ∈ B(K ⊗ D(dΓ (ω)1/2),H ) and for any Φ ∈ D(dΓ (ω)1/2),

∣∣φ(β)Φ
∥∥2 � ‖β‖B(K ,K ⊗h)‖Φ‖2

+ 2
∥∥ω−1/2β

∥∥
B(K ,K ⊗h)

〈
Φ,1K ⊗ dΓ (ω)Φ

〉
. (2.4)

(ii) The field operator φ(α) is H0-operator bounded with relative bound ε, for all ε > 0.
Hence, Hλ := H0 + λφ(α), for λ ∈ R, defines a self-adjoint operator with domain D(Hλ) =
K ⊗ dΓ (ω) and is essentially self-adjoint on any core of H0.

2.3. The zero-temperature Pauli–Fierz model

We now precise our model to the zero-temperature physical setting. The one particle space
is given by h := L2(Rd , dk), where k is the boson momentum. The one particle kinetic energy
is the operator of multiplication by ω(k) := |k|. Consider a self-adjoint matrix K on a finite
dimensional Hilbert space K and denote by (ki)i=0,...,n, with ki < ki+1 its eigenvalues. We
denote by Pki

the projection onto the ith eigenspace.
The spectrum of dΓ (ω) in Γ (h) is [0,∞) and due the vacuum part, 0 is the only eigenvalue.

Its multiplicity is one. The spectrum of H0 given by (2.2) is [k0,∞). The eigenvalues are given by
(ki)i=0,...,n and have the same multiplicity as those of K . The singularly continuous component
of the spectrum is empty. Here, (ki)i=0,...,n play also the rôle of thresholds.

We consider a form-factor α satisfying hypothesis (I0). By applying Proposition 2.2, the op-
erator Hλ, given by (1.1), is self-adjoint and D(Hλ) = K ⊗ D(dΓ (ω)).

Since we study form factors in B(K ,K ⊗ h), we forbid some eventual singularities of the
form-factor from the very beginning. However, if the atomic part has a particular shape, one may
use some gauge transformations and gains in singularity, see for instance [16, Section 2.4] and [9,
Section 1.6]. Nevertheless, it is an open question if there exists some gauge transformation that
allows one to cover the physical form factor studied in [3,5], from our conditions. Conversely,
the classes of perturbations studied in the latter does not fully cover ours.

3. The conjugate operators

In this paper, we analyze the spectrum of the Pauli–Fierz Hamiltonian Hλ described in Sec-
tion 2.3 using some commutator techniques. We study the behavior of the embedded eigenvalues
of Hλ under small coupling constants and establish some refined spectral properties. To do so,
we establish a version of the Mourre estimate, see Appendix C.2. Hence, we start by construct-
ing the conjugate operator. We follow similar ideas as in [16,24,31]. Later, we modify it by a
finite rank perturbation, in the spirit of [5]. Unlike in the standard Mourre theory, the conjugate
operator is not self-adjoint and only maximal-symmetric. We refer to Appendix C.1 for discus-
sions about 1-commutators properties in this setting. We point out that one may avoid to work
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with maximal-symmetric operator by symmetrizing the space and thus gluing non-physical free
bosons, see [9, Section 5.2]. This trick leads to some problems of domains with our method and
would be treated elsewhere.

We point out that the real drawback of this choice of conjugate operator comes from the fact
that the commutator is not Hλ bounded, like in the standard Mourre theory and [3,5,12,13]. Some
difficulties appear to apply the Virial theorem. To overcome them, we follow ideas of [16,31] and
construct a series of approximate conjugate operators. One may also proceed like in [27].

3.1. The semigroup on the 1-particle space

Fix χ ∈ C∞
c (R+; [0,1]) decreasing such that χ(x) = 1 for x � 1 and 0 for x � 2. Set χ̃ :=

1 − χ . We consider the following vector fields on R
+:

mn(t) :=
{

χ̃ (nt), for n ∈ N,

1, for n = ∞,
and sn(t) = mn(t)

t
. (3.1)

Note that mn converges increasingly to m∞, almost everywhere, as n goes to infinity. As in [31]
and in [16], the rôle of m∞ would be to ensure the positivity of the commutator and the one
of mn would be to guarantee of the Virial theorem.

We define the associated vector fields in R
d as follows:

−→sn(k) := sn
(|k|)k, for k ∈ R

d and n ∈ N
∗ ∪ {∞}. (3.2)

We shall construct the C0-semigroup of isometries associated to the vector fields −→sn on h =
L2(Rd) and identify the generators. We define

an := −1

2
(−→sn · Dk + Dk · −→sn) (3.3)

on C∞
c (Rd \ {0}) for all n ∈ N

∗ ∪ {∞} and where Dk = i∇ . These operators are closable as the
domains of their adjoints are dense. In the sequel, we denote by the same symbol their closure.

We work in polar coordinates. We identify h and h̃ through the transformation (1.3). Given
an operator B in h, we denote by B̃ the corresponding operator acting in the h̃ and given by
B̃ := T BT −1. We have:

Proposition 3.1. For n finite, an is essentially self-adjoint on C∞
c (Rd \ {0}) and a∞ is maximal

symmetric with deficiency indices (N,0). Here, N = ∞ for d � 2 and N = 2 for d = 1. The
operator an generates a C0-semigroup of isometries denoted by {wn,t }t∈R+ . In polar coordinates,
the domains are given by

D(ãn) ⊃ D(ã∞) = Ḣ 1(
R

+) ⊗ L2(Sd−1), for all n ∈ N
∗,

D
(
ã∗∞

) = H 1(
R

+) ⊗ L2(Sd−1),
where Ḣ 1(R+) is the closure of C∞

c (R+) under the norm ‖ · ‖ + ‖∂r · ‖ and where H 1(R+) is
the Sobolev space of first order.
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See Appendix B for an overview on C0-semigroups. For n finite, the C0-semigroup extends
to a C0-group since an is self-adjoint.

Proof. When n is finite, it is well known that an is essentially self-adjoint on C∞
c (Rd) and

follows by studying C0-group associated to the flow defined by the smooth vector field −→sn. The
density follows by the Nelson lemma. See for instance [1, Proposition 4.2.3]. Hence, for n finite,
it remains to show that C∞

c (Rd \ {0}) is a core for an.
Straightforwardly, for n ∈ N

∗ ∪ {∞}, one gets

ãn := T anT
−1 = i

(
mn(·)∂r + 1

2
(mn)

′(·)
)

⊗ 1, where mn(r) := rsn(r). (3.4)

We extend mn on R by setting mn(−r) := mn(r) for r > 0 and prolongate it by continuity
in 0. Let φn,t be the flow generated by the smooth vector field mn on R. In other words, φn,t :=
φn(t, ·) is the unique solution of (∂tφn)(t, r) = mn(φn(t, r)), where φn(0, r) = r . Since mn is
globally Lipschitz, φn,t exists for all time t . Moreover, φn,t is a smooth diffeomorphism of R

with inverse φn,−t for all t ∈ R. Let φ̃n,t be the restriction of φn,t from R
+∗ to R

+∗. Let Ωn,t be
the domain of this restriction, i.e. the set of r > 0 such that φn,t (r) > 0. One has Ωn,t = R

+∗ for
t � 0 as mn(r) is positive. For the same reason, t �→ Ωn,t is increasing. Note also that we have
Ωn,−t = φn,t (R

+∗) for t � 0. For u ∈ h̃, we set:

(w̃n,tu)(r, θ) := 1Ωn,−t (r)

√
φ′

n,−t (r)u
(
φn,−t (r), θ

)
, for t � 0. (3.5)

A change of variable gives that w̃n,t is an isometry of L2(R+) with range L2(Ωn,−t ) for all
t � 0. Since φn,t is a smooth flow, {w̃n,t }t�0 is a C0-semigroup of isometries. The adjoint C0-
semigroup is given by

(
w̃∗

n,tu
)
(r, θ) := 1R+∗(r)

√
φ′

n,t (r)u
(
φn,t (r), θ

)
, for t � 0. (3.6)

This is not a semigroup of isometries when n = ∞.
We compute the generator of the semigroup {w̃n,t }t�0. Take u ∈ C∞

c (h̃). We have w̃n,tu ∈
C∞

c (Ωn,−t × Sd−1). Let r ∈ Ωn,−t , we get

−
(

d

dt
w̃n,tu

)
(r, θ) =

(
w̃n,t

(
mn(·)∂r + 1

2
(mn)

′(·)
)

u

)
(r, θ).

Denoting by the same symbol the closure of ãn on C∞
c (R+∗ × Sd−1), we obtain

−i
d

dt
w̃n,tu = w̃n,t ãnu.

The closed operator is a priori only a restriction of the generator of the semigroup (in the sense
of the inclusion of graph of operators). Now, since w̃n,t stabilizes C∞

c (h̃) for all t � 0, the Nelson
lemma gives that this space is a core for generator of the C0-semigroup {w̃n,t }t�0. Since this one
is an extension of ãn, we have shown that ãn is really the generator. One may denote formally
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w̃n,t = eitãn . The domain of ãn contains Ḣ 1(R+) ⊗ L2(Sd−1). Easily, this is an equality for
n = ∞.

Considering the spectrum of an, we derive the deficiency indices of the closure of an on
C∞

c (Rd \ {0}) are of the form (N,0). For n finite these indices are equal, we infer the essential
self-adjointness of an on C∞

c (Rd \ {0}).
At this point, one may feel the real difference between the case n finite and infinite. On one

hand m∞ � 1 and on the other hand, for finite n, mn(r) tends to 0 as r tends to 0. The domain
of the adjoint of ã∞ would be different. Indeed,

(
ã∗∞u

)
(r, θ) = i

(
m∞(r)(∂ru)(r, θ) + 1

2
(m∞)′(r)u(r, θ)

)
, (3.7)

where u ∈ D(ã∗∞) = H 1(R+) ⊗ L2(Sd−1). Moreover, when n = ∞, the deficiency indices are
then (∞,0), as the dimension of L2(Sd−1) is infinite. �
3.2. The C0-semigroup on the Fock space

Thanks to Proposition 3.1 and Lemma 2.1, we define the C0-semigroups on the whole Hilbert
space. We set:

Wn,t := 1K ⊗ Γ (wn,t ) and W ∗
n,t = 1K ⊗ Γ (w∗

t ), for t � 0. (3.8)

Clearly, {Wn,t }t�0 is a C0-semigroup of isometries. Let A∞ be its generator. In the same way,
for n finite, we set

An := 1K ⊗ dΓ (an). (3.9)

This is the generator of the C0-group 1K ⊗ Γ (eitan) by Lemma 2.1. Recall the rôle of the An is
to ensure a Virial theorem, see Proposition 4.11.

In Section 5, we see that the operator A∞ alone is not enough to deal with threshold energy
as the system could be uncoupled. One needs to take in account the Fermi golden rule. One way
is to follow [9] and to take advantage of it in the limiting absorption principle. Another way is
to modify the conjugate operator with a finite rank perturbation so as to obtain more positivity
above the thresholds, by letting appearing the Fermi golden rule in the commutator, see Section 6.
This idea comes from [5]. We follow it.

Choose ki0 an eigenvalue of K and assume that (6.1) holds true at energy ki0 for the couple
(H0, α). Let P be the projector Pki0

⊗ PΩ . For ε < ε0, we define

Ân := An + λθBε, for n ∈ N
∗ ∪ {∞},

where Bε := Im(R2
εφ(α)P ), Rε := ((H0 − ki0)

2 + ε2)−1/2 and Rε := PRε . Note that the conju-
gate operator depends on the two parameters λ ∈ R from the coupling constant, ε > 0 from the
Fermi golden rule hypothesis and on an extra technical θ > 0. For the sake of clarity, we do not
write these extra dependences.

Using Proposition B.5 and the fact that Bε is bounded, one gets Â∞ is the generator of a
C0-semigroup. A bit more is true.
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Lemma 3.2. The operator Â∞ is maximal symmetric on D(A∞) and is the generator of C0-
semigroup of isometries, denoted by {Ŵn,t }t�0. For n finite, the operator Ân is self-adjoint on
the domain of D(An).

Proof. The second point is obvious. We concentrate on the first one. By Proposition 3.1,
A∞ is maximal symmetric with deficiency indices (N,0) for some N �= 0. Since Bε is
bounded, there is c < 0 such that ‖Bε(A∞ − z)−1‖ < 1, for all z ∈ C where Im(z) � c. Since
(I +Bε(A∞ − z)−1)(A∞ − z) = A∞ +Bε − z on the domain of A∞, we get the spectrum of Â∞
is contained in an upper half plane R + i[c,∞). Now, since Bε is symmetric, so is Â∞. If the
indices of Â∞ would be both non-zero then its spectrum would be C. Therefore, the deficiency
indices of Â∞ are (N ′,0) for some non-negative N ′. Note that N ′ �= 0 by the Kato–Rellich the-
orem applied on Â∞, since Bε is bounded. Hence, Â∞ is maximal symmetric on D(A∞) and its
spectrum is R + i[0,∞). It is automatically a C0-semigroup of isometries. �
4. Smoothness with respect to the C0-semigroup

In Section 4.1, we recall a general result. In Section 4.2, we give some 1-commutator prop-
erties for An. We check the hypothesis (M1)–(M4) of Appendix C.2. We identify the spaces
and operators appearing therein in Lemma 4.3. In Section 4.3, we extend these properties to Ân,
using Proposition B.5 and Lemma 4.5. The Virial theorem is discussed in Section 4.4. At last,
second commutator assumptions and the hypothesis (M5) are discussed in Section 4.5.

4.1. A general result

In order to check the C1 properties, the b-stability, see Definition B.3, and to be able to
deduce hypothesis (M1)–(M5) of Appendix C.2, we recall [16, Proposition 4.10]. We formulate
it for bounded K . Set first a C0-semigroup of isometries R

+ 
 t → vt ∈ B(h) with generator a.
By Lemma 2.1, Vt := 1K ⊗ Γ (vt ) is a C0-semigroup of isometries with generator A = 1K ⊗
dΓ (a). Let b � 0 be a self-adjoint operator on h, and K as in (2.2). Set

B := K ⊗ 1Γ (h) + 1K ⊗ dΓ (b), GB := D
(
B1/2) = 1K ⊗ D

(
dΓ (b)1/2).

Proposition 4.1. Let ω and b � 0 acting in h. Then,

(i) The space GB is b-stable under {Vt }t∈R+ (resp. {V ∗
t }t∈R+ ), if

v∗
t bvt � Ctb,

(
resp. vtbv∗

t � Ctb
)

with sup
0<t<1

Ct < ∞. (4.1)

(ii) Assuming (4.1) and that there is a constant C such that for all ui ∈ D(b1/2)

ω � Cb,
∣∣〈u2, (ωvt − vtω)u1

〉∣∣ � Ct
∥∥b1/2u1

∥∥ · ∥∥b1/2u2
∥∥, for 0 < t < 1. (4.2)

Then H0 ∈ C 1(A;GB,G ∗
B). Besides, in the sense of forms on GB , one has

[H0, iA]◦ = 1K ⊗ dΓ
([ω, ia]◦).
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(iii) Assume (4.1) and that α is a form-factor satisfying

α ∈ B
(
K ,K ⊗ D(a)

)
, aα ∈ B

(
K ,K ⊗ D

(
b−1/2)). (4.3)

Then φ(α) ∈ C 1(A;GB,G ∗
B) and in the sense of forms on GB , we get

[
φ(α), iA

]◦ = −φ(iaα).

Here [·,·]◦ denotes the closure of the form defined by [·,·], H0 is defined in (2.2) and aα is a
short for (1 ⊗ a)α. If (I0) and (4.1)–(4.3) hold true, then Hλ, defined in (1.1), is self-adjoint with
the same domain as H0 and lies in C 1(A;GB,G ∗

B).

4.2. Estimation on the first commutator

In this section, we compute the first commutator with respect to the conjugate operator A∞
and check the hypotheses (M1)–(M4) discussed in Appendix C.2. We follow [15] and use only
the hypotheses (I0) and (I1a). We start with a direct consequence of Proposition 3.1.

Lemma 4.2. We assume (I0) and (I1a). Then, α ∈ B(K ,K ⊗ D(an)) and anα ∈ B(K ,

K ⊗ D(ω−1/2)), for all n ∈ N∗ ∪ {∞}.

We formally decompose the commutator [Hλ, iAn] into two parts. We set:

{
Mn := 1K ⊗ dΓ (mn) + 1 ⊗ PΩ,

Sn := −φ(ianα) − 1K ⊗ PΩ,
for all n ∈ N

∗ ∪ {∞}. (4.4)

Here, we add 1K ⊗ PΩ to obtain M∞ � 1. We stress that, for finite n, Mn has a different
domain as M∞. Indeed, D(Mn) ⊂ D(H0) when n is finite and D(M∞) = D(N), since M∞ =
N + 1K ⊗ PΩ .

We start with the hypothesis (M1). We need to precise the definition the commutator H ′
λ given

formally by [Hλ, iA∞]. Note that it does not extend to a Hλ-bounded operator, as in the standard
Mourre theory. We follow [15] and define

B∞ := K ⊗ 1Γ (h) + 1K ⊗ dΓ
((

k2 + 1
)1/2)

. (4.5)

Let D∞ := D(B∞) and G∞ := D(B
1/2∞ ). We would drop the subscripts after this lemma as no

more confusion could arise with Appendix C.2.

Lemma 4.3. Assume (I0) and (I1a). Then:

(i) Hλ ∈ C 1(M∞), D(Hλ) ∩ D(M∞) is a core for M∞, S∞ is symmetric and lies in
B(D(H0),H ).

(ii) Let H ′
λ be the closure of M∞ + S∞ defined on D(Hλ) ∩ D(M∞). Therefore, Hλ and H ′

λ

satisfy (M1).
(iii) D∞ = D(H ′

λ) ∩ D(Hλ) = D(M∞) ∩ D(Hλ) and G∞ is the same as in (C.2).
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Proof. We start with (i). Take the C0-group generated by m∞ acting by (vtf )(x) = eitf (x) for
f ∈ h. We use Proposition 4.1, with a = m∞ and b = ω. Conditions (4.1) and (4.2) are triv-
ially satisfied. Condition (4.3) follows from Lemma 4.2. Therefore, Hλ ∈ C 1(M∞; D(|Hλ|1/2),

D(|Hλ|1/2)∗) and thus [1, Lemma 7.5.3] gives Hλ ∈ C 1(M∞). Therefore, Proposition 2.2 gives
that D(Hλ) ∩ D(M∞) = D(N) ∩ 1K ⊗ D(dΓ (ω)) = D(B∞). This is an obvious core for M∞.

Now, Lemma C.7 implies point (ii) and also gives the statements on D = D∞ in (iii). By
Proposition 2.2 and (I1a), we have that S∞ is H0-form bounded. Then, the norm ‖ · ‖G , given
by (C.2), is equivalent to

√〈·, (M∞ + H0 + 1)·〉 on D . Since D is a form core for B∞, we infer
G = G∞. �

From now on, we drop the subscripts for D and G . We clarify the C 1 property. The hypothesis
(M2) is checked in Theorem 5.1.

Lemma 4.4. Assume (I0) and (I1a). Then,

(i) {W∞,t }t�0 b-stabilizes G and G ∗.
(ii) Hλ ∈ C 1(A∞;G ,G ∗) and [Hλ, iA]◦ = H ′

λ on D .

Therefore, hypotheses (M3) and (M4) are fulfilled.

Proof. We apply Proposition 4.1. As in the proof of Proposition 3.1, we work in polar coordinate
through the isomorphism (1.3). In this representation, the operator b acts by b̃ = (r2 + 1)1/2 ⊗ 1
in h̃. Using (3.5) and (3.6), we obtain

w̃∗∞,t b̃w̃∞,t = b
(
φ∞,t (·)

)
and w̃∞,t b̃w̃∗∞,t = 1R+

(
φ∞,−t (·)

)
b
(
φ∞,−t (·)

)
.

Therein, the flow φ∞,t was extended in R. We have,

∣∣b(
φ∞,t (r)

) − b(r)
∣∣ � ‖∇b‖∞

∣∣φ∞,t (r) − r
∣∣ � ‖∇b‖∞|t |, for 0 � |t | � 1. (4.6)

We infer 1 � b(φ∞,t (r)) � ‖∇b‖∞(1 + |t |)b(r), for 0 � |t | � 1. Hence, the condition (4.1) is
satisfied. The C0-semigroup {W∞,t }t∈R+ and {W ∗∞,t }t∈R+ b-stabilizes G .

We prove the second point with the help of Proposition 4.1(ii) and (iii). First, ω � b. Now,
ωw∞,t − w∞,tω = (ω − ω(φ∞,−t (·)))wt . By (4.6), we obtain that |φ∞,t (r) − r| � C|t |b(r) and
hence |ω − ω(φ∞,−t (·))| � C|t |b, for all t ∈ [0,1]. Since {ωt }t∈R+ b-stabilizes D(b1/2), we get
(4.2). Now by Lemma 4.2, we check (4.3). We obtain Hλ ∈ C 1(A∞;G ,G ∗). �
4.3. Estimation on the first perturbed commutator

We now add the finite rank perturbation Bε to the conjugate operator. We consider the conju-
gate operator Ân, given by (6.6). We denote with a hat the perturbed operators. Set

Ŝn := Sn + [Hλ, iλθBε]◦, for all n ∈ N
∗ ∪ {∞}. (4.7)

Note that the operator Mn, given in (4.4), is unaffected by Bε .
Although Bε is a finite rank perturbation, one needs to be careful, especially in the 2-

commutators properties. We give the key-lemma which allows us to transfer safely properties



2602 S. Golénia / Journal of Functional Analysis 256 (2009) 2587–2620
of An to Ân. We point out that Lemma 6.7 shows that [Hλ,Bε] is also a finite rank operator
in H . Recall that G = G∞ is given in (4.5).

Lemma 4.5. Assume (I0). We have:

(i) Bε is a finite rank self-adjoint operator.
(ii) Bε ∈ B(G ).

(iii) Assume also (I1a), then Bε is belonging to C 1(A∞;G ,G ).

Proof. Since P is of finite rank and Bε is symmetric, we need only to show that Bε is bounded.
(I0) gives that Pφ(α)P = PαP belongs to B(H ,K ⊗ D(ω−1/2)). Now, recall that εR2

ε =
Im(H0 −k+ iε)−1 and that 1⊗ω1/2(H0 −k± iε)−1 is bounded by functional calculus in K ⊗ h.
This concludes (i).

For point (ii), note that Bε ∈ B(G ) is equivalent to Bε ∈ B(D(|H0|1/2)), since PαP is with im-
age in the 1-particle space. Hence, the assertion follows by noticing that
1 ⊗ ω1/2(1 + ω)1/2(H0 − k ± iε)−1 is bounded in K ⊗ h.

As in (ii), it is enough to show that T := Pφ(α)P (H0 − z)−1 and its adjoint are in
C 1(A∞; D(|H0|1/2), D(|H0|1/2)), where z ∈ C \ R. We treat T . Note that H0|K ⊗h ∈ C 1(A∞).
Using (1.3), we have:

[T , iA∞]◦ = P(1 ⊗ ∂r)αP (H0 − z)−1 − PαP (H0 − z)−2.

Like in (ii), the second term is easily bounded in D(|H0|1/2). The boundedness of the first one is
ensured by the second part of (I1a). �

As an immediate corollary, we infer from Lemma 4.3 the following.

Lemma 4.6. Assume (I0) and (I1a). Then:

(i) Hλ ∈ C 1(M∞), D(Hλ) ∩ D(M∞) is a core for M∞, Ŝ∞ is symmetric and lies in
B(D(H0),H ).

(ii) Let Ĥ ′
λ be the closure of M∞ + Ŝ∞ defined on D(Hλ) ∩ D(M∞). Therefore, Hλ and Ĥ ′

λ

satisfy (M1).
(iii) D = D(Ĥ ′

λ) ∩ D(Hλ) = D(M∞) ∩ D(Hλ) and G is the same as in (C.2).

We now strengthen Lemma 4.4 and check (M3) and (M4). The hypothesis (M2) is checked in
Theorem 6.2.

Lemma 4.7. Assume (I0) and (I1a). Then,

(i) {Ŵ∞,t }t�0 b-stabilizes G and G ∗.
(ii) C 1(A∞,G ,G ∗) = C 1(Â∞,G ,G ∗).

(iii) Hλ ∈ C 1(Â∞;G ,G ∗) and [Hλ, iÂ]◦ = Ĥ ′
λ on D .

Therefore, hypotheses (M3) and (M4) are fulfilled.
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Proof. We consider {Ŵ∞,t }t∈R. The argument is the same for the adjoint. Let A′∞ be the gener-

ator of {W∞,t }t∈R in G . As in (6.6), set Â∞
′ := A′∞ + λθBε . Thanks to Proposition B.5, since

Bε ∈ B(G ), Â∞
′

is the generator of a C0-semigroup in G . We name it {Ŵ ′∞,t }t∈R. By dual-
ity and interpolation, it extends to a C0-semigroup in H . Comparing the generators, we obtain
that {Ŵ ′∞,t }t∈R is really the restriction of {Ŵ∞,t }t∈R and it gives point (i). By Lemma 4.4, it is
enough to show (ii) to get (iii). Proposition C.6 and the boundedness of Bε in G and G ∗ give the
former. �
4.4. The Virial theorem

In order to obtain a Virial theorem, we proceed like in [16,31] by approximating the conjugate
operator. Indeed, since Ĥ ′

λ is not Hλ-bounded, one can not apply a priori H ′
λ to an eigenfunction

of Hλ even in the form sense. In this section, we use the hypotheses (I0) and (I1). Here, (I1) means
(I1a) and (I1b). In a zero temperature setting, this method is less demanding in hypotheses than
the one used in [27], see for instance [27, Proposition 6.1]. Note that we do not deal with the
positive temperature Hamiltonians treated therein.

Lemma 4.8. Assume (I0) and (I1). Then φ(ianα) tends to φ(ia∞α), as quadratic forms on
D(|Hλ|1/2), as n goes to infinity.

Proof. Thanks to Proposition 2.2, it is enough to show that ‖(an − a∞)α‖B(K ,K ⊗h) and that
‖ω−1/2(an − a∞)α‖B(K ,K ⊗h) tend to 0 as n goes to infinity.

We start with the first point. Like in the proof of Proposition 3.1, we work in polar coordi-
nates. We focus on the expression of ãn obtained in (3.4). We have α ∈ B(K ,K ⊗ Ḣ 1 ⊗ L2).
Moreover, since mn(r) � m∞(r) = 1 and mn converges simply to 1 almost everywhere, by the
Lebesgue dominated convergence theorem, we obtain ‖(mn − m∞)∂α‖B(K ,K ⊗h) tends to 0.
We treat the term in (m′

n(r) − m′∞(r))α = m′
n(r)α = m′

n(r)r
ar−aα. As a > 1/2, dominated

convergence proves it tends to 0 in B(K ,K ⊗ h). The proof of the second point is the same but
use the fact that r−aα ∈ B(K ,K ⊗ h) for the term in m′

n, for some a > 1. �
We point out that if one knows that ω−1α ∈ B(K ,K ⊗ C0(R

+)⊗L2(Sd−1)), one may relax
(I1b) and take a = 1. Here C0(R

+) denotes the continuous functions vanishing in 0 and in +∞.

Lemma 4.9. Assume n finite, (I0) and (I1a). Then, {Ŵn,t }t∈R b-stabilizes the form domain of Hλ.

Proof. First we apply Proposition 4.1(i) with vt = wn,t and b = w. As we have a C0-group,
by taking t negative we obtain the result for the adjoint. As in the proof of Proposition 3.1, we
denote by φn,t : R

d → R
d the flow generated by the smooth vector field −→sn. Since mn(0) = 0, we

have

∣∣φn,t (k) − k
∣∣ = ∣∣φn,t (k) − φn,0(k)

∣∣ �
|t |∫

0

∣∣mn

(
φn,s(k)

) − mn(0)
∣∣ds

� ‖∇mn‖∞

|t |∫ ∣∣φn,s(k)
∣∣ds, for all t ∈ R. (4.8)
0
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By the Gronwall lemma, we infer there is C such that |φn,t (k)| � C|k|, for all t ∈ [1,1]. Plugging
back into (4.8), we obtain |φn,t (k) − k| � C|tk|, for all t ∈ [1,1]. Now using (3.5) and (3.6), we
infer e−itanweitan = w(φn,t (·)). Since mn is globally Lipschitz, there is C′ such that

∣∣w(
φn,t (k)

) − w(k)
∣∣ � C′|t |w(k), for all t ∈ [1,1]. (4.9)

Hence, we satisfy the hypothesis (4.1) and D(|Hλ|1/2) is b-stable under {Wn,t }t∈R.
We now take care about {Ŵn,t }t∈R. Let A′

n be the generator of {Wn,t }t∈R in D(|Hλ|1/2). As

in (6.6), set Ân
′ := A′

n + λθBε . By Lemma 4.5(ii) and the fact that Bε is with values in the 0

and 1 particles space, we get Bε bounded in D(|Hλ|1/2). Thanks to Proposition B.5, Ân
′

is the
generator of a C0-group in D(|Hλ|1/2). We name it {Ŵ ′

n,t }t∈R. By duality and interpolation, it

extends to a C0-group in H . Comparing the generators, we obtain that {Ŵ ′
n,t }t∈R is really the

restriction of {Ŵn,t }t∈R and this gives the result. �
Lemma 4.10. Assume n finite, (I0) and (I1a). Then Hλ ∈ C 1(Ân). Moreover:

[Hλ, iÂn]◦ = Mn + Ŝn, (4.10)

holds true in the sense of forms on D(|Hλ|1/2).

Proof. Using again (4.9), we check (4.2). We get [H0, iAn]◦ = 1K ⊗ dΓ ([ω, ian]◦) in the
sense of form on D(|Hλ|1/2). By computing [ω, ian]◦ on the core C∞

c (Rd \ {0}), we obtain
[ω, ian]◦ = mn. Now, by Lemma 4.2, we can use Proposition 4.1(iii) and deduce [Hλ, iAn]◦ =
Mn + Sn in the sense of forms on D(|Hλ|1/2). Finally, by Lemma 6.7, [Hλ,Bε]◦ is of finite rank,
we also obtain (4.10) on the same domain.

Now, Hλ ∈ C 1(Ân; D(|Hλ|1/2), D(|Hλ|1/2)∗) by Lemma 4.9 and Proposition C.6. We apply
[16, Lemma 6.3] to get Hλ ∈ C 1(Ân). �

Therefore, the Virial theorem holds true when Ân is the conjugate operator and when n is
finite. However, there is no Mourre estimate for Ân but only one for Â∞. To overcome this
problem, we take advantage of the monotone convergence of [H0, iAn]◦ to [H0, iA∞]◦ and of
the uniformity given in Lemma 4.8 to prove:

Proposition 4.11 (Virial theorem). Assume (I0) and (I1). Let u be an eigenfunction of Hλ then
u ∈ D(N1/2) and 〈u, (M∞ + Ŝ∞)u〉 = 0, as a quadratic form on D(N1/2) ∩ D(Hλ).

Proof. First, Mn is a bounded form for Hλ. Note that 0 � mn � m implies 0 � dΓ (mn) �
dΓ (m) for all n. Now, since mn is increasing and converges to m as n goes to infinity, monotone
convergence gives

0 � 〈g,Mng〉 � 〈g,M∞g〉 and 〈g,Mng〉 −→
n→∞ 〈g,M∞g〉,

for all g ∈ D(M∞) ∩ D(Hλ). Using some Cauchy sequences, this holds true also in the sense
of forms for g ∈ D(M

1/2∞ ) ∩ D(Hλ). By authorizing the value +∞ on the two r.h.s. when
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g /∈ D(M
1/2∞ ), one allows g ∈ D(Hλ). On the other hand, Lemma 4.2 gives that Ŝn tends to

Ŝ∞ as a quadratic form on D(H).
Let Ḣ be the closure of quadratic form 〈u, Ĥ ′

λu〉 defined on D(M∞) ∩ D(H). It is given

by the quadratic form 〈u, (M∞ + Ŝ∞)u〉 defined on D(M
1/2∞ ) ∩ D(H). Take now an eigen-

function u of Hλ. By Lemma 4.10 and the Virial theorem, see [1, Proposition 7.2.10], we get
〈u, (Mn + Ŝn)u〉 = 0. By letting n go to infinity and noticing that D(M

1/2∞ ) = K ⊗ D(N1/2), we
get the result. �
4.5. Estimation on the second commutator

In this section, we discuss the second commutator hypothesis (I2) so as to obtain a limiting
absorption principle through the Theorem C.8. We stress we forgo the hypothesis (I1b) in this
section. We start with the important remark.

Lemma 4.12. We have C 2(A∞,G ,G ∗) = C 2(Â∞,G ,G ∗).

Proof. It is enough to show one inclusion. Using Proposition C.6 and the invariance of G and
G ∗ given in Lemmata 4.4 and 4.7, one may work directly with A∞ and Â∞. Let H ∈ B(G ,G ∗)
be in C 2(A∞,G ,G ∗). One justifies the next expansion, by working in the form sense on
D((A∗∞)2|G ) × D((A∞)2|G ). This is legal by using Lemma 4.5. We have:

[[H, Â∞], Â∞
] = [[H,A∞],A∞

] + [[H,A∞], λθBε

]
+ [[H,λθBε],A∞

] + [[H,λθBε], λθBε

]
.

The first term is in B(G ,G ∗) by hypothesis. For the second one, note that [H,A∞] ∈ B(G ,G ∗)
since H is C 1(A∞,G ,G ∗). For the third one, we expand the commutator inside, use again that
H ∈ C 1(A∞,G ,G ∗) and finish with Lemma 4.5(iii). For the last one, one expands it and use
Lemma 4.5(ii). �

We start by discussing the C 2 theory used in [16,31] and check the point (M5′). Through the
isomorphism given by (1.3), we suppose the stronger

(I2′) α ∈ B(K ,K ⊗ Ḣ 2(R+) ⊗ L2(Sd−1)).

This hypothesis is stronger than α ∈ B(K ,K ⊗ Ḣ s(R+) ⊗ L2(Sd−1)) for s > 1, the one used
in [9, Theorem 6.3].

Lemma 4.13. Assume (I0), (I1a) and (I2′). Then Hλ ∈ C 2(Â∞,G ,G ∗) and

[Ĥ ′
λ, iÂ∞]◦ = λφ

(
a2∞α

) + λθ
[[Hλ,Bε]◦, iA

]◦ + λ2θ2[Ĥ ′
λ,Bε

]◦
.

Therefore, the hypothesis (M5′) is fulfilled.

Proof. We use Proposition 4.1(ii) and (iii) for the operator H := N − λφ(ia∞α). Point (ii)
is trivially satisfied. The hypothesis (I2) and Proposition 2.2 give (4.3). We obtain
H ∈ C 1(A∞;G ,G ∗). �
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We now work with the hypothesis (I2) which is weaker than the one used in [9]. Thanks to
Lemma 4.12, we have

C 1,1(A∞,G ,G ∗) := (
C 2(A∞,G ,G ∗), B(G ,G ∗)

)
1/2,1

= (
C 2(Â∞,G ,G ∗), B(G ,G ∗)

)
1/2,1 =: C 1,1(Â∞,G ,G ∗).

We refer to [1,32] for real interpolation. We obtain:

Lemma 4.14. Assume (I0), (I1a) and (I2). Then Hλ ∈ C 1,1(Â∞,G ,G ∗) and the hypothesis (M5)
is fulfilled.

Proof. By Lemma 4.13, we have H0 ∈ C 2(Â∞,G ,G ∗). It is enough to show that φ(α) ∈
C 1,1(A∞,G ,H ). By [9, Lemma 2.7], we have W∞,tφ(α) = φ(w∞,tα)W∞,t for t � 0. By
Proposition 2.2 and b � 1 and since {W∞,t } b-preserves G , we get

1∫
0

∥∥[
W∞,t [W∞,t , φ(α)]]∥∥B(G ,H )

dt

t2
�

1∫
0

∥∥φ
([

w∞,t [w∞,t , α]])W∞,2t

∥∥
B(G ,H )

dt

t2

� C

1∫
0

∥∥[
w∞,t [w∞,t , α]]∥∥B(K ,K ⊗h)

dt

t2
.

The latter is finite if and only if α belongs to (B(K , D(a2∞)), B(K ,K ⊗ h))1/2,1. On
the other hand, using the isomorphism (1.3) and Proposition 3.1, this space is the same as
(B(K ,K ⊗ Ḣ 2(R+) ⊗ L2(Sd−1)), B(K ,K ⊗ h̃))1/2,1. Finally, using [32, Section 2.10.4],
this is equivalent to the fact that α satisfies (I2). �
5. A Mourre estimate far from the thresholds

5.1. The result

The aim in this part is to show a Mourre estimate far from thresholds for small coupling
constants. This is a well-known result, see [3,9] for instance. For the sake of completeness, we
give a proof of the estimate. Doing so, we point out, in Remark 5.3, where the lack of positivity
occurs above the thresholds. We use the approach based on the theory described in Appendix C.
To obtain information just above the thresholds and without supposing the Fermi golden rule,
one should add a compact term in (5.1), see [15,31].

Theorem 5.1. Let I0 be a compact interval containing no element of σ(K). Suppose also that
(I0) and (I1a) are satisfied. Then, for all open interval I ⊂ I0:

(i) There are M∞ � 1 and S∞ a |Hλ|1/2-bounded operator such that [Hλ, iA∞]◦ = M∞ +S∞
holds in the sense of forms on D(N1/2).

(ii) The conditions (M1)–(M4) are satisfied.
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(iii) There is λ0 > 0 such that the following extended Mourre estimate

M∞ + S∞ � a(λ)EI (Hλ) − b(λ)EI c (Hλ)〈Hλ〉. (5.1)

holds true in the sense of forms on D(N1/2), for all |λ| � λ0. Here, a(λ) is positive and can
be written as (1 + O(λ)). Besides, b(λ) is also positive.

(iv) If (I1b) holds true, then Hλ has no eigenvalue in I , for all |λ| � λ0.
(v) If (I2) holds true (and not necessarily (I1b)), then Hλ has no eigenvalue in the interior of I ,

for all |λ| � λ0. Moreover, one obtains the estimations of the resolvent given in Theorem 1.2.

Proof. By Lemma 4.3, we have the first point. The point (ii) is shown in Section 4.2. The
point (iii) follows from Proposition 5.2. Indeed, since S∞ is form bounded with respect to Hλ,
we have that for all η > 0

EI (Hλ)S∞EI c (Hλ) + EI c (Hλ)S∞EI (Hλ)

� −ηEI (Hλ)S∞〈Hλ〉−1S∞EI (Hλ) − η−1EI c (Hλ)〈Hλ〉. (5.2)

The point (iv) follows from the Virial Theorem, Proposition 4.11. Finally, Theorem C.8 gives
point (v), the space G appearing therein is identified in Lemma 4.3. �
5.2. The inequality

Here we establish the extended Mourre estimate away from the threshold. We use only (I0)
and (I1a) and do not assume any Fermi golden rule assumption.

Proposition 5.2. Let I0 be a compact interval such that σ(K)∩ I0 = ∅. Let I be an open interval
included in I0. Let M∞ := N + 1 ⊗ PΩ � 1 and let S∞ := −1 ⊗ PΩ − λφ(ia∞α). For λ small
enough, we get

M∞ + EI (Hλ)S∞EI (Hλ) �
(
1 + O(λ)

)
EI (Hλ), (5.3)

holds true in the sense of forms on D(N1/2).

Proof. Let J be a compact set containing I and contained in the interior of I0. Note that (1.4)
gives EJ (H0)1K ⊗ PΩ = 0. By Proposition 2.2, we derive:

EJ (H0)S∞EJ (H0) = λEJ (H0)φ(ia∞α)EJ (H0) = O(λ)EJ (H0). (5.4)

As M∞ � 1, it remains to prove that EI (Hλ)S∞EI (Hλ) = O(λ)EI (Hλ). We insert
EJ (H0) + EJ c (H0) on the right and on the left of S∞. By (5.4), all the four terms are actually
O(λ)EI (Hλ). Indeed, Proposition 2.2 gives for instance that

EI (Hλ)E
c

J (H0)S∞EJ (H0)EI (Hλ) = O(λ)EI (Hλ).

For the right-hand side, take h ∈ C∞
c (J ) so that h|I = 1. We have

EI (Hλ)EJ c (H0) = EI (Hλ)
(
h(Hλ) − h(H0)

)
EJ c (H0) = O(λ),

by Lemma 5.4. �
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Remark 5.3. This proof would not work over one of thresholds {ki}i=0,...,n. Here, we use in a
drastic way that EJ (H0)1 ⊗ PΩ = 0. However, when σ(K) ∩ I = {ki}, this expression is never
0 and is of norm 1. A brutal estimation would give

M + EI (Hλ)S∞EI (Hλ) � O(λ)EI (Hλ). (5.5)

We have no control on the sign. This is no surprise as we know that one may uncouple the two
parts of the system and an eigenvalue can remain, see Section 6. To control the sign, one needs
to gain some positivity just above Pki

⊗ PΩ . This would be the rôle of the Fermi golden rule and
of the operator Bε .

Here we have used the elementary:

Lemma 5.4. Let h ∈ C∞
c (R) and s � 1/2. Let V be symmetric operator being H0-form bounded

operator, with constant lower than 1. Then, there is C such that

∥∥〈H0〉s
(
h(H0) − h(H0 + λV )

)∥∥ � C|λ|.

6. A Mourre estimate at the thresholds

In this section we would like to study the absence of eigenvalue above one of the thresh-
olds. From a physical point of view, as soon as the interaction is on, one expects the embedded
eigenvalues to disappear into the complex plane and to turn into resonances. This is however not
mathematically true as one may uncouple the Bosonic Field and the atom. Take for instance ω

bounded, α ∈ B(K ,K ⊗ h), given by α(x) := 1 ⊗ b, for all x ∈ K and where ωb ∈ h. After a
dressing transformation, see for instance [8, Theorem 3.5], the operator Hλ is unitarly equivalent
to the free operator K ⊗1Γ (h) +1K ⊗dΓ (ω̃λ), for some ω̃λ ∈ B(h). Therefore, Hλ has the same
eigenvalues as H0 for all λ. Note that this is no restriction to suppose that ω is bounded thanks
to the exponential law, see for instance [7, Section 3.2]. We couple the two systems through a
Fermi golden rule assumption.

6.1. The Fermi golden rule hypothesis

We choose one eigenvalue ki0 of Hel for i0 > 0. Let P := Pki0
⊗ PΩ and let P := 1 − P .

Note that P is of finite rank. We give an implicit hypothesis on α and explain how to check it in
Appendix A.

Definition 6.1. We say that the Fermi golden rule holds true at energy k for a couple (H0, α) if
there exist positive ε0, c1 and c2 such that

c1P � Pφ(α)P Im(H0 − k + iε)−1Pφ(α)P � c2P, (6.1)

holds true in the sense of forms, for all ε0 > ε > 0.

Due to the Fock space structure, one may omit P in (6.1) but we keep it to emphasize the link
between hypotheses of this type in other fields (like for Schrödinger operators). Since P is of
finite rank, this property follows from (1.2).
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The upper and the lower bounds of (6.1) would be crucial in our analysis. We shall keep track
of the lower bound in the sequel so as to emphasis the gain of positivity it occurs. We set few
notations.

Rε := (
(H0 − ki0)

2 + ε2)−1/2
,Rε := PRε and Fε := R2

ε. (6.2)

Note that εR2
ε = Im(H0 − ki0 + iε)−1 and that Rε commutes with P . We get:

(c1/ε)P � Pφ(α)Fεφ(α)P � (c2/ε)P, (6.3)

for ε0 > ε > 0. It follows:

‖Rε‖ = 1/ε and
∥∥Pφ(α)Rε

∥∥ � c
1/2
1 ε−1/2. (6.4)

As pointed out in Remark 5.3, we seek some more positivity for the commutator above the energy
P = Pki

⊗ PΩ . We proceed like in [5] and set

Bε := Im
(
R2

εφ(α)P
)
.

It is a finite rank operator, see Lemma 4.5 for more properties. Observe now that we gain some
positivity as soon as λ �= 0:

P [Hλ, iλBε]P = λ2Pφ(α)Fεφ(α)P � (c2λ
2/ε)P . (6.5)

It is therefore natural to modify our conjugate operator. We set

Ân := An + λθBε, for n ∈ N
∗ ∪ {∞}. (6.6)

It depends on the two parameters λ ∈ R, ε > 0 and on an extra technical θ > 0. For the sake of
clarity, we do not write these extra dependences. Heuristically, the operator A∞ would give the
positivity around the threshold and the Bε would complete it just above. We mention that Â∞ is
maximal symmetric and generates a semigroup of isometries, see Lemma 3.2.

6.2. Main result

We prove the extended Mourre estimate over the threshold ki0 . This is the heart of the paper.
The proof relies on the Feshbach method. We exploit the freedom we have so far on ε and θ : set
ε := ε(λ) and θ =: θ(λ) and suppose that λ = o(ε), ε = o(θ) and θ = o(1) as λ tends to 0. We
summarize this into:

|λ| � ε � θ � 1, as λ tends to 0. (6.7)

In [5], this condition is more involved and the size of the interval comes into the play. We stress
that the conjugate operator Â∞ depends on these three parameters.
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Theorem 6.2. Let I0 be a compact interval containing ki0 and no other ki . Assume the Fermi
golden rule hypothesis (6.1) and (6.7) hold true. Suppose also that (I0) and (I1a) are satisfied.
Then, for all open interval I ⊂ I0:

(i) There are M∞ � 1 and Ŝ∞ a |Hλ|1/2-bounded operator such that [Hλ, iÂ∞]◦ = M∞ + Ŝ∞
holds in the sense of forms on D(N1/2).

(ii) There is λ0 > 0 such that the following extended Mourre estimate

M∞ + Ŝ∞ � a(λ)EI (Hλ) − b(λ)EI c (Hλ)〈Hλ〉 (6.8)

holds true in the sense of forms on D(N1/2), for all λ ∈ (0, λ0). Here, one has a(λ) =
λ2θc2/5ε and b(λ) > 0.

(iii) If (I1b) holds true, then Hλ has no eigenvalue in I .
(iv) If (I2) holds true (and not necessarily (I1b)), then Hλ has no eigenvalue in the interior of I ,

for all |λ| � λ0. Moreover, one obtains the estimation of the resolvents given in Theorem 1.2.

Remark 6.3. By taking θ and ε as power of λ, one may take a(λ) = λ1+η/5, for some η > 0. We
do not reach the power 1 as expected in Remark 5.3. This is due to the non-linearity in λ of the
conjugate operator. Note also, this is very small and then one does not expect a fast propagation
of the state, i.e. the eigenvalue turns into a resonance. See for instance [4,22] for some lifetime
estimates.

The proof of this theorem needs few steps and is given in Section 6.4. We first go into the
Feshbach method and deal with unperturbed spectral measure in Proposition 6.5. Next, in Propo-
sition 6.8, we change the spectral measure.

6.3. The infrared decomposition

As suggested by (6.5), one expects to have to slip the space with the projector P to take
advantage of this positivity. To do so, we use the Feshbach method. As our result is local in
energy, we fix a compact interval J which contains the selected eigenvalue ki0 and no others.
We consider the Hilbert space HJ := EJ (H0)H . Let H v

J := PHJ and H v
J its orthogonal

in HJ . The v subscript stands for vacuum. Given H bounded in HJ = H v
J ⊕ H v

J , we write it
following this decomposition in a matricial way:

H =
(

H vv H vv

H vv H vv

)
. (6.9)

We recall the Feshbach method, see [3] and see also [9, Section 3.2] for more results of this kind.

Proposition 6.4. Assume that z /∈ σ(H vv). We define

Gv(z) := z1vv − H vv − H vv(z1vv − H vv)−1
H vv.

Then, z ∈ σ(H) if and only if 0 ∈ σ(Gv(z)).
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The reader should keep in mind that J would be chosen slightly bigger than the interval I .
This lost comes from the change of spectral measure from H0 to Hλ. The aim of the section is to
show the following proposition about Ŝ∞, see (4.7).

Proposition 6.5. Let J be a compact interval containing k and no other ki . Suppose the Fermi
golden rule (6.1) and (6.7), then one has

EJ (H0)Ŝ∞EJ (H0) �
(
c2λ

2θε−1/3 − 1
)
EJ (H0) (6.10)

holds true in the sense of forms, for λ small enough.

We go through a series of lemmata and give the proof at the end of the section. The −1 of the
r.h.s. seems at first sight disturbing as we seek for some positivity. It would be balanced when we
will add the operator M∞ � 1, see Section 6.4. In the first place, we estimate the parts of Ŝ∞.

Lemma 6.6. With respect to the decomposition (6.9), as λ goes to 0, we have

EJ (H0)
(
λφ(a∞α) − P

)
EJ (H0) =

(
O(λ) O(λ)

O(λ) −1

)
.

Proof. The part in P follows directly from (1.4). The one in α results from Proposition 2.2 and
the fact that Pφ(a∞α)P = 0. �
Lemma 6.7. Suppose that the Fermi golden rule (6.1) holds true. Then, the form [Hλ,Bε] defined
on D(Hλ) × D(Hλ) extends to a finite rank operator on H , denoted by [Hλ,Bε]◦. As λ tends to
0, we have

∥∥[Hλ,λθBε]◦
∥∥

B(H )
� O

(
λθε−1/2) + O

(
λ2θε−3/2). (6.11)

Besides, with respect to the decomposition (6.9), we have:

EJ (H0)[H0, λθBε]◦EJ (H0) =
(

0 O(λθε−1/2)

O(λθε−1/2) 0

)

and

EJ (H0)[λφ(α),λθBε]◦EJ (H0) =
(

O(λ2θε−3/2) O(λ2θε−3/2)

O(λ2θε−3/2) λ2θFε

)
.

Proof. We give some estimates independent of J . We expand the commutators, this could be
justified by considering the commutator in the form sense on D(Hλ).

[
dΓ (ω),Rε

2φ(α)P
] = [

H0 − ki0,Rε
2φ(α)P

]
= P(H0 − ki0)RεRεφ(α)P + PRεRεφ(α)P (H0 − ki0)

= PO
(
ε−1/2)P + 0. (6.12)
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Indeed, the first term derives from (6.4) and ‖(H0 − ki0)Rε‖ = O(1). For the second one, note
that (H0 − ki0)P = 0.

We turn to the second estimation and apply Proposition 2.2. We get φ(α)Rε =
φ(α)R1R

−1
1 Rε = O(ε−1). By (6.4), we have

[
φ(α),Rε

2φ(α)P
] = PFεP + Pφ(α)RεRεφ(α)P + PRεRεφ(α)Pφ(α)(P + P)

= PFεP + PO
(
ε−3/2)P + PO(ε−3/2)P . (6.13)

Gathering lines (6.12) and (6.13), we get (6.11). We finish by adding EJ (H0). �
We go into the Feshbach method and conclude.

Proof of Proposition 6.5. We set Cλ := EJ (H0)Ŝ∞EJ (H0). First observe that for all
μ � −3/4, we get Cvv

λ − μ is invertible in B(H vv) and ‖(Cvv
λ − μ)−1‖B(H vv) � 2. Indeed,

from Lemmas 6.6 and 6.7, we have that Cvv
λ is bounded from below by O(λ2θε−3/2) + O(λ).

This is bigger than −1/2 by (6.7), for λ small enough.
We now estimate from below the internal energy of Cλ, uniformly in μ � 3/4. By Lem-

mata 6.6 and 6.7, the first part and the Fermi golden Rule (6.3), we infer

Cvv
λ − Cvv

λ

(
Cvv

λ − μ
)−1

Cvv
λ + 1

� c2λ
2θε−1 + (

O
(
λθε−1/2) + O

(
λ2θε−3/2) + O(λ)

)2

= c2λ
2θε−1(O(θ) + O

(
λθε−1) + O

(
ε1/2) + O

(
λ2θε−2) + O

(
λε−1/2) + O

(
θ−1ε

))
� c2λ

2ε−1/2, for λ small enough.

We have used (6.7) for the last line.
We are now able to conclude. Since J contains ki0 and no other ki . We have EJ (H0)PΩ = P

by (1.4). Let μ < c2λ
2θε−1/2 − 1. Note that μ � −3/4 for λ small enough by (6.7). Thanks to

the previous lower bound, we can apply Proposition 6.4 with respect to the decomposition (6.9)
for Cλ and with z = μ to get the result. �
6.4. The extended Mourre estimate

At the end of the section, we establish the extended Mourre estimate. We start by enhancing
Proposition 6.5.

Proposition 6.8. Let I be a compact interval containing ki0 and not other ki . Assume the Fermi
golden rule (6.1) and (6.7). Then,

EI (Hλ)Ŝ∞EI (Hλ) � c2
(
λ2θε−1/4 − 1

)
EI (Hλ)

holds true in the sense of forms for λ small enough.
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Proof. Let J be a compact interval as in Proposition 6.5 such that I is included in its interior
and contains ki0 . By (6.7), it is enough to prove

EI
(
Hλ

)
(λφ(a∞α) + [Hλ, iλθBε]◦ − PΩ)EI (Hλ)

�
(
c2λ

2θε−1/3 + O
(
λ2) + O

(
λ2θε−1/2) + O

(
λ3θε−3/2) − 1

)
EI (Hλ). (6.14)

We start with the left-hand side of (6.14) and introduce EJ (H0) + EJ c (H0) on the right and on
the left of ([Hλ, iλθBε]◦ + λφ(a∞α) − PΩ). Note that both of spectral measures are bounded
in D(H0), endowed with the graph norm. We need to control the mixed term. Using Lemma 5.4
and (6.11), we get

EI (Hλ)EJ c (H0)[Hλ, iλθBε]◦EJ (H0)EI (Hλ)

= (
O

(
λ2θε−1/2) + O

(
λ3θε−3/2))EI (Hλ),

and a better term for EI (Hλ)EJ c (H0)[Hλ, iλθBε]◦EJ c (H0)EI (Hλ). Since the term
φ(a∞α)〈H0〉−1/2 is bounded in H by Proposition 2.2, Lemma 5.4 gives

EI (Hλ)EJ c (H0)λφ(a∞α)EJ (H0)EI (Hλ) = O
(
λ2)EI (Hλ),

and a better term for the full-mixed term. As H0 commute with PΩ , we infer
EI (Hλ)EJ c (H0)PΩEJ (H0)EI (Hλ) = 0. Now using Proposition (6.5) we obtain

EI (Hλ)
([Hλ, iλθBε]◦ + λφ(a∞α) − PΩ

)
EI (Hλ)

�
(
c2λ

2θε−1/3 − 1
)
EI (Hλ)EJ (H0)EI (Hλ)

+ (
O

(
λ2) + O

(
λ2θε−1/2) + O

(
λ3θε−3/2))EI (Hλ).

Finally, the estimation (6.14) follows by noticing that EI (Hλ)EJ (H0)EI (Hλ) is equal to
(1 + O(λ2))EI (Hλ), again by Lemma 5.4. �

We are now able to prove the announced result.

Proof of Theorem 6.2. The operator M∞ and Ŝ∞ are given in (4.4) and (4.7). Points (i) and (ii)
are given in Section 4.3. By Proposition 6.8 and since M∞ � 1,

M∞ + EI (Hλ)Ŝ∞EI (Hλ) � c2λ
2θε−1/4EI (Hλ)

holds true in the form sense on D(N1/2). Then, (5.2) gives (iii). The point (iv) follows from
the Virial theorem, Proposition 4.11. Finally Theorem C.8 gives point (v). Indeed, the space G
appearing therein is identified in Lemma 4.3. In remains to notice that the spaces (C.4) given for
Â∞ and A∞ are the same. This follows from the fact that these operators have the same domain
in G ∗, by Lemma 4.5 and that the spaces G ∗

s are given by complex interpolation. �
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I express my gratitude to Jan Dereziński who encouraged me in pursuing these ideas. I would
also like to thank Volker Bach, Alain Joye, Christian Gérard, Vladimir Georgescu, Wolfgang
Spitzer, Claude-Alain Pillet and Zied Ammari for some useful discussions. This work was par-
tially supported by the Postdoctoral Training Program HPRN-CT-2002-0277.

Appendix A. Level shift operator

In this paper, we never make the hypothesis that we analyse an eigenvalue which could be
different than the ground state energy of H0. The point is that it is well known that it is supposed
to remain, even if the perturbation is switched on, see for instance [2,3,17]. This leads to a
contradiction to the hypothesis made on the Fermi golden rule. Therefore, in this section, we
explain how one may check the Fermi golden rule assumption (6.1), why it is not fulfilled at
ground state energy. This would also explain the compatibility with (I0)–(I2). The computations
we lead are standard, we keep it simple. See also [3,10,25].

Let ei be an orthonormal basis of eigenvectors of K relative to the eigenvalue ki . To simplify
the computation, say that ki0 is simple. Since ki0 is simple and since φ(α)(ei0 ⊗ Ω) = α(ei0) ∈
K ⊗ h, (6.1) is equivalent to:

c1 �
〈
α(ei0), Im(H0 − ki0 + iε)−1α(ei0)

〉
� c2 > 0, for 0 < ε � ε0.

We have α(ei0) = ∑
i=1,...,n ei ⊗ fi,i0 ∈ K ⊗ h, where fi,i0 = 〈ei ⊗ 1h, α(ei0)〉. As h =

L2(Rd , dk), we write fi,i0 as a function of k. We go into polar coordinates, see (1.3) and in-
fer

c1 �
∑

i=1,...,n

∞∫
0

∫
Sd−1

ε
|fi,i0 |2(rθ)rd−1

(r + λi − λi0)
2 + ε2

dσ dr � c2 > 0.

Suppose now that (r, θ) �→ |fi,i0 |2(rθ)rd−1 is continuous and in L1. Then by dominated conver-
gence, we let ε go to zero and get:

c1 �
∑

i=1,...,i0

ci(λi0 − λi)
d−1

∫
Sd−1

ε|fi,i0 |2
(
θ(λi0 − λi)

)
dσ � c2 > 0. (A.1)

Here note that, up to the constant ci , r �→ ε/((r + λi − λi0)
2 + ε2) is a Dirac sequence if and

only if λi � λi0 .
To satisfy the Fermi golden rule, it is enough to have a non-zero term in (A.1). When d � 2,

we stress that the sum is taken till i0 − 1 and therefore is empty at ground state energy. When the
1-particle space is over R, it cannot be satisfied at this level of energy as well. Indeed, one would
obtain a contradiction with the hypothesis (I0) and the continuity of (r, θ) �→ |fi,i |2(rθ).
0
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Appendix B. Properties of C0-semigroups

In this section, we gather various facts about C0-semigroups we use along this article. Let H
be a Hilbert space. Recall that w-lim denotes the weak limit.

Definition B.1. We say R
+ 
 t �→ Wt , with Wt ∈ B(H ) is a C0-semigroup if

(1) W0 = Id and Ws+t = WsWt , for all s, t � 0,
(2) w- limt→0+ Wt = Id.

Automatically, this implies that R
+ ⊃ t �→ Wt is strongly continuous, see [23, Theo-

rem 10.6.5]. We keep the convention of [16] and define the generator of {Wt }t�0 as being the
closed densely defined operator A defined on

D(A) :=
{
u ∈ H

∣∣ lim
t→0+(it)−1(Wt − Id)u exists

}
.

We set Au this limit. Formally, one reads Wt = eitA. The map R
+ ⊃ t �→ W ∗

t being weakly
continuous, {W ∗

t }t�0 is also a C0-semigroup. Its generator is −A∗. We recall the Nelson Lemma,
see for instance [6, Corollary 3.1.7].

Lemma B.2 (Nelson lemma). Let D be a dense subset of H and let {Wt }t�0 be a C0-semigroup.
If Wt D ⊂ D then D is a core for the generator of {Wt }t�0.

Let G and H be two Hilbert spaces such that G ⊂ H continuously and densely. Using the
Riesz isomorphism, we identify H with H ∗, where the latter is the set of anti-linear forms
acting on H . We infer the following scale of spaces G ⊂ H � H ∗ ⊂ G ∗ with continuous and
dense embeddings. In order to define the restriction of Wt on G , we set:

Definition B.3. Given a C0-semigroup {Wt }t�0 on H . We say that G is b-stable (boundedly
stable) under the action of {Wt }t�0 if

(i) WtG ⊂ G , for all t ∈ R
+,

(ii) supt∈[0,1] ‖Wtu‖ is bounded for all u ∈ G .

Remark B.4. Note that unlike for C0-groups, the second condition is required to ensure the
continuity in 0. These two conditions are equivalent to the fact that {Wt |G }t�0 is a C0-semigroup
on G .

Assuming that G is b-stable under the action of {Wt }t�0, we denote by AG its generator.
Thus, AG is the restriction of A and its domain is given by

D(AG ) = {
u ∈ G ∩ D(A)

∣∣ Au ∈ G
}
.

If G ∗ is also b-stable under {W ∗
t }t�0, we denote by AG ∗ the generator of {Wt }t�0 extended to

G ∗. As above A is a restriction of AG ∗ and thanks to the Nelson lemma, we have that A is the
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closure of AG in H and that AG ∗ is the closure of A in G ∗. We would drop the subscript G
when no confusion could arise.

We recall the following result of perturbation, see [26, Theorem IX.2.1].

Proposition B.5. Let B be a bounded operator in a Hilbert space H . Then A is the generator a
C0-semigroup if and only if A + B is also one.

Appendix C. The Mourre method

C.1. The C1 class

Given a self-adjoint operator A, the so-called C1(A) class of regularity is a key notion within
the Mourre’s theory, see [1] and [14]. This guarantees some properties of domains and that the
commutator of an operator H with A would be H -bounded. In this paper, we have to deal with
maximal symmetric conjugate operators and thus have to extend the standard class exposed in
details in [1, Section 6.2]. As some refinements appear, we present an overview of the properties
and refer to [15, Section 2] for proofs.

Within this section, we consider a closed densely defined operator A acting in a Hilbert
space H . Note this implies that D(A∗) is dense in H . We first defined the class of bounded
operators belonging to C 1(A). Let S ∈ B(H ). We denote by [S,A] the sesquilinear form de-
fined on D(A∗) × D(A) by

〈
u, [S,A]v〉 := 〈A∗u,Sv〉 − 〈S∗u,Av〉, for u ∈ D(A∗), v ∈ D(A).

Definition C.1. An operator S ∈ B(H ) belongs to C 1(A) if the sesquilinear form [S,A] is con-
tinuous for the topology of H × H . We denote by [S,A]◦ the unique bounded operator in H
extending this form.

We now extend the definition to unbounded operator by asking the resolvent R(z) := (S −
z)−1 to be C 1(A). We precise the statement. We first recall that given S a closed densely defined
operator on H , the A-regular resolvent set of S is the set ρ(S,A) ⊂ C \ σ(S) such that R(z) is
of class C 1(A).

Definition C.2. Let S be a closed and densely defined operator on H . We say that S is of class
C 1(A) if there are a constant C and a sequence of complex numbers zν ∈ ρ(S,A) such that
|zν | → ∞ and ‖R(zν)‖ � C|zν |−1. If S is of class C 1(A) and ρ(S,A) = C \ σ(S) then we say
that S is of full class C 1(A).

In many cases these two definitions coincide. Indeed, given S ∈ C 1(A), one shows that if A is
regular or if S is self-adjoint with a spectral gap then S is in the full class C 1(A). We recall that a
closed densely defined operator B is regular if there is a constant C and αn ∈ C \ σ(B) such that
‖(B − αn)‖ � C|αn|−1 and such that |αn| → ∞. The generators of C0-semigroups are regular
for instance.

Definition C.3. Let A and S be two closed and densely defined operators in H . We define
[A,S] as the sesquilinear form acting on (D(A∗) ∩ D(S∗)) × (D(A) ∩ D(S)) and given by
〈u, [S,A]v〉 := 〈A∗u,Sv〉 − 〈S∗u,Av〉.
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Proposition C.4. Let S ∈ C 1(A). Then D(A∗) ∩ D(S∗) and D(A) ∩ D(S) are cores for S and
S∗ respectively and the form [A,S] has a unique extension to a continuous sesquilinear form
denoted by [A,S]◦ on D(S∗) ∩ D(S). Moreover,

[
A,R(z)

]◦ = −R(z)[A,S]◦R(s), for all z ∈ ρ(S,A),

where on the right-hand side, [A,S]◦ is considered as an element of B(D(S), D(S∗)).

We stress the fact that [A,S] extends to an element of B(D(S), D(S∗)) is not enough to
ensure S ∈ C 1(A), see [14]. Some conditions of compatibilities are to be added, see [15, Propo-
sition 2.21]. This could also be bypassed by knowing some invariance under a C0-semigroup
generated by A.

Definition C.5. Let {W1,t }t∈R+, {W2,t }t∈R+ be two C0-semigroups on the Hilbert spaces H1 and
H2 with generator A1 and A2. We say that B ∈ B(H1,H2) is of class C 1(A1,A2) if:

‖W2,t S − SW1,t‖B(H1,H2) � ct, 0 � t � 1.

If G ⊂ H are two Hilbert spaces continuously and densely embedded and if a C0-semigroup
{Wt }t∈R+ , with generator A on H , b-stabilizes G and G ∗, we denote the class C 1(AG ,AG ∗) by
C 1(A;G ,G ∗). We have the following result.

Proposition C.6. S ∈ C 1(A1,A2) if and only if the sesquilinear form 2[S,A]1 on D(A∗
2) ×

D(A1) defined by 〈u2,2 [S,A]1u1〉 := 〈S∗u2,A1u1〉 − 〈A∗
2u2, Su1〉 is bounded for the topology

of H2 × H1. Let 2[S,A]◦1 be the closure of this form in B(H1,H2). We have:

2[S,A]◦1 = s- lim
t→0+(SW1,t − W2,t S).

Note that for S ∈ B(H ), with Hi = H and Wi,t = Wt , one has S ∈ C 1(A1,A2) if and only
if B ∈ C 1(A).

C.2. Regularity assumptions for the limiting absorption principle

In this part, we recall a set of assumptions presented in [15] so as to ensure a limiting absorp-
tion principle, see Theorem C.8. Consider H a self-adjoint operator, H ′ symmetric closed and
densely defined and A closed and densely defined. These operators are linked by H ′ = [H, iA] in
a sense defined lower. Denote also D := D(H)∩ D(H ′) endowed with the intersection topology,
namely the topology associated to the norm ‖ · ‖ + ‖H · ‖ + ‖H ′ · ‖.

We start by some assumptions on H and on H ′.

(M1) H is of full class C 1(H ′), D = D(H) ∩ D(H ′∗) and this is a core for H ′.
(M2) There are I ⊂ R open and bounded and a, b > 0 such that

H ′ �
(
a1I (H) − b1I c (H)

)〈H 〉 (C.1)

holds true in the sense of forms on D .
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The last one is the strict Mourre estimate. In order to check the first hypothesis, we rely on
[15, Lemma 2.26], see also [31, Lemma 2.6]:

Lemma C.7. Let H,M be self-adjoint operators such that H ∈ C 1(M) and that D(H) ∩ D(M)

is a core of M . Let R be a symmetric operator such that D(R) ⊃ D(H). Set H ′ the closure
of M +R defined on D(R)∩ D(M). Then H is of full class C 1(H ′) and D(H)∩ D(H ′) is a core
for H ′ and D(H) ∩ D(H ′) = D(H) ∩ D(H ′∗) = D(H) ∩ D(M).

Assuming (M2), one chooses c > 0 such that H ′ + c〈H 〉 � 〈H 〉 (take for instance c = b + 1).
Since H ′ + c〈H 〉 is symmetric and positive, it possesses a Friedrichs extension G � 〈H 〉. We
name the form domain of G:

G := D
(
G1/2), endowed with the graph norm ‖ · ‖G . (C.2)

Note that G is also obtained by completing the space D with the help of the norm ‖u‖G =√〈u, (H ′ + c〈H 〉)u〉. We identify these spaces in Lemma 4.3.
We now recall the dual norm ‖ · ‖G ∗ of G . Given u ∈ H , we set

‖u‖G ∗ := sup
v∈D,‖v‖G �1

∣∣〈u,v〉∣∣ = ∥∥G−1/2u
∥∥. (C.3)

Using the Riesz isomorphism, we identify H with H ∗ the space of anti-linear forms on H .
The space G ∗ is given by the completion of H with respect to the norm ‖ · ‖G ∗ . We get the
following scale space:

D ⊂ G ⊂ H � H ∗ ⊂ G ∗ ⊂ D∗,

with dense and continuous embeddings.
We turn to the assumptions concerning the conjugate operator A and higher commutators.

Suppose A to be the generator of {Wt }t∈R+

(M3) The C0-semigroup {Wt }t∈R+ is of isometries and b-stabilizes G and G ∗,
(M4) H ∈ C 1(A;G ,G ∗),
(M5) H ∈ C 1,1(A;G ,G ∗).

The hypothesis (M4) implies that

lim
t→0+

(〈u,WtHu〉 − 〈Hu,Wtu〉) = 〈u,H ′u〉, for all u ∈ D .

The hypothesis (M5) means that H ∈ B(G ,G ∗) and that

1∫
0

∥∥[
Wt, [Wt,H ]]∥∥B(G ,G ∗)

dt

t2
< ∞.

This is equivalent to the fact that H belongs to (C 2(A;G ,G ∗), B(G ,G ∗))1/2,1. We refer to [1,32]
for real interpolation.



S. Golénia / Journal of Functional Analysis 256 (2009) 2587–2620 2619
One may also consider the stronger H ′ ∈ C 1(A;G ,G ∗), i.e.

(M5′) H ∈ C 2(A;G ,G ∗).

We now give the result. Let AG ∗ be the generator of {Wt }t∈R+ generator in G ∗. For s ∈ (0,1),
we set:

G ∗
s := D

(|AG ∗ |s) and G−s := (
G ∗

s

)∗
. (C.4)

Here, the absolute value is taken with respect to the Hilbert structure of G ∗. Given J an interval,
we define J±

0 := {λ ± iμ, λ ∈ J and μ > 0}. Finally, set R(z) := (H − z)−1. From [15], we
obtain:

Theorem C.8. Assume that (M1)–(M5) hold true. Let J be a compact interval included in I .
Then if z ∈ J ±

0 , R(z) induces a bounded operator in B(G ∗
s ,G−s), for all s ∈ (1/2,1]. Moreover

the limit R(λ ± i0) = limμ→±0 R(λ + iμ) exists in the norm topology of B(G ∗
s ,G−s), locally

uniformly in λ ∈ J and the maps λ �→ R(λ ± i0) ∈ B(G ∗
s ,G−s) are Hölder continuous of order

s − 1/2.

This theorem can be improved by considering weights in some Besov spaces related to the
conjugate operator. We refer to [15] for more details. Note that the theory exposed in [15] is
formulated with the hypothesis (M5′) but, as mentioned in [15] and proceeding like in [1] for
instance, the hypothesis (M5) is enough to apply the theory.
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