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Abstract

We describe the two-sided ideals in the universal enveloping algebras of the Lie algebras of vector fields
on the line and the circle which annihilate the tensor density modules. Both of these Lie algebras contain
the projective subalgebra, a copy of sl2. The restrictions of the tensor density modules to this subalgebra
are duals of Verma modules (of sl2) for Vec(R) and principal series modules (of sl2) for Vec(S1). Thus our
results are related to the well-known theorem of Duflo describing the annihilating ideals of Verma modules
of reductive Lie algebras. We find that, in general, the annihilator of a tensor density module of Vec(R) or
Vec(S1) is generated by the Duflo generator of its annihilator over sl2 (the Casimir operator minus a scalar)
together with one other generator, a cubic element of U(Vec(R)) not contained in U(sl2).
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction and results over the line

It is a well-known theorem of Duflo’s that the ideal in the universal enveloping algebra U(g)

of a finite-dimensional complex semisimple Lie algebra g which annihilates a Verma module
is generated by its intersection with the center of U(g) [Du71]. In this paper we discuss the
annihilating ideals of certain modules of the Lie algebra Vec(S1), the vector fields on the circle,
and its subalgebra Vec(R), the vector fields on the line.
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Vec(S1) has two fundamental types of modules: the tensor density modules, also known as
modules of the intermediate series, and the Verma modules. The same holds for its universal
central extension, the Virasoro Lie algebra Vir; see [MP91] and [Ma92] for the roles played by
these modules in the classification of the irreducible admissible representations of Vir. Mathieu
has proven that Duflo’s theorem carries over unchanged to the Verma modules of both Vec(S1)

and Vir [Ma].2

Here we shall describe the annihilating ideals of the tensor density modules. The center of Vir
acts trivially on these modules, so it is enough to work with Vec(S1). It turns out that the re-
sults for Vec(S1) are essentially the same as those for Vec(R), and that the proofs for Vec(S1)

are based on those for Vec(R). We begin by stating the theorems for Vec(R); they are stated
for Vec(S1) in Section 5.

We define Vec(R) to be the complex polynomial vector fields on R:

Vec(R) := {
f (x)D: f : R → C is a polynomial

}
,

where D denotes d/dx. We will work with the basis

{
en := xn+1D: n � −1

}
of Vec(R), whose brackets are [en, em] = (m − n)em+n.

We will make frequent use of the projective subalgebra a of Vec(R), the infinitesimal linear
fractional transformations, a copy of sl2. We will also need a’s Casimir operator Q and its affine
subalgebra b, a Borel subalgebra:

a := SpanC{e−1, e0, e1}, b := SpanC{e−1, e0}, Q := e2
0 − e0 − e1e−1.

As is well known, the center of U(a) is the polynomial algebra C[Q].
For any γ ∈ C, the space of polynomial tensor densities on R of degree γ is

F(γ ) := {
g(x)dxγ : g(x) a polynomial on R

}
.

It is a Vec(R)-module under the action

πγ (f D)
(
g dxγ

) := (fg′ + γf ′g)dxγ . (1)

For γ �= 0, F(γ ) is irreducible. The module F(0) is simply the space of polynomials, which is
indecomposable and contains the trivial submodule of constants. The corresponding quotient is
irreducible and isomorphic to F(1).

At this point we recall some standard notation pertaining to any Lie algebra g. The adjoint
action of g on U(g) is ad(X)Ω = XΩ − ΩX. Extend ad to an action of U(g) on itself as usual

2 In fact, Mathieu has extended Duflo’s theorem to the following more general setting [Ma]. Let g be a finitely generated
Z-graded Lie algebra whose negative part g− = ⊕

n<0 gn is infinite-dimensional. Assume that the center z of g lies in g0
and that g/z is simple. Let χ be a representation of the Borel subalgebra g0 ⊕ g+ in which z acts by scalars and g+ acts
trivially, and write Mχ for the generalized Verma module U(g) ⊗U(g0⊕g+) χ .

Theorem. The annihilator of Mχ in U(g) is generated by its intersection with the center of U(g). Moreover, this center
is equal to U(z) (see Lemma A.4 of this paper).
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(note that in general, ad(Θ)Ω is not ΘΩ −ΩΘ). Let Uk(g) denote the degree filtration of U(g),
which of course is ad-invariant. Given any subspace J of U(g), define

J k := J ∩ Uk(g).

For any module (π,M) of g, write Anng M for the two-sided ideal of U(g) annihilating M ,
the kernel of the extension of π to U(g):

Anng M := kernel(π |U(g)).

Given any subset S of U(g), let 〈S〉g denote the two-sided ideal in U(g) generated by S, that is,
U(g)SU(g). Let U+(g) denote 〈g〉g, the annihilator of the trivial module.

Suppose that g is a subalgebra of Vec(R) containing the infinitesimal rotation e0, and let M

be a g-module. In this case we write Mμ for the μ-eigenspace of e0, which is called the μ-weight
space of M . We say that an element of M is homogeneous if it lies in some weight space. If
g contains b, let Me−1 denote the kernel of the action of e−1. We refer to elements of Me−1 as
lowest weight vectors.

Our goal in this paper is to find the simplest possible generating sets for the ideals
AnnVec(R)F(γ ). We will always seek generators which are homogeneous lowest weight vec-
tors with respect to the adjoint action. For γ �= 0 or 1, we will see that it is possible to find two
such generators but not one. For γ = 0 or 1 no collection of lowest weight vectors generates the
ideal, but it is possible to find a single homogeneous generator which is almost a lowest weight
vector in the sense that it is annihilated by ad(e1e−1) (this means that it is a lowest weight vector
modulo some submodule).

Note that if M is any a-module, the Casimir operator Q acts on M
e−1
μ as the scalar μ2 − μ.

For example, F(γ )e−1 = Cdxγ is the γ -weight space F(γ )γ , which for γ �= 0 generates F(γ )

under the action of a. It follows that Q acts on F(γ ) by the scalar γ 2 − γ , and so Q − γ 2 + γ is
in Anna F(γ ).

We remark that the F(γ ) are the duals of the Verma modules of a, so by Duflo’s theorem
Q − γ 2 + γ generates AnnaF(γ ). Note that (1 − γ )2 − (1 − γ ) = γ 2 − γ , so we have

Anna F(γ ) = 〈
Q − γ 2 + γ

〉
a

= Anna F(1 − γ )

(this is explained by the fact that F(1−γ ) is closely related to the dual of F(γ )). The situation is
different for the Vec(R)-annihilators: Q − γ 2 + γ does not generate AnnVec(R)F(γ ) for any γ ,
and AnnVec(R) F(γ ) is not equal to AnnVec(R)F(1 − γ ) unless γ = 0, 1, or 1/2.

In order to state our results we define the following elements of U(Vec(R)):

Z1 := (e1e0 − e2e−1 − e1)/2, Y0 := Q(e0 − 1/2) − Z1e−1.

One checks that on F(γ ), Z1 acts as multiplication by (γ 2 − γ )x and Y0 acts by the scalar
(γ − 1/2)(γ 2 − γ ). Therefore Y0 − (γ − 1/2)(γ 2 − γ ) is in AnnVec(R) F(γ ).

The following two theorems are our main results for Vec(R); they will be proven in Sec-
tion 4. As we mentioned, they carry over essentially unchanged to the tensor density modules
of Vec(S1); see Section 5.

Theorem 1.1. For γ �= 0 or 1, the ideals AnnVec(R)F(γ ) are all distinct. Each of them is gen-
erated by its intersection with U3(Vec(R))e−1 , the space of lowest weight vectors in U(Vec(R))
0
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of weight 0 and degree � 3. This intersection is 2-dimensional and is spanned by Q − (γ 2 − γ )

and Y0 − (γ − 1/2)(γ 2 − γ ). Therefore

AnnVec(R)F(γ ) = 〈
Q − (

γ 2 − γ
)
, Y0 − (γ − 1/2)

(
γ 2 − γ

)〉
Vec(R)

.

These two homogeneous lowest weight generators may be replaced by a single inhomogeneous
cubic generator, a single homogeneous quartic generator of weight 0, or a single inhomogeneous
quartic lowest weight generator, but there is no single homogeneous lowest weight generator.

AnnVec(R)F(γ ) is not generated either by its intersection with U(a) or with U2(Vec(R)),
both of which generate only the proper subideal 〈Q − γ 2 + γ 〉Vec(R). It is not contained
in U+(Vec(R)); in particular, it is not generated by the sum of all of its weight spaces of non-zero
weight.

Theorem 1.2. For γ = 0 or 1 we have

AnnVec(R)F(0) = AnnVec(R)F(1) = 〈Z1〉Vec(R).

The generator Z1 is of weight 1 and is not a lowest weight vector, although it is annihilated by
both ad(e1e−1) and ad(Q) (in fact, ad(e−1)Z1 = Q).

This ideal is not generated by its lowest weight vectors, nor by its intersection with U(a), nor
by the sum of all of its weight spaces of weight � 0. It is contained in U+(Vec(R)), and it is
generated by each of its positive weight spaces.

Let us point out some directions for further research, which we will elaborate on in Section 7.
Another important class of modules is provided by differential operators between tensor density
modules. These modules have been the focus of numerous works, such as [FF80,CMZ97,LO99,
Ga00,CS04], and they will be an important tool in this paper. It is natural to ask what their
annihilators are, but we cannot yet say much about this question beyond the following remarks.

For any complex scalars γ and p, the space of differential operators from F(γ ) to F(γ + p)

is defined to be

Diff(γ,p) := SpanC

{
dxp h(x)Dk: k ∈ N, h(x) a polynomial on R

}
,

where dxp hDk maps an element g(x)dxγ of F(γ ) to hg(k) dxγ+p . (Throughout this paper,
N will denote the non-negative integers, including zero.) This space is a Vec(R)-module under
the two-sided action

σγ,p

(
f (x)D

)
(T ) := πγ+p(f D) ◦ T − T ◦ πγ (f D).

Write Diffk(γ,p) for the natural order filtration of Diff(γ,p). This filtration is σγ,p-invariant,
and it is not hard to check that Diffk(γ,p)/Diffk−1(γ,p) is naturally isomorphic to F(p − k).

It may be that AnnVec(R) Diff(γ,p) is trivial, although we have not proven this. However, for
each positive integer m one has the two-sided ideal

I (γ,p,m) := {
Ω ∈ U

(
Vec(R)

)
: σγ,p(Ω)Diffk(γ,p) ⊆ Diffk−m(γ,p) ∀k

}
.

These ideals are non-trivial, as it can be shown that I (γ,p,m) contains all lowest weight vectors
in U(Vec(R)) of weight � m (see Section 7).
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The ideals I (γ,p,1) and I (γ,p,2) both turn out to be equal to the intersection of the anni-
hilators of all of the tensor density modules, independent of γ and p (again, see Section 7). The
proofs of Theorems 1.1 and 1.2 are based on the following theorem concerning this ideal, which
is proven in Section 3.

Theorem 1.3. The ideal
⋂

γ∈C
AnnVec(R)F(γ ) is generated by the single lowest weight vector

ad(e2)Q of weight 2, and also by its intersection with U2
n(Vec(R)) for any n � 2. It is contained in

U+(Vec(R)), and it contains all homogeneous lowest weight vectors of U(Vec(R)) of weight � 1.
This ideal is not generated by any lowest weight vector of weight �= 2, nor by the sum of its

weight spaces of weight � 1. Its intersection with U(a) is zero.

In light of this theorem and the preceding claims, we have

I (γ,p,1) = I (γ,p,2) =
⋂
ν∈C

AnnVec(R)F(ν) = 〈
ad(e2)Q

〉
Vec(R)

for all γ and p. It would be interesting to generalize these results to I (γ,p,m) for m � 3.
The higher I (γ,p,m)’s are related to the annihilators of the Vec(R)-modules of finite length
composed of tensor density modules (they are intersections of such annihilators). Modules of
this type were studied in [FF80,MP92,BO98,Co01]; subquotients of the modules Diffk(γ,p)

furnish many examples of them [Co05].
In a different direction, it seems to us that it would be quite interesting to consider this circle

of problems for Vec(Rm). There the projective subalgebra a is slm+1, and under it the tensor
density modules are the duals of the Verma modules relative to the geometric subalgebra glm.
Thus we expect a more subtle interplay with Duflo’s theorem. One would start by considering the
intersection of the annihilators of all the tensor density modules, as in Theorem 1.3 above. This
intersection is interesting in its own right: it is the annihilator of what is known as the universal
Verma module, of which the usual Verma modules are specializations.

This paper is organized as follows. In the next section we collect various facts which will
be useful during the proofs of our main theorems over R. Sections 3 and 4 contain the proofs
themselves. In Section 5 we state our results over S1 and in Section 6 we prove them. Section 7
elaborates on the above directions for further research, and Appendix A contains some useful
results on sl2-modules.

2. The a-structure of U(Vec(R))U(Vec(R))U(Vec(R)) and the πγ

In this section we give several definitions, lemmas and remarks concerning the behavior
of U(Vec(R)) and the actions πγ with respect to a, culminating in a complete description of
the a-decomposition of the intersections of the ideals AnnVec(R)F(γ ) with U3(Vec(R)). Some
of these results will be used in the proofs of Theorems 1.1–1.3, and the rest help to clarify the
significance of our generators of the ideals. For brevity let us define

W := Vec(R), Diff(γ ) := Diff(γ,0), I (γ ) := AnnVec(R) F(γ ).

Recall that for any J ⊆ U(W) we write J k for J ∩ Uk(W). Thus for example I k(γ ) denotes
I (γ )∩Uk(W) and U+,k(W) denotes U+(W)∩Uk(W). Some lemmas will be stated for U+(W)

rather than for U(W), as they are sharper in this form. Our starting point is the following lemma
describing the actions πγ of W on F(γ ).
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Lemma 2.1. For all γ , πγ maps U(W) into Diff(γ ) so as to carry the degree filtration to the
order filtration: πγ (Uk(W)) ⊆ Diffk(γ ). The image of U+,k(W) is as follows ( for the image
of Uk(W), add C1):

πγ

(
U+,k(W)

) = Diffk(γ ) for all γ �= 0 or 1 and k � 2,

π0
(
U+,k(W)

) = {
T ◦ D: T ∈ Diffk−1(0)

}
for all k � 1,

π1
(
U+,k(W)

) = {
D ◦ T : T ∈ Diffk−1(1)

}
for all k � 1.

Proof. By Eq. (1), πγ (f D) = f D + γf ′, so πγ maps W to the first order differential operators
Diff1(γ ). This implies the first sentence of the lemma.

To prove the statement about πγ for γ �= 0 or 1, note that if πγ (U+,k(W)) contains Diff0(γ )

then it contains all of Diffk(γ ) by an obvious symbol calculation. For k � 2 it does con-
tain Diff0(γ ), as by Lemma 2.6, proven independently below, there are elements Zn of U+,2(W)

such that πγ (Zn) = (γ 2 − γ )xn.
To prove the statement about π0, it will suffice to prove that π0 maps U+(W) onto the sub-

algebra Diff(0) ◦ D of Diff(0). It maps U+(W) into this subalgebra because π0(f D) = f D,
and surjectivity is trivial by another obvious symbol calculation. The statement about π1 follows
similarly from π1(f D) = Df . �

It turns out that the projective subalgebra a acts nearly semisimply on U(W) and Diff(γ ).
Therefore the a-decomposition of I k(γ ) can be obtained by computing the a-decompositions
of Uk(W) and its image πγ (Uk(W)), and then essentially deleting from the former those terms
occurring in the latter. This procedure is not hard to carry out explicitly for k = 2 and 3, and this
was the way in which we originally discovered our generators of the I (γ ). We will now describe
the process in detail.

The next lemma gives the a-structure of Diff(γ ). It is essentially classical; modern proofs
may be found in [CMZ97] and [LO99]. A proof using notation close to ours may be obtained by
taking p = 0 in Lemma 2.4 of [CS04], so we will not give a proof here.

For any Lie algebra g, we will use the symbol
g∼= to denote equivalence of g-modules.

Lemma 2.2. Diffk(γ )
a∼= F(0) ⊕F(−1) ⊕ · · · ⊕F(−k) for all γ . At γ = 0 and 1,

π0
(
U+,k(W)

) a∼= π1
(
U+,k(W)

) a∼= F(−1) ⊕ · · · ⊕F(−k).

To compute the a-decomposition of U(W) we must recall the symmetrizer map. For any Lie
algebra g, let Sk(g) be the kth symmetric power of g and write S(g) for the symmetric alge-
bra

⊕∞
0 Sk(g). The symmetrizer map Sym :S(g) → U(g) is an ad-equivalence from

⊕k
0 S i (g)

to Uk(g). It will be useful to note that it carries
⊕k

1 S i (g) to U+,k(g).
The adjoint action of W on itself is equivalent to F(−1), so we have

Uk(W)
W∼=

k⊕
S i

(
F(−1)

)
, U+,k(W)

W∼=
k⊕

S i
(
F(−1)

)
. (2)
i=0 i=1
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Thus in order calculate the a-decompositions of I 2(γ ) and I 3(γ ) we need the a-decomposition
of SkF(−1) at k = 2 and 3. Henceforth we will rely heavily on the elementary results on a-
modules collected in Appendix A.

Lemma 2.3. The b-decompositions of S2F(−1) and S3F(−1) are
⊕∞

i=0 F(2i − 2) and⊕∞
i,j=0 F(2i + 3j − 3), respectively. Their a-decompositions are the same, except that under a,

the b-submodule F(0) ⊕ F(1) of S3F(−1) is indecomposable with submodule F(1) and quo-
tient F(0) (it is a copy of the module G(1) of Appendix A). Thus, writing F(0) ⊕b F(1) for the
a-indecomposable summand, we have

S2F(−1)
a∼= F(−2) ⊕F(0) ⊕F(2) ⊕F(4) ⊕ · · · ,

S3F(−1)
a∼= F(−3) ⊕F(−1) ⊕ (

F(0) ⊕b F(1)
) ⊕F(2) ⊕ 2F(3) ⊕ · · · .

Proof. Lemma A.6 gives the b-decompositions and also shows that SkF(−1) is a “good” a-
module in the sense of Appendix A. Hence Proposition A.2 and Corollary A.3 show that the
a-decomposition of S2F(−1) must be the same as its b-decomposition.

For S3F(−1) we use Corollary A.5, which tells us that the sum of all the finite-dimensional
a-submodules of SkF(−1) is SkL(1), where L(1) denotes the irreducible 3-dimensional
a-submodule of F(−1) of weights −1, 0, and 1. It is well known that

SkL(1)
a∼= L(k) ⊕ L(k − 2) ⊕ L(k − 4) ⊕ · · · ⊕ (

L(1) or L(0)
)
, (3)

where L(k) is the irreducible (2k + 1)-dimensional a-module of highest weight k (which occurs
as a submodule of F(−k)). Thus S3L(1) is L(3)⊕L(1), so by Corollary A.3, S3F(−1) contains
a-copies of F(−3) and F(−1) but not of F(0). The result now follows from a further application
of Corollary A.3. �
Remark. By Corollary A.5 applied to γ = −1, the sum of all the finite-dimensional a-submod-
ules of U(W) is U(a). In particular, the commutant of a in U(W) is C[Q]. One can use Eq. (3)
and Corollary A.3 to deduce the a-structure of SkF(−1) for all k, and hence that of U(W).

Corollary 2.4. U2(W) and U3(W) have the following a-decompositions. The lowest weight vec-
tors of the first few summands are written beneath them. The a-decompositions and lowest weight
vectors of U+,2(W) and U+,3(W) are the same, but without the summand C. We write Qe2 for
ad(e2)Q:

U2(W)
a∼= C ⊕ F(−1) ⊕ F(−2) ⊕ F(0) ⊕ F(2) ⊕ · · · ,

1 e−1 e2−1 Q Qe2

U3(W)
a∼= U2(W) ⊕ F(−3) ⊕ F(−1) ⊕ (

F(0) ⊕b F(1)
) ⊕ · · · .

e3
−1 Qe−1 Y0 Qe2e−1

Proof. The a-decompositions are immediate from Eq. (2) and Lemma 2.3. It is easy to use the
definitions of Q and Y0 to verify that the given vectors are indeed lowest weight vectors of
the appropriate weight. In light of the a-decompositions, in most cases this is enough to prove
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that they are the correct lowest weight vectors. For example, the a-decompositions show that
U

+,2
0 (W)e−1 is 1-dimensional and is the lowest weight space of the a-copy of F(0). Since it

contains Q, Q is correct. (We remark that one must be more careful if one uses U(W) instead
of U+(W): there U2

0(W)e−1 is 2-dimensional, and the copy of F(0)0 is the unique line in the
image of ad(e−1).)

We must say a few words about Y0. The 0-generalized eigenspace of ad(Q) in U+,3(W) is
the a-copy of F(0) ⊕ (F(0) ⊕b F(1)), i.e., F(0) ⊕ G(1) (see Appendix A). The a-submodule
F(1) here is unique and U

+,3
1 (W)e−1 is 1-dimensional, so Qe2e−1 must be correct. But the a-

quotient F(0) is not unique: U
+,3
0 (W)e−1 is 2-dimensional, and using the methods of Appendix A

one checks that any element of it not in CQ may be taken as the lowest weight vector of the
quotient F(0). Thus Y0 works. For future reference, note that Y0 + cQ would also work for any
scalar c. �

We now have sufficient information to compute the a-decompositions of I 2(γ ) and I 3(γ ),
our goal in this section.

Proposition 2.5. For all γ in C, I (γ ) contains every a-submodule of U(W) equivalent to F(k)

for any k � 1. The ideals I (0) and I (1) are equal and are contained in U+(W). Conversely, if
γ �= 0 or 1 then I (γ ) is not equal to I (γ ′) for any γ ′ �= γ , and I (γ ) is not contained in U+(W).

For γ �= 0 or 1, the a-decomposition of I 2(γ ) is C ⊕ (
⊕∞

i=1 F(2i)). The a-decomposition
of I 2(0) is

⊕∞
i=0 F(2i). For all γ , the inclusion I 2(γ ) ⊂ I 3(γ ) is a-split and the a-

decomposition of the quotient I 3(γ )/I 2(γ ) is that of S3F(−1) with the F(−3) is deleted. Using
the notation

Qe2 := ad(e2)Q, Z0(γ ) := Q − γ 2 + γ, Y0(γ ) := Y0 − (γ − 1/2)Q,

the first few a-summands and their lowest weight vectors are

I 2(γ )
a∼= C ⊕ F(2) ⊕ F(4) ⊕ · · · for γ �= 0, 1,

Z0(γ ) Qe2

I 2(0)
a∼= F(0) ⊕ F(2) ⊕ F(4) ⊕ · · · ,

Q Qe2

I 3(γ )
a∼= I 2(γ ) ⊕ F(−1) ⊕ (

F(0) ⊕b F(1)
) ⊕ · · · for all γ.

Z0(γ )e−1 Y0(γ ) Qe2e−1

Proof. Let V be an a-copy of F(k) in U(W) for some k � 1 and let Ωk be its lowest weight
vector. The F(k) with k � 1 are irreducible under a, so to prove V ⊂ I (γ ) it suffices to prove
πγ (Ωk) = 0. By Lemma 2.1, if πγ (Ωk) is non-zero then it is a lowest weight vector of Diff(γ )

of weight k. But by Lemma 2.2 there are no such vectors.
The fact that F(0) has a trivial submodule C immediately yields I (0) ⊂ AnnW C = U+(W),

and the fact that F(0)/C is W-equivalent to F(1) gives I (0) ⊆ I (1). To prove I (1) = I (0), fix
Ω ∈ I (1). We may assume that Ω is homogeneous, say of weight n. Since Ω annihilates F(1)

it annihilates F(0)/C, so π0(Ω) maps F(0) to C. Therefore π0(Ω) must kill all weight spaces
F(0)m except possibly F(0)−n. But π0(Ω) is a differential operator, and by an easy Zariski
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density argument any differential operator which kills infinitely many weight spaces must be
zero. Thus I (0) = I (1).

Fix γ �= 0 or 1. Then I (γ ) is not in U+(W) because it contains Q− γ 2 + γ . If I (γ ) = I (γ ′),
the actions of Q and Y0 under πγ and πγ ′ force γ 2 − γ = γ ′2 − γ ′ and (γ − 1/2)(γ 2 − γ ) =
(γ ′ − 1/2)(γ ′2 − γ ′), whence γ = γ ′.

Now we come to the a-decompositions. Corollary 2.4 gives the a-decompositions of U2(W)

and U3(W) and some of their lowest weight vectors. First consider I 2(γ ) with γ �= 0 or 1. By
Lemma 2.1, πγ is a surjective a-map from U2(W) to Diff2(γ ), and by Lemma 2.2, Diff2(γ ) is
a-equivalent to F(0) ⊕ F(−1) ⊕ F(−2). We saw above that πγ kills the F(2) ⊕ F(4) ⊕ · · ·
in U2(W), so it restricts to an a-surjection from the C ⊕F(0) ⊕F(−1) ⊕F(−2) in U2(W) to
Diff2(γ ). Since πγ preserves weights, weight space dimensions show that the kernel of this re-
striction must be a trivial module under a. This proves that I 2(γ ) has the stated a-decomposition.
We already know that Z0(γ ) and Qe2 are lowest weight vectors of the correct weights in I 2(γ ),
so they are correct.

Next consider I 2(0). Note that a-maps preserve Q-eigenspaces, and recall that Q acts
on F(γ ) by the scalar γ 2 − γ . We know I 2(0) lies in U+(W), so by Lemma 2.1 it is the kernel
of the a-surjection π0 from U+,2(W) to Diff1(0) ◦ D. By Lemma 2.2, Diff1(0) ◦ D is an a-copy
of F(−1) ⊕F(−2), and by Corollary 2.4, U+,2(W) is an a-copy of F(−2) ⊕F(−1) ⊕F(0) ⊕
F(2)⊕ · · · . Since π0 kills the F(2)⊕ · · · and preserves Q-eigenvalues, it must kill the F(0) and
be bijective on the F(−1) ⊕ F(−2). This gives the a-decomposition of I 2(0), and the lowest
weight vectors are given by Corollary 2.4.

Finally we come to I 3(γ ). For all γ , πγ defines an a-surjection from U3(W)/U2(W) to
Diff3(γ )/Diff2(γ ). Up to equivalence, this is an a-surjection from S3F(−1) to F(−3). We
have already seen that it kills all a-copies of F(k) with k � 1. From Appendix A we know that
the generalized eigenvalue of Q on F(0)⊕bF(1) ∼= G(1) is zero. Since π0 preserves generalized
Q-eigenspaces, Lemma 2.3 shows that it is bijective on the a-copy of F(−3) and zero on the
other summands. This proves that I 3(γ )/I 2(γ ) has the stated a-decomposition.

It remains to prove that I 2(γ ) ⊂ I 3(γ ) is a-split and that I 3(γ ) has the stated lowest
weight vectors. It will do to find an a-submodule of I 3(γ ) with the same a-decomposition as
I 3(γ )/I 2(γ ) which does not intersect I 2(γ ). We will check that the given lowest weight vectors
are correct as we construct this submodule.

For the F(−1) we may take Z0(γ )W , as Z0(γ ) is an a-invariant and W is a copy of F(−1).
For the G(1), first check that Y0(γ ) is in I 3(γ ). By the remark at the end of the proof of Corol-
lary 2.4, U3(W) contains a G(1) with lowest weight vectors Y0(γ ) and Qe2e1 for all γ . In fact,
a consideration of the generalized Q-eigenspace of eigenvalue 0 in U+,3(W) shows that for
each γ there is a unique such G(1), which lies in I 3(γ ) but does not intersect U2(W).

For the F(k) with k � 2 we may simply take the images of all such F(k) in S3F(−1) un-
der the symmetrizer map, as by the first sentence of this proposition they are all in I 3(γ ) for
every γ . �

Let us now give explicit formulas for the elements of the generalized Q-eigenspace of eigen-
value 0 in U+,3(W). They are not all necessary for the proofs of the main theorems, but they
clarify the role of G(1) above. We define them and give a lemma stating their properties.

Definition. Define Z0 := Q, and recall from Section 1 our definitions

Z1 := (e1e0 − e2e−1 − e1)/2, Y0 := Z0(e0 − 1/2) − Z1e−1.
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Using them, define

Y1 := Z0e1 − Z1(e0 + 1/2), X1 := ad(e1)Y0/2.

For n > 1, define recursively Zn := ad(e1)Zn−1/(n − 1),

Xn := ad(e1)Xn−1/n, Yn := (
ad(e1)Yn−1 − 2Xn

)
/(n − 1)

(their subscripts are their weights). Finally, define polynomials

P2(γ ) := γ (γ − 1), P3(γ ) := γ (γ − 1/2)(γ − 1).

Lemma 2.6. The images of Zn, Yn, and Xn under πγ are

πγ (Zn) = P2(γ )xn, πγ (Yn) = P3(γ )xn, πγ (Xn) = 0.

The action of a on these elements is as follows: for em ∈ a,

ad(em)Zn = nZn+m, ad(Q)Zn = 0,

ad(em)Yn = nYn+m + (
m2 + m

)
Xn+m, ad(Q)Yn = −2nXn,

ad(em)Xn = (n + m)Xn+m, ad(Q)Xn = 0.

For n > 1, we have the closed formulae Zn = ad(en−1
1 )Z1/(n − 1)!,

Xn = ad
(
en−1

1

)
X1/n!, Yn = ad

(
en−1

1

)
Y1/(n − 1)! − 2(n − 1)Xn.

Finally, X1 is equal to (ad(e2)Q)e−1/4.

Proof. For the first sentence, compute the images of Z1 and Y1 under πγ directly. Then check
that ad(e−1) maps Z1 to Z0 and Y1 to Y0, and use the fact that πγ :U(W) → Diff(γ ) in-
tertwines ad with σγ,0 to compute the images under πγ of Z0, Y0, and X1. For example,
πγ (Y0) = πγ (ad(e−1)Y1) = σγ,0(e−1)πγ (Y1) = P3(γ )σγ,0(e−1)x = P3(γ ). Similarly, use the
recursive definitions of Zn, Yn, and Xn together with the intertwining property of πγ to deduce
their πγ -images.

The formulae for the actions of ad(e0) and ad(e1) are immediate from the recursive definitions.
To verify that ad(Q) kills Zn and Xn, check that it kills Z1 and Y0 and use induction coupled
with the fact that Q commutes with e1. Then use induction to prove the formulae for ad(e−1)

applied to Zn and Xn. It helps to note that Q = e2
0 + e0 − e−1e1, so for example, ad(e−1)Zn =

ad(e−1e1)Zn−1/(n − 1) is the same as ad(e2
0 + e0 − Q)Zn−1/(n − 1). Armed with the formulae

already established, one can prove the formulae for ad(Q) and ad(e−1) applied to Yn similarly.
The first two closed formulae are clear, and the last may be proven by induction. The final sen-

tence can be checked directly but it admits a more elegant proof: by Corollary 2.4, U3
1(W)e−1 is

1-dimensional and contains both (ad(e2)Q)e−1 and X1. A symbol calculation yields the constant
of proportionality. �

The following corollary of Lemma 2.6 gives the a-decomposition of the generalized Q-
eigenspace of eigenvalue 0 in U3(W) explicitly. The proof is a simple application of Corollary 2.4
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and will be omitted. Henceforth we will use the following extensions of the definitions of Propo-
sition 2.5:

Z0(γ ) := Z0 − P2(γ ), Yn(γ ) := Yn − (γ − 1/2)Zn. (4)

Corollary 2.7. The generalized Q-eigenspace of eigenvalue 0 in U3(W) has a basis consisting
of 1 and all of the Zn, Yn, and Xn. The Zn span the a-copy of F(0) in U+,2(W). The Yn and Xn

span the a-copy G(1) in U+,3(W), and the Xn span its a-submodule F(1). The F(1) in U3(W)

is unique but the G(1) is not: for each γ in C, the Yn(γ ) and Xn span a G(1) which lies in I 3(γ ).

The transpose involution of U(W)U(W)U(W). We conclude this section with a discussion of the
transpose involution. For any Lie algebra g, the transpose Ω �→ ΩT is the algebra anti-
involution of U(g) that is −1 on g. Note that it is ad-covariant. It is easy to check that for
any g-module M , the annihilator of its dual M∗ is the transpose of the annihilator of M , i.e.,
Anng(M∗) = (Anng M)T .

Here we will prove that Theorems 1.1 and 1.2 imply I (γ )T = I (1 − γ ), suggesting a link
between F(1 − γ ) and F(γ )∗. This will be made precise in Section 5: the two are equal for
tensor density modules over the circle.

Proposition 2.8. Under T , Zn has even parity and Yn and Xn have odd parity. In particular,
Q and Y0 are the unique (up to a scalar) elements of U

+,3
0 (W)e−1 of T -parities 1 and −1,

respectively.
Thus Z0(γ )T = Z0(γ ) = Z0(1 − γ ) and Yn(γ )T = −Yn(1 − γ ), so

I (γ )T = I (1 − γ ).

Proof. It is enough to prove the T -parity statements for Z1 and Y1, as they generate the other
elements under the adjoint action of a. This can be done directly. The final equation is then
immediate from Theorems 1.1 and 1.2. �
3. Proof of Theorem 1.3

It is necessary to prove Theorem 1.3 before Theorems 1.1 and 1.2. Throughout the next two
sections we will use the abbreviations

I :=
⋂
γ∈C

I (γ ), Qe2 := ad(e2)Q, U := U(W), U+ := U+(W)

whenever it is convenient. The proof of I = 〈Qe2〉W is by far the hardest part of the theorem, so
we will begin by proving the other statements.

By Proposition 2.5, Qe2 is the lowest weight vector of an a-copy of F(2) in I 2. Therefore Qe2

is in 〈I 2
n 〉W for any n � 2, as F(2) is irreducible under a. This reduces proving I = 〈I 2

n 〉W to
proving I = 〈Qe2〉W . The second sentence of the theorem was already proven in Proposition 2.5.

For the second paragraph we will use the Gel’fand–Fuks module GF, an indecomposable
module of W of length 2 with submodule F(2) and quotient C. As a space it is C ⊕F(2), with
basis {1, dx2 xn: n � 0}. The action on dx2 xn is as in F(2) and the action on 1 is

en(1) := (
n3 − n

)
dx2 xn−2, (5)
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the famous Gel’fand–Fuks cocycle (see for example [FF80]). Note that GF is split under a: Q

acts on C by 0 and on F(2) by 2.
The key point is that I is not in AnnW GF, as Qe2(1) = −Qe2(1) = −12dx2. Note that any Ω

in I kills the submodule F(2) as well as the trivial quotient, so Ω(GF) = CΩ(1) and Ω(1) is
in F(2). If Ω is a lowest weight vector of weight k, then Ω(1) is in F(2)

e−1
k because 1 is also

a lowest weight vector. For k �= 2 this space is 0, so Ω is in AnnW GF. If Ω is any vector of
weight k � 1 then Ω(1) is in F(2)k , which is zero, so again Ω is in AnnW GF. This proves the
first sentence of the second paragraph.

For the second sentence we use the easy fact that U0(a) is C[Q,e0]. Since Q and e0 act
on F(γ )n by P2(γ ) and (n), respectively, no element of U0(a) can kill F(γ )n for all γ and n.
But if I ∩ U(a) were non-zero it would be a sum of finite-dimensional a-submodules of I , so
I ∩ U0(a) would be non-zero.

It remains to prove I = 〈Qe2〉W . The proof is long and has three parts. Define a subspace J

of U by

J := Span
{
ei

0e
j

−1, ene
i
0e

j

−1: i � 0, j � 0, n � 1
}
.

First we will prove that J is complementary to I . Second we will prove that 〈I 2〉W + J is all
of U, whence I = 〈I 2〉W . Finally we will prove that 〈Qe2〉W contains I 2.

Note that I is the annihilator of the module
⊕

γ F(γ ). In order to prove that I ⊕ J = U, we
define a useful variant of this module. Let

F(Γ ) := C[Γ,x],
where x and Γ are indeterminates. Define an action π of W on F(Γ ) by

π(f D) := f D + Γf ′, i.e., π(f D)
(
Γ jg(x)

) := Γ j (fg′ + Γf ′g). (6)

It is easy to verify that π is a representation; it amounts to the fact that f D �→ f ′ is a 1-cocycle
of W .

For all γ ∈ C, it is clear that the evaluation map

evalγ :F(Γ ) →F(γ ), evalγ
(
g(Γ,x)

) := dxγ g(γ, x) (7)

is a W-covariant surjection. Moreover, an element g of F(Γ ) is 0 if and only if evalγ g = 0 for
all γ in a Zariski-dense subset of C. It follows that AnnW (Γ ) = I . (As we alluded to at the end
of the introduction, I is actually the annihilator of the universal Verma module of a, extended to
a W-module. This can be seen by checking that F(Γ ) is the dual of the universal Verma module
and noting that I = IT by Proposition 2.8.)

Since I = kernel(π |U), to prove I ⊕ J = U it suffices to prove that π maps J bijectively to
the image π(U). In order to describe this image, we define the algebra of differential operators
on F(Γ ) to be

Diff(Γ ) := C[Γ,x,D],
where Γ , x, and D are indeterminates such that Γ is central and [D,x] = 1. In other words,
Diff(Γ ) is the Weyl algebra over C[Γ ]. Note that evalγ extends to a map from Diff(Γ ) to Diff(γ )

by h(Γ,x,D) �→ h(γ, x,D). One checks that evalγ ◦ π = πγ .
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Let Diffr (Γ ) be the filtration of Diff(Γ ) by total (Γ,D)-degree, and given any subspace V of
Diff(Γ ), write V r for V ∩ Diffr (Γ ):

Diffr (Γ ) := Span
{
Γ jxnDk: n � 0, j + k � r

}
, V r := V ∩ Diffr (Γ ).

Since π(W) ⊆ Diff1(Γ ), we have π(Ur ) ⊆ Diffr (Γ ), i.e., π(Ur ) ⊆ π(U)r (in fact, we will see
in Lemma 3.2 that the two are equal). The next two lemmas give the image of π and prove
I ⊕ J = U.

Lemma 3.1. For all r � 1,

π
(
U+,r

) = P2(Γ )Diffr−2(Γ ) ⊕ Span
{
xnDk + nΓ xn−1Dk−1: n � 0, 1 � k � r

}
.

Proof. During this proof we write 〈P2〉r for P2(Γ )Diffr−2(Γ ) and Δr for the span of the
xnDk + nΓ xn−1Dk−1 with n � 0 and 1 � k � r .

First we prove that the right-hand side (RHS) is in the left-hand side (LHS). We have
π(en−1e

k−1
−1 ) = xnDk + nΓ xn−1Dk−1, so Δr is in the LHS. It follows from Lemma 2.6 that

π(Zn) = P2(Γ )xn and π(Yn) = P3(Γ )xn. Taking products of these two and π(e−1) = D, we
see that 〈P2〉r is in the LHS.

We shall prove that the LHS is in the RHS by induction on r . At r = 1 it reduces to
π(W) = Δ1, which is clear. Assume that it holds at r − 1. We must prove that π(ei1 · · · eir )

is in 〈P2〉r ⊕ Δr for arbitrary i1, . . . , ir .
Let us work in Diffr (Γ ) modulo 〈P2〉r ⊕ π(U+,r−1): given two elements H1 and H2 of

Diffr (Γ,0), write H1 ≡ H2 whenever H1 − H2 is in 〈P2〉r ⊕ π(U+,r−1). A calculation yields

π
(
enem − en+m+1e−1 − (m + 1)en+m

) = (n + 1)(m + 1)P2(Γ )xn,

which leads to π(ei1 · · · eir ) ≡ π(ei1 · · · eir−2eir−1+ir+1e−1). Applying this repeatedly gives

π(ei1 · · · eir ) ≡ π
(
ei+r−1e

r−1
−1

) = xi+rDr + (i + r)Γ xi+r−1Dr−1 ∈ Δr,

where i = i1 + · · · + ir . This concludes the proof. �
Lemma 3.2. U = I ⊕ J , and π :J r → π(U)r is bijective for all r .

Proof. As we mentioned, the second fact implies the first. For the second, by induction on degree
it is enough to prove that π induces a bijection from J r/J r−1 to π(U)r/π(U)r−1. This is true for
r = 0 and 1 by Lemma 3.1, so the induction begins.

We may restrict to a fixed weight n, as J is ad(e0)-invariant and π preserves weights. Thus we
must prove that π induces a bijection from J r

n/J r−1
n to π(U)rn/π(U)r−1

n for all n. First consider
the case n � 0. Here Lemma 3.1 shows that π(U)rn/π(U)r−1

n is r-dimensional, with a basis given
by the cosets of xn+rDr + (n + r)xn+r−1Dr−1 and P2(Γ )Γ i−2xn+r−iDr−i for 2 � i � r .

On the other hand, J r
n/J r−1

n is also r-dimensional: the cosets of en+ie
r−i−1
0 ei

−1 with 0 � i �
r − 1 are a basis. Since π(en+ie

r−i−1
0 ei

−1) is of total (Γ,D)-degree r and Γ -degree r − i, it is
clear that π induces an injection from J r

n/J r−1
n to π(U)rn/π(U)r−1

n , and hence a bijection as their
dimensions are the same.
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The cases with n < 0 are similar. We leave them to the reader, mentioning only that J r
n/J r−1

n

and π(U)rn/π(U)r−1
n are both (r + n)-dimensional for −r < n < 0, 1-dimensional for n = −r ,

and 0-dimensional otherwise. �
We come now to the second part of the proof of I = 〈Qe2〉W , in which we prove that I =

〈I 2〉W . Towards this aim, define

κ :U → U, κ := projection to I along J.

Lemma 3.3. κ commutes with the left, right, and adjoint actions of b on U. It also preserves
degrees: κ(Ur ) = I r .

Proof. For the first sentence, check that I and J are both invariant under the right and adjoint
actions of b. For the second, recall from Lemma 3.2 that given any Ω in Ur , there exists ΩJ

in J r such that π(ΩJ ) = π(Ω). Hence κ(Ω) = Ω − ΩJ is in I r . �
Lemma 3.4. I = 〈I 2〉W .

Proof. Since 〈I 2〉W ⊆ I and U = I ⊕ J , we need only prove U = 〈I 2〉W + J . It will suffice
to prove that κ has image 〈I 2〉W . The strategy is to prove by induction on degree that κ(Ur ) ⊂
〈I 2〉W . By Lemma 3.3, this is true for r = 2. Assume it for some r . To prove it for r + 1, fix
X ∈ W and Ω ∈ Ur . We must prove κ(XΩ) ∈ 〈I 2〉W .

Write κ⊥ for 1 − κ , the projection of U to J along I . Multiply Ω = κ(Ω)+ κ⊥(Ω) by X and
apply κ to obtain

κ(XΩ) = κ
(
Xκ(Ω)

) + κ
(
Xκ⊥(Ω)

)
.

Here κ(Xκ(Ω)) is equal to Xκ(Ω) because Xκ(Ω) is already in I . Moreover, κ(Ω) is in 〈I 2〉W
by induction, so Xκ(Ω) is also. Therefore we come down to proving κ(Xκ⊥(Ω)) ∈ 〈I 2〉W .

Since κ⊥(Ω) is in J , Xκ⊥(Ω) is a linear combination of terms of the form Xene
i
0e−1

j

and Xei
0e−1

j . By Lemma 3.3, κ(Xene
i
0e−1

j ) equals κ(Xen)e
i
0e−1

j and κ(Xen) is in I 2, so
κ(Xene

i
0e−1

j ) is in 〈I 2〉. The terms Xei
0e−1

j are in J , so κ kills them. Thus the proof is
done. �

The final step in the proof of Theorem 1.3 is the following lemma. It and Lemma 3.4 yield I =
〈I 2〉W = 〈Qe2〉W . Recall that a module is said to be completely indecomposable, or uniserial,
if all of its subquotients are indecomposable.

Lemma 3.5. S2F(−1), I 2(γ ), and I 2 are all completely indecomposable W-modules. They are
generated under the adjoint action of W by the vectors e−1

2, Q − P2(γ ) for P2(γ ) �= 0, Z1 for
P2(γ ) = 0, and Qe2 , respectively. In particular, I 2 is contained in 〈Qe2〉W .

Proof. We give two proofs of this result. In the first it is obtained as a corollary of some deeper
results from earlier papers, while in the second it is proven directly. We will in fact prove that
S2F(γ ) is completely indecomposable for almost all γ .

To obtain the lemma as a corollary we must first use the fact that for any γ , S2F(γ ) is
completely indecomposable over Vec(R) if and only if the tensor density modules S2FS1(a, γ )
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of Vec(S1) (see Section 5) are completely indecomposable for all a. A proof of this can be
deduced from Section 6 of [Co01].

Over S1 there is a duality between FS1(a, γ ) and FS1(−a,1 − γ ) (see Section 5 again). This
duality gives rise to a more subtle duality between certain modules of pseudodifferential op-
erators, known as the Adler trace or the non-commutative residue (see for example [CMZ97]
or [CS04]). Taken together, these dualities yield a Vec(S1)-equivalence from

⊗2 FS1(a, γ ) to
the module of pseudodifferential operators of order � −1 from FS1(−a,1 − γ ) to FS1(a, γ ).
This pseudodifferential operator module is in general a-equivalent to

⊕∞
i=0 FS1(2a,2γ + i),

and the submodule corresponding to the symmetric product S2FS1(a, γ ) is a-equivalent to⊕∞
i=0 FS1(2a,2γ + 2i).
Conditions under which this submodule is completely indecomposable under Vec(S1) may

be extracted from [CMZ97], and this extraction has been carried out in several papers, see for
example [Co05]. The conclusion is that S2F(γ ) is completely indecomposable under Vec(R) if
and only if the scalars b′

2γ+2i+2,2γ+2i from Eq. (6) of [Co05] are non-zero for all i ∈ N. This
is exactly the same condition we derive below, and it holds for γ = −1. The rest of the lemma
follows easily, as we will explain.

Now let us give an elementary self-contained proof. By Lemma A.6, the b-decomposition
of S2F(γ ) is

⊕∞
i=0 F(2γ + 2i) for all γ . By Corollary A.3, its a-decomposition is the same

whenever the scalars P2(2γ + 2i), the eigenvalues of Q on F(2γ + 2i), are distinct for all i ∈ N.
As is quickly checked, this occurs precisely when γ is not in −1/4 − N/2. In this case S2F(γ )

contains a unique a-copy of F(2γ + 2i) for each i ∈ N, namely, the P2(2γ + 2i)-eigenspace
of Q. Let us write V (i) for this a-submodule of S2F(γ ), and define

U(2γ + 2i) :=
∞⊕
j=i

V (j).

First we claim that the U(i) are W-invariant. To prove this, let W+ be the subalgebra of W
spanned by e2, e3, . . . . Then W = W+⊕a, so U(W) = U(W+)⊗U(a). Since U(i) is a-invariant,
U(W)U(i) is U(W+)U(i), whose set of weights is 2γ + 2i + N. If U(W)U(i) were larger
than U(i), it would have to contain a non-trivial submodule of V (j) for some j < i. But this
would force it to contain some vectors of weight < 2γ + 2i, a contradiction. Hence U(i) is
W-invariant.

Next we find conditions on γ implying that the action of W on the lowest weight vector
of S2F(γ ) of weight 2γ + 2i generates all of its lowest weight vectors of higher weight, that
is to say, conditions under which the lowest weight vector of V (i) generates the lowest weight
vectors of V (j) for all j > i. We claim that Eq. (8) below gives such conditions. To prove this,
consider the element

S := 4e2e0 − 2e2 − 3e2
1 ∈ U(W).

It is easy to check that e−1S ∈ U(W)e−1, which implies that S preserves lowest weight vectors,
i.e., it maps any lowest weight vector of weight λ either to zero or to a lowest weight vector of
weight λ + 2. (Such elements of U(W) are discussed in more generality in Section 3 of [Co01]:
they make up what is called the step algebra.)

Note that (dxγ )2 is the lowest weight vector of V (0). Therefore if Si(dxγ )2 is not zero, it
must be a lowest weight vector of V (i). It follows that conditions of the desired type are given
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by Si(dxγ )2 �= 0 for all i. By keeping track only of the coefficient of dxγ · x2i dxγ , we find that
these conditions are

γ /∈ −1/4 − N/2 and 2i2 + (8γ − 1)i + 6γ 2 �= 0 ∀i ∈ N. (8)

Next we claim that U(i)/U(i +1) is W-equivalent to F(2γ +2i). In fact, any W-module that
is a-equivalent to some F(λ) must actually be W-equivalent to F(λ); we leave this to the reader.
Since the F(λ) are W-irreducible for λ �= 0, this is enough to prove that S2(γ ) is completely
indecomposable whenever γ satisfies Eq. (8) and in addition 2γ + 2i �= 0 for any i ∈ N, i.e.,
γ /∈ −N.

When γ ∈ −N, it is still true that S2F(γ ) is completely indecomposable whenever Eq. (8)
holds, but the proof requires a little more effort. For γ = 0 it follows from the indecomposability
of F(0). For γ ∈ Z

−, we must prove that the lowest weight vector of the a-copy of F(−2)

in S2F(γ ) generates the whole a-copy of F(0), not merely its lowest weight vector, which spans
a trivial W-submodule of F(0). One way to do this is to appeal to the fact, proven in [FF80],
that there is no indecomposable W-module composed of F(−2) and C. We give a direct proof
in the case of interest to us, γ = −1.

It will do to prove that the action of W on the lowest weight vector (dx−1)2 of V (0) generates
the weight 1 subspace V (1)1. Here S2F(−1)1 is only 2-dimensional and is V (0)1 ⊕ V (1)1. The
line V (0)1 lies in the finite-dimensional a-submodule of V (0) and is in the span of the products
of dx−1, x dx−1, and x2 dx−1, so we need only note that e3(dx−1)2 is not in their span.

This proves that S2F(−1) is completely indecomposable, and therefore all of its submod-
ules are also. In the notation above, its submodules U(1) and U(2) have a-decompositions⊕∞

i=j F(2i) for j = 0 and 1, respectively. Since F(0) contains a trivial W-submodule, we have
the intermediate W-submodule V (1)0 ⊕ U(2) inside U(1). Using Proposition 2.5, one finds the
following W-equivalences: I 2(γ ) ∼= V (1)0 ⊕ U(2) for γ �= 0, I 2(0) ∼= U(1), and I 2 ∼= U(2).
This completes the proof of the lemma, and hence also of Theorem 1.3. �
4. Proofs of Theorems 1.1 and 1.2

We continue with the notation of Section 3. Recall that the representation π of W on F(Γ )

maps U = U(W) into the algebra Diff(Γ ) = C[Γ,x,D]. Its image is given by Lemma 3.1
and its kernel is I . The strategy in this section is to reduce questions about I (γ ) to questions
about π(I (γ )).

We begin with a lemma which is useful in the proofs of both theorems. Recall the maps
evalγ : Diff(Γ ) → Diff(γ ). For any subset G of any associative algebra A, let 〈G〉A denote the
two-sided ideal in A generated by G. (Thus for example, if G is in U then 〈G〉W and 〈G〉U have
the same meaning.)

Lemma 4.1. For all γ ∈ C,

(1) kernel(evalγ : Diff(Γ ) → Diff(γ )) = 〈Γ − γ 〉Diff(Γ ).
(2) π(I (γ )) = kernel(evalγ |π(U)) = 〈Γ − γ 〉Diff(Γ ) ∩ π(U).
(3) For any subset G of U, we have π(〈G〉W ) = 〈π(G)〉π(U).
(4) π(U) = C1 ⊕ 〈P2(Γ )〉Diff(Γ ) ⊕ Span{xnDk + nΓ xn−1Dk−1: n � 0, k � 1}.
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(5) Let H be any two-sided ideal in U. Then H = I (γ ) if and only if I ⊂ H and π(H) =
π(I (γ )).

(6) Diff(Γ )e−1 = C[Γ,D].

Proof. (1) can be proven using the polynomial division algorithm because Γ is central
in Diff(Γ ). Since πγ = evalγ ◦π and I (γ ) = kernel(πγ ), we have π(I (γ )) = kernel(evalγ |π(U)).
Hence (1) implies (2). (3) is clear, (4) follows from Lemma 3.1, and (5) is immediate from
I = kernel(π).

For (6), we can write any element T of Diff(Γ ) uniquely as
∑

i,j,k aijkΓ
ixjDk . The statement

then follows from π(e−1)T = ∑
i,j,k jaijkΓ

ixj−1Dk . �
Proof of Theorem 1.1. The distinctness of the I (γ ) was proven in Proposition 2.5. By Corol-
lary 2.4, U3

0(W)e−1 has basis {1,Q,Y0}, and by Proposition 2.5 its intersection with I (γ ) has
basis {Z0(γ ), Y0(γ )}, which clearly has the same span as the generating set given in the theo-
rem.

Now fix some γ �= 0 or 1. To prove that I (γ ) = 〈Z0(γ ), Y0(γ )〉W , note that ad(e2)Z0(γ ) =
Qe2 . Therefore I ⊂ 〈Z0(γ ), Y0(γ )〉W , so by (3) and (5) of Lemma 4.1 we need only prove that

π
(
I (γ )

) = 〈
π

(
Z0(γ )

)
,π

(
Y0(γ )

)〉
π(U)

.

We know by (2) of Lemma 4.1 that π(I (γ )) = 〈Γ − γ 〉Diff(Γ ) ∩ π(U), and Lemma 2.6 gives

π
(
Z0(γ )

) = P2(Γ ) − P2(γ ) = (Γ − γ )(Γ + γ − 1),

π
(
Y0(γ )

) = P3(Γ ) − (γ − 1/2)P2(Γ ) = (Γ − γ )P2(Γ ).

Thus we must prove

〈Γ − γ 〉Diff(Γ ) ∩ π(U) = 〈
(Γ − γ )(Γ + γ − 1), (Γ − γ )P2(Γ )

〉
π(U)

. (9)

Clearly the LHS contains the RHS. Let us make a warning remark: it is not possible to replace
the two generators of the RHS by their GCD (greatest common divisor), Γ − γ , because it is not
an element of π(U). The next lemma describes the LHS. �
Lemma 4.2. For γ �= 0 or 1,

〈Γ − γ 〉Diff(Γ ) ∩ π(U)

= 〈
(Γ − γ )P2(Γ )

〉
Diff(Γ )

⊕ (
P2(Γ ) − P2(γ )

)(
C ⊕ Span

{
xnDk + nΓ xn−1Dk−1: n � 0, k � 1

})
.

Proof. By (4) of Lemma 4.1, the LHS contains the RHS. For the other direction note that here
P2(γ ) �= 0, so evalγ maps P2(Γ )C[x,D] bijectively to Diff(γ ). Since Diff(Γ ) = C[x,D] ⊕
〈Γ − γ 〉Diff(Γ ), (4) of Lemma 4.1 shows that π(U) is the direct sum of P2(Γ )C[x,D] and the
RHS. Thus the lemma follows from (2) of Lemma 4.1. �
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By this lemma, the proof of Eq. (9) comes down to proving that the RHS of Eq. (9) contains the
RHS of the equation in the lemma. Since (Γ − γ )(Γ + γ − 1) = P2(Γ )−P2(γ ), the expression
for π(U) in (4) of Lemma 4.1 shows that the RHS of Eq. (9) contains the second term of the
RHS in the lemma, as well as (P2(Γ ) − P2(γ ))P2(Γ )Diff(Γ ) and (Γ − γ )P 2

2 (Γ )Diff(Γ ). In
light of the fact that the GCD of (P2(Γ ) − P2(γ ))P2(Γ ) and (Γ − γ )P 2

2 (Γ ) is (Γ − γ )P2(Γ )

for γ �= 0 or 1, Eq. (9) is proven.
Thus far we have proven the statements of Theorem 1.1 up through its main point, that Z0(γ )

and Y0(γ ) generate I (γ ). Now recall Y1(γ ) from Eq. (4). By Lemma 2.6, ad(e−1)Y1(γ ) = Y0(γ ).
Thus it follows from ad(e0)(Z0(γ ) + Y1(γ )) = Y1(γ ) that Z0(γ ) + Y1(γ ) is a single inhomoge-
neous cubic generator of I (γ ).

For the other two types of single generators, define

Ω−1 := Y0(γ )e−1, Ω0 := Y0(γ )e0 − X1e−1.

Both Ω−1 and Ω0 are in I (γ ), as X1 is in I by the last sentence of Lemma 2.6. One checks
that Ω−1 is a lowest weight vector, that ad(e−1)Ω0 = Ω−1, and that both Ω−1 and Ω0 are
eigenvectors of ad(Q) of eigenvalue 2.

We claim that Z0(γ ) + Ω0 is a single homogeneous quartic generator. To prove this, apply
ad(Q) to it to show that it generates both Z0(γ ) and Ω0. From Ω0 we get Ω−1, and from Z0(γ )

we get Qe2 and hence I . We have π(Z0(γ )) = P2(Γ )−P2(γ ) and π(Ω−1) = (Γ − γ )P2(Γ )D,
so by (3) and (5) of Lemma 4.1 we need only prove that〈

P2(Γ ) − P2(γ ), (Γ − γ )P2(Γ )D
〉
π(U)

= π
(
I (γ )

)
.

Conjugating (Γ − γ )P2(Γ )D by P2(Γ )x shows that (Γ − γ )P 2
2 (Γ ) is in the LHS of this equa-

tion. The GCD of (P2(Γ ) − P2(γ ))P2(Γ ) and (Γ − γ )P 3
2 (Γ ) is (Γ − γ )P2(Γ ) for γ �= 0 or 1,

so the proof concludes just as did the proof of Eq. (9).
The same argument shows that Z0(γ )+Ω−1 is a single inhomogeneous quartic lowest weight

generator. To prove the last statement of the first paragraph of Theorem 1.1, suppose that Ω is
a single homogeneous lowest weight generator. By Proposition 2.5, I (γ ) �⊂ U+, so Ω /∈ U+.
Therefore Ω must be of weight 0, so π(Ω) is a lowest weight vector of weight 0 such that
〈π(Ω)〉π(U) = π(I (γ )).

By (2) and (6) of Lemma 4.1, π(Ω) is in (Γ − γ )C[Γ ] ∩π(U). Thus by Lemma 4.2, π(Ω) is
at least quadratic in Γ . It follows that 〈π(Ω)〉π(U) cannot contain two elements of C[Γ ] whose
GCD is Γ − γ . But π(I (γ )) does contain two such elements, namely π(Z0(γ )) and π(Y0(γ )).
This is a contradiction.

Finally we come to the second paragraph of the theorem. We just saw that Z0(γ ) cannot gen-
erate I (γ ), as it is a homogeneous lowest weight vector. The rest follows from Duflo’s theorem
and Proposition 2.5.

Proof of Theorem 1.2. We saw I (0) = I (1) in Proposition 2.5, and the second sentence of
the theorem was proven in Lemma 2.6. (Indeed, by Corollaries 2.4 and 2.7, Z1 is the weight 1
element of the copy of F(0) in U2. The point of the second sentence of the theorem is that the
lowest weight vector of the quotient of this copy of F(0) by its trivial submodule is the image
of Z1.)

Clearly Z1 generates Z0, hence Qe2 and I . Therefore by (3) and (5) of Lemma 4.1, I (0) =
〈Z1〉W will follow if we prove π(I (0)) = 〈π(Z1)〉π(U). It is easy to see from (2) and (4) of
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Lemma 4.1 that π(I (0)) = P2(Γ )Diff(Γ ), and Lemma 2.6 gives π(Z1) = P2(Γ )x. Thus we
must prove

〈
P2(Γ )x

〉
π(U)

= P2(Γ )Diff(Γ ).

Obviously the LHS is in the RHS. For the converse, conjugate P2(Γ )x by the π(en) to see that
it generates P2(Γ )xn for all n. Since both D and P2(Γ )Diff(Γ ) are in π(U), the LHS contains
P2(Γ )C[x,D] and P 2

2 (Γ )Diff(Γ ). It remains to prove that it contains Γ P2(Γ )C[x,D]. This
follows from the fact that it contains P2(Γ )C[x,D] and P2(Γ )(xnDk + nΓ xn−1Dk−1) for all
n � 0 and k � 1.

To prove the second paragraph of the theorem we will use an indecomposable module V

of W composed of C and F(1), a relative of the Gel’fand–Fuks module used in the proof of
Theorem 1.3. The space of V is C ⊕ F(1) and the action of W is as follows: on F(1) it is as
usual, and on 1 it is

en(1) = (
n2 + n

)
dx xn−1. (10)

It is easy to check that this action makes V a W-module, see for example [FF80]. (We remark
that under a, V is a submodule of G(1). In fact, G(n) extends to a W-module if and only if n is
1, 3/2, 2, or 5/2 [FF80].)

Note that Z1 maps 1 ∈ V to −dx, so I (0) �⊂ AnnW V . Thus to prove that I (0) is not generated
by I (0)e−1 it suffices to prove I (0)e−1 ⊂ AnnW V . Proposition 2.5 gives I (0) = I (1) ⊂ U+, so
I (0) annihilates both the submodule F(1) and the trivial quotient of V . Hence any Ω ∈ I (0)

maps V to CΩ(1) ⊂ F(1).
Fix Ω ∈ I (0)e−1 . We may assume that Ω is homogeneous, say of weight k. To prove

Ω(V ) = 0 we need only prove Ω(1) = 0, and we know that Ω(1) is a lowest weight vector
of weight k in F(1). If k �= 1, F(1)

e−1
k = 0 implies Ω(1) = 0. If k = 1, Theorem 1.3 implies

Ω ∈ 〈Qe2〉W , so Ω(1) = 0 because Qe2(1) = 0. This proves I (0) �= 〈I (0)e−1〉W .
The intersection I (0) ∩ U(a) is 〈Q〉a by Duflo’s theorem, so it does not generate I (0) by

the last paragraph. To prove that
⊕

k�0 I (0)k does not generate I it is enough to note that
I (0)k(V ) = I (0)k(1) lies in F(1)k , which is zero for k � 0. Finally, for k � 1 I (0)k contains Zk ,
which generates Z1 under the action of ad(e−1). �
Remarks. It is not hard to see from our proofs that there is no γ such that I (γ ) has a single
homogeneous generator which is an eigenvector of ad(Q). On the other hand, for γ �= 0 or 1
we do not know if I (γ ) has a single homogeneous generator of degree 3. It follows from our
methods that any such generator would have to be of the form (a + be0)(Q − γ 2 + γ ) + c(Y0 −
(γ − 1/2)(γ 2 − γ )) for a, b, and c all non-zero.

Inside I (0) we have the flag of ideals

〈
I (0) ∩ U(a)

〉
W = 〈

Q
〉
W ⊆ 〈

Q,Y0
〉
W ⊆ 〈

I (0)0
〉
W ⊆ I (0).

By Theorem 1.2, 〈I (0)0〉W is proper in I (0), and one can use our methods to prove that 〈Q〉W
is proper in 〈Q,Y0〉W . However, we do not know whether or not 〈Q,Y0〉W is proper 〈I (0)0〉W .
One way to approach such questions is to study the annihilators of indecomposable modules
composed of tensor density modules, such as the modules GF and V used above.
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5. Results over the circle

In this section we state our results over Vec(S1); the proofs are given in Section 6. We take
Vec(S1) to be the complex polynomial vector fields on the circle:

Vec
(
S1) := Span

{
en = xn+1D: n ∈ Z

}
.

Note that Vec(S1) contains Vec(R) as a subalgebra, so we may speak of weight spaces, lowest
weight vectors, etc., for modules of Vec(S1) just as for modules of Vec(R).

For any scalars a and γ , we write FS1(a, γ ) for the Vec(S1)-module of polynomial tensors of
degree γ and e0-spectrum a + Z:

FS1(a, γ ) := Span
{
xλ−γ dxγ : λ ∈ a + Z

}
.

It is convenient to treat all of the FS1(a, γ ) with a given γ together. To this end, define

FS1(γ ) :=
⊕

0�Re(a)<1

FS1(a, γ ) = Span
{
xλ dxγ : λ ∈ C

}
.

The tensor density module F(γ ) of Vec(R) studied in the preceding sections is a Vec(R)-
submodule of FS1(γ, γ ). The action of Vec(S1) on FS1(γ ) is the natural extension of the
action πγ of Vec(R) on F(γ ), and we again denote it by πγ . Thus

πγ (en)
(
xλ−γ dxγ

) := (λ + nγ )xλ+n−γ dxγ .

We now state our main results over S1; they are completely parallel to the results over R.
Recall the projective subalgebra a and its Casimir operator Q.

Theorem 5.1. For all a and γ , AnnVec(S1)FS1(a, γ ) = AnnVec(S1)FS1(γ ). The intersec-
tion of this ideal with U(Vec(R)) is the Vec(R)-annihilator of both FS1(γ ) and F(γ ), i.e.,
AnnVec(R)FS1(γ ) = AnnVec(R)F(γ ). We have

AnnVec(S1) FS1(γ ) = 〈
AnnVec(R)F(γ )

〉
Vec(S1)

.

In particular, any set of generators of AnnVec(R)F(γ ) over U(Vec(R)) is also a set of generators
of AnnVec(S1) FS1(γ ) over U(Vec(S1)).

(1) For γ �= 0 or 1, the ideals AnnVec(S1) FS1(γ ) are all distinct and are not contained
in U+(Vec(S1)). None of them is generated by any single lowest weight vector, nor by its in-
tersection with either U(a) or U2(Vec(S1)), both of which generate only 〈Q−γ 2 +γ 〉Vec(S1).

(2) AnnVec(S1) FS1(0) is equal to AnnVec(S1)FS1(1) and lies in U+(Vec(S1)). It is not gener-
ated by its lowest weight vectors, nor by its intersection with U(a), which generates only
〈Q〉Vec(S1).

Theorem 5.2. The ideal
⋂

γ∈C
AnnVec(S1)FS1(γ ) is generated by its intersection with

U(Vec(R)), and hence by Qe2 . It is not generated by any lowest weight vector of weight �= 2.
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Recall the transpose involution from the end of Section 2, where we observed that
(AnnVec(R)F(γ ))T = AnnVec(R)F(1 − γ ). Let us give a conceptual proof of the analogous fact
over S1. There is a non-degenerate W-invariant form (·,·) pairing F(γ ) and F(1 − γ ), defined
by

(
xn dxγ , xm dx1−γ

) := 1

2πi

∮
S1

xn+m dx = δn+m,−1.

This form defines a Vec(S1)-equivalence between F(1 − γ ) and the restricted dual of F(γ ). As
we noted in Section 2, Anng M∗ = (Anng M)T for any module M of any Lie algebra g. After
checking that this applies equally to restricted duals, one has the following proposition.

Proposition 5.3. (AnnVec(S1)FS1(γ ))T = AnnVec(S1)FS1(1 − γ ).

The Cartan involution θ of Vec(S1), the orientation-reversing automorphism, will be useful
during the proofs. It is defined by

θ(en) := −e−n.

Given any module (π,M) of Vec(S1), we call the action π ◦ θ of Vec(S1) on M the oppo-
site action. We write Mopp for the space M with this action. Note that AnnVec(S1) M

opp =
θ(AnnVec(S1) M). One can check that FS1(a, γ )opp is equivalent to FS1(−a, γ ), so FS1(γ )opp

is equivalent to itself. This gives the following lemma.

Lemma 5.4. AnnVec(S1)(γ ) is θ -invariant for all γ .

6. Proofs over the circle

Recall our abbreviations W := Vec(R), I (γ ) := AnnW F(γ ), and I := ⋂
γ I (γ ). In this sec-

tion we will use the abbreviations

V := Vec
(
S1), IS1(γ ) := AnnV FS1(γ ), IS1 :=

⋂
γ∈C

IS1(γ ).

We will also need DiffS1(γ ), the algebra of differential operators of integral weight from FS1(γ )

to itself:

DiffS1(γ ) := Span
{
xnDk: n ∈ Z, k ∈ N

}
.

Write Diffk
S1(γ ) for its order filtration. (In fact, as an algebra DiffS1(γ ) is independent of γ ; only

its V-module structure is γ -dependent. One can easily verify that Diffk
S1(γ ) is V-invariant and

Diffk
S1(γ )/Diffk−1

S1 (γ ) is naturally isomorphic to FS1(0,−k), but we will not use this fact.)
Following the same strategy we used over the line, we will prove Theorem 5.2 before The-

orem 5.1. The proofs go largely as in Section 3, but the differences are sufficient to necessitate
rewriting.
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Proof of Theorem 5.2. The proof that IS1 is not generated by any lowest weight vector of
weight �= 2 goes just as over the line, but with the Gel’fand–Fuks module GF replaced by GFS1 ,
its analog over the circle. Here GFS1 is the V-module composed of C and FS1(0,2) defined by
Eq. (5) (it is the coadjoint module of the Virasoro Lie algebra).

In order to prove IS1 = 〈Qe2〉V , define JS1 ⊂ U(V) by

JS1 := Span
{
1, e1e−2, ene

i
0e

j

−1: i � 0, j � 0, n ∈ Z
}
.

The proof has the same three parts it had over the line. First we prove that JS1 is complementary
to IS1 . Second we prove that 〈I 2

S1〉V + JS1 is all of U(V), so IS1 = 〈I 2
S1〉V . Finally we prove that

〈Qe2〉V contains I 2
S1 .

As in Section 3, IS1 is the annihilator of the module
⊕

γ FS1(γ ). Define

FS1(Γ ) := Span
{
Γ jxn: j ∈ N, n ∈ C

}
,

where the Γ jxn are all linearly independent. Extend the action π of W on F(Γ ) to an action of V
on FS1(Γ ) by Eq. (6), extend the evaluation map evalγ to a V-covariant surjection from FS1(Γ )

to FS1(γ ) by Eq. (7), and verify AnnV FS1(Γ ) = IS1 .
Since IS1 = kernel(π |U(V)), to prove IS1 ⊕ JS1 = U(V) it suffices to prove that π maps JS1

bijectively to the image π(U(V)). To describe this image we need the algebra of differential
operators of integral weight on FS1(Γ ):

DiffS1(Γ ) := C
[
Γ,x, x−1,D

]
,

where Γ , x, and D are indeterminates such that Γ is central and [D,xn] = nxn−1. Extend evalγ
to a map from DiffS1(Γ ) to DiffS1(γ ) by Γ �→ γ as before, and verify evalγ ◦ π = πγ .

Let Diffr
S1(Γ ) be the filtration of DiffS1(Γ ) by total (Γ,D)-degree, and given any subspace W

of DiffS1(Γ ), write Wr for W ∩ Diffr
S1(Γ ). Since π(V) ⊆ Diff1(Γ ), we have π(Ur (V)) ⊆

Diffr
S1(Γ ), i.e., π(Ur (V)) ⊆ π(U(V))r . The next two lemmas are the analogs of Lemmas 3.1

and 3.2.

Lemma 6.1. For all r � 1,

π
(
U+,r (V)

) = P2(Γ )Diffr−2
S1 (Γ ) ⊕ Span

{
xnDk + nΓ xn−1Dk−1: n ∈ Z, 1 � k � r

}
.

Proof. The proof is the same as that of Lemma 3.1, except that since Zn and Yn are not defined
for n < 0, we apply π(en−1) to P2(Γ )x and P3(Γ )x to prove that P2(Γ )xn and P3(Γ )xn are in
the LHS for all n ∈ Z. �
Lemma 6.2. U(V) = IS1 ⊕ JS1 , and π :J r

S1 → π(U(V))r is bijective for all r .

Proof. The proof is the same as that of the n � 0 case of Lemma 3.2, except that we must
use the new basis element e1e−2 of JS1 together with e0e−1 to prove that J 2−1/J

1−1 covers
π(U(V))2−1/π(U(V))1−1. �

We come now to the second part of the proof, in which we prove that IS1 = 〈I 2
S1〉V . Define

κS1 :U(V) → U(V) to be projection to IS1 along JS1 .
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Lemma 6.3. κS1 preserves weights and degrees: it commutes with ad(e0) and satisfies
κS1(Ur ) = I r . Its commutators with the left, right, and adjoint actions of the elements of b

are zero on Un(V) for all n �= −1. Its restriction to U(Vec(R)) is κ .

Proof. For the first two sentences, copy the proof of Lemma 3.3, noting that the left, right, and
adjoint actions of b map (JS1)n to JS1 for n �= −1. The last sentence follows from I ⊂ IS1 and
J ⊂ JS1 . �
Lemma 6.4. IS1 = 〈I 2

S1〉V .

Proof. It follows from Lemma 5.4 that both IS1 and I 2
S1 are θ -invariant. Since θ negates weights,

it will suffice to prove (IS1)n = (〈I 2
S1〉V )n for all weights n � 0. Check as in the proof of

Lemma 3.4 that it will do to prove κS1(Ur
n(V)) ⊆ 〈I 2

S1〉V for all r � 0 and n � 0.
We proceed by induction, starting from r = 2. By the Poincaré–Birkhoff–Witt theorem, we

need only prove that κS1(ei1 · · · eir+1) is in 〈I 2
S1〉V for all i1 � · · · � ir+1 such that the weight∑r+1

j=1 ij is non-negative. Moreover, we may assume i1 � −2, as otherwise the result holds by
Lemma 3.4. The result now follows from the argument of Lemma 3.4 with X = ei1 and Ω =
ei2 · · · eir+1 . The point is that since Ω is of positive weight, we can use Lemma 6.3 in place of
Lemma 3.3. �

The third and final step in the proof of Theorem 5.2 is the following lemma. It and Lemma 6.4
yield IS1 = 〈Qe2〉V . Its proof is long and completely different in flavor from that of Lemma 3.5.

Lemma 6.5. I 2
S1 is contained in 〈Qe2〉V .

Proof. During this proof let us write U for I 2
S1 . We proceed in three steps. First we show that

U0 ⊂ 〈Qe2〉V . Next we show that 〈Qe2〉V is θ -invariant, so it contains U−n if and only if it
contains Un. Finally we show that it contains Un for all n > 0.

To begin the first step, for each n ∈ Z+ define an to be the subalgebra Span{e−n, e0, en} of V .
It is a copy of sl2 with Casimir operator

Qn := e2
0 − ne0 − ene−n = e2

0 + ne0 − e−nen.

Note that a1 = a and Q1 = Q. We will consider Qn to be defined for all n ∈ Z by this for-
mula, and it is often convenient to use the facts that Q−n = Qn and Q0 = 0. It is not hard to
check that π(Qn) = n2P2(Γ ), so Qn/n2 − Qm/m2 is in U for all n �= 0. Using the fact that
{1, e0, ene−n: n � 0} is a basis of U2

0(V), one sees that {Qn − n2Q1: n � 2} is a basis of U0.
We claim that for all n and m,

ad(Qn)Qm = (m − n)2Qm+n − 2
(
m2 − 2n2)Qm + (m + n)2Qm−n − 2n2Qn (11)

(as we have mentioned, this is not to be confused with [Qn,Qm]). The proof is an elementary
calculation. It can be shortened by noting that ad(Qn)Qm is equal to m2 ad(Qn)(Qm/m2 −
Qn/n2), so it is in U . This permits one to work at the symbol level.
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To prove that U0 ⊂ 〈Qe2〉V , we must prove that Qn − n2Q1 is in 〈Qe2〉V for all n � 2. By
Eq. (11),

ad(Q1)
(
Qn − n2Q1

) = (n − 1)2Qn+1 − 2
(
n2 − 2

)
Qn + (n + 1)2Qn−1 − 2Q1,

so it will suffice to prove that Q2 − 4Q1 is in 〈Qe2〉V .
We claim that 〈Qe2〉V contains ad(Qn)Q1 for all n. This is because ad(Qn)Q1 =

−ad(e−nen)Q1, and ad(e1)
n−2Qe2 is a non-zero multiple of ad(en)Q1 for all n � 2. Now by

Eq. (11),

ad(Qn)Q1 = (n − 1)2Qn+1 − 2n2Qn + (n + 1)2Qn−1 + 2
(
2n2 − 1

)
Q1.

It follows without too much calculation that ad(Q2)Q1, ad(Q3)Q1, ad(Q4)Q1, and ad(Q2)
2Q1

are linearly independent (one can work modulo Q1), so their span is equal to that of {Qn −n2Q1:
2 � n � 5}. This proves that U0 ⊂ 〈Qe2〉V .

The next step in the proof of Lemma 6.5 is to prove that 〈Qe2〉V is θ -invariant. By the first step,
〈Qe2〉V contains Q2 − 4Q1. Applying ad(e−2) to this element shows that 〈Qe2〉V also contains
ad(e−2)Q, which is −θ(Qe2). The second step follows.

The final step is to prove Un ⊂ 〈Qe2〉V for all n > 0. We will use the cross section JS1 and
the projection κS1 :U(V) → IS1 along JS1 from earlier in this section. Recall from Lemma 6.3
that κS1 restricts to κ on U(Vec(R)). It will do to prove κS1(eiej ) ∈ 〈Qe2〉V for all i � j with
i + j > 0. The result follows from Theorem 1.3 for i � −1, as there κS1(eiej ) = κ(eiej ) is in
I = 〈Qe2〉Vec(R). Thus we must prove κS1(e−iei+k) ∈ 〈Qe2〉V for all i � 2 and k � 1.

We proceed by induction on i. The i = 2 case is essentially the same as the general case, so
assume that the result is proven for 2,3, . . . , i −1. Note that it follows (without calculation) from
the form of JS1 that κS1(e−iei) = i2Q1 − Qi . We know from above that this is an element of
〈Qe2〉V , so ad(ek)κS1(e−iei) is also in 〈Qe2〉V for all k. In particular, it is κS1 -invariant.

Since κS1(e−iei) − e−iei is an element of U2
0(Vec(R)), we find that

ad(ek)κS1(e−iei) − (i − k)e−iei+k + (i + k)ek−iei

is an element of U2
k(Vec(R)) for all k > 0. Applying κS1 shows that

ad(ek)κS1(e−iei) − (i − k)κS1(e−iei+k) + (i + k)κS1(ek−iei)

is an element of I = 〈Qe2〉Vec(R) for all k > 0. Solving for κS1(e−iei+k) shows that we are done
by the induction hypothesis except in the case that k = i. This case can be handled by a similar
argument involving ad(e1)κS1(e−ie2i−1). This completes the proof of Lemma 6.5, and hence also
of Theorem 5.2. �
Proof of Theorem 5.1. For the first sentence, suppose that Ω is in AnnV FS1(a, γ ). Then πγ (Ω)

is an element of DiffS1(γ ) which annihilates FS1(a, γ ), so by Zariski density it is zero. Thus
AnnV FS1(a, γ ) is in IS1(γ ) for all a. The converse is clear.

The second sentence is proven similarly. Suppose that Ω is in AnnW F(γ ). Then πγ (Ω) is
an element of DiffS1(γ ) which annihilates F(γ ), the W-submodule of FS1(γ, γ ) of vectors of
weight in γ + N. Hence by Zariski density it annihilates all of FS1(γ ). The converse is again
clear.
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The proof of the main statement of Theorem 5.1, the displayed equation, follows Section 4
very closely. First use the proof of Theorem 5.2 to check that Lemma 4.1 holds for S1 with the
obvious modifications (for example, in (4) “n � 0” becomes “n ∈ Z”). Then simply recopy the
relevant parts of the proofs of Theorems 1.1 and 1.2.

Most of the rest of the proof also goes as in Section 4. We only mention two points. First,
for γ �= 0 or 1 the S1-analog of Lemma 4.2 shows that π(I 2

S1(γ )) is the 1-dimensional space

spanned by P2(Γ ) − P2(γ ), just as for Vec(R). It follows that I 2
S1(γ ) does not generate IS1(γ ).

Second, to prove that IS1(0) is not generated by its lowest weight vectors we argue as in the
proof of Theorem 1.2, but using the S1-analog VS1 of the module V used before. Here VS1 is the
indecomposable module with quotient C and submodule FS1(0) defined by Eq. (10). �
Remark. A general result describing those subsets S of U(Vec(R)) such that 〈S〉Vec(S1) ∩
U(Vec(R)) = 〈S〉Vec(R) would be interesting. Such a result would streamline the proofs in this
section.

7. Questions

In the introduction we pointed out two topics for further study: the annihilators of the tensor
density modules of Vec(Rm) and the annihilators of the differential operator modules of Vec(R).
In this section we will pose a few specific questions in these areas.

Tensor density modules of Vec(Rm)Vec(Rm)Vec(Rm). The tensor density modules FVec(Rm)(γ ) of Vec(Rm)

can be defined geometrically for all non-negative real γ , or algebraically for all complex γ

[LO99]. As in Section 3, replacing γ by an indeterminate Γ gives a “universal” tensor density
module FVec(Rm)(Γ ). The projective subalgebra of Vec(Rm) is a copy of slm+1, and under this
slm+1 the module FVec(Rm)(Γ ) is the dual of what is known as a universal Verma module (in this
case relative to the subalgebra glm).

Recall Theorem 1.3: the ideal AnnVec(R)FR(Γ ) is generated by ad(e2)Q, and this is in var-
ious senses its “best” generator. Here Q is the Casimir operator, the generator of the center
of U(sl2) as a polynomial algebra, and the coset of e2 is the lowest weight vector of the sl2-
module Vec(R)/sl2.

In the case of Vec(Rm), the center of U(slm+1) is a polynomial algebra generated by m

elements Q2,Q3, . . . ,Qm+1, where Qi is of degree i. The action of Qi on FVec(Rm)(Γ ) is
multiplication by a polynomial of degree i in Γ , the polynomial being given by the value of
the Harish-Chandra homomorphism on Qi . Since multiplication by Γ commutes with the ac-
tion of Vec(Rm), any element of the form ad(X)Qi with X ∈ Vec(Rm) and 2 � i � m + 1 is in
AnnVec(Rm)FVec(Rm)(Γ ).

Note that ad(X)Qi depends only on the image of X in Vec(Rm)/slm+1. It is known that as an
slm+1-module, this quotient is generated by its lowest weight vectors. Therefore an affirmative
answer to the following question would be a natural generalization of Theorem 1.3, as well as a
useful tool for the study of the ideals AnnVec(Rm) FVec(Rm)(γ ).

Question 7.1. Is AnnVec(Rm) FVec(Rm)(Γ ) generated as a two-sided ideal by the finite collec-
tion of elements ad(X)Qi , where X runs over the lowest weight vectors of the slm+1-module
Vec(Rm)/slm+1 and 2 � i � m + 1? If so, is this generating set minimal, or optimal in some
other sense?
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Annihilators of differential operator modules. Recall from Section 1 the Vec(R)-module
Diff(γ,p) of differential operators from F(γ ) to F(γ + p). As we have mentioned, its order
filtration is invariant and the associated subquotients are tensor density modules: one has the
short exact sequence

0 → Diffk−1(γ,p) → Diffk(γ,p) → F(p − k) → 0.

This sequence is rarely split under Vec(R), and the way in which Diff(γ,p) is built from its
Jordan–Hölder composition series {F(p − k): k ∈ N} is non-trivial and highly interesting. It has
been the subject of numerous articles, for example [FF80,CMZ97,LO99,Ga00,CS04], to name
only a few.

To our knowledge, nothing is known about the annihilators of the modules Diff(γ,p). We
would be interested in any results bearing on the following question.

Question 7.2. Are the ideals AnnVec(R) Diff(γ,p) non-trivial for any (γ,p)? If so, find optimal
generating sets for them.

Let us discuss two possible approaches to this question. For the first, note that
AnnVec(R) Diff(γ,p) is equal to the intersection

⋂∞
k=0 AnnVec(R) Diffk(γ,p), so one could try

to study it by analyzing the ideals AnnVec(R) Diffk(γ,p). The Jordan–Hölder composition series
of the module Diffk(γ,p) is {F(p − i): 0 � i � k}, so it is in the category of bounded modules:
modules with a finite composition series of tensor density modules.

Bounded modules have been studied in several papers, for example [FF80,MP92,BO98,Ge01,
Co01,Co05]. They always have non-trivial annihilators: if B is a bounded module composed of
F(γ1), . . . ,F(γk), it is easy to see that

k∏
1

AnnVec(R) F(γi) ⊆ AnnVec(R) B ⊆
k⋂
1

AnnVec(R)F(γi).

If B is simply the direct sum
⊕k

1 F(γi), then its annihilator is all of
⋂k

1 AnnVec(R)F(γi). The
extent to which AnnVec(R) B is smaller than this intersection is a measure of its indecomposabil-
ity: roughly, “the smaller the annihilator, the more indecomposable the module.” This suggests
the following question, which is independent of Question 7.2.

Question 7.3. Consider the indecomposable bounded modules of Vec(R) of length 2 discovered
in [FF80] and investigated further in [MP92] and [BO98], and more generally, the uniser-
ial (i.e., completely indecomposable) bounded modules of higher length discovered in [Co01]
and [Co05]. Find optimal generating sets for their annihilators. How much larger (respectively,
smaller) are their annihilators than the product (respectively, intersection) of the annihilators of
their composition series?

We remark that these modules are constructed from 1-cochains which are generalizations of
the 1-cocycles defined by Eqs. (5) and (10). Therefore an analysis of the annihilators of the
modules GF and V defined by those equations would constitute an important first step towards
answering Question 7.3. In essence, the question is asking for the annihilators of the Gel’fand–
Fuks cocycle and its relatives.
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To describe the second approach to Question 7.2, recall the ideals I (γ,p,m) in U(Vec(R))

from the introduction. The definition given there is equivalent to

I (γ,p,m) = AnnVec(R)

( ∞⊕
k=0

Diffk(γ,p)/Diffk−m(γ,p)

)
.

Clearly AnnVec(R) Diff(γ,p) is equal to
⋂∞

m=1 I (γ,p,m), so one can try to study it by analyzing
the I (γ,p,m). A simple Zariski density argument shows that I (γ,p,1) is nothing but the ideal
I = ⋂

γ AnnVec(R)F(γ ), which was shown to be 〈Qe2〉Vec(R) in Theorem 1.3. Combining this
theorem with the results of [CMZ97] and [Ga00], one finds that the same is true for I (γ,p,2), but
not for any I (γ,p,m) with m � 3. Thus we come to the following question, which, in addition
to being an important step towards answering Question 7.2, is interesting in its own right.

Question 7.4. Find homogeneous lowest weight generators for the ideals I (γ,p,m). How do
these ideals vary with γ and p?

We stated in the introduction that I (γ,p,m) is non-trivial, as it contains all lowest weight
vectors of U(Vec(R)) of weight � m, i.e., all of

⊕
n�m U(Vec(R))

e−1
n . Let us briefly outline a

proof of this fact. First one uses the fact that Diff(γ,p) is composed of F(p),F(p − 1), . . . to
construct a vector space isomorphism from Diff(γ,p) to

⊕∞
k=0 F(p − k). Such an isomorphism

is known as a total symbol or a quantization [CMZ97,LO99,Ga00,CS04]. It is used to carry
the natural representation of Vec(R) on Diff(γ,p) over to an equivalent representation π(γ,p)

on
⊕∞

k=0 F(p − k). This representation is then viewed as a block matrix with entries

π(γ,p)ij : Vec(R) → Hom
(
F(j),F(i)

)
, i, j ∈ p − N.

Since the filtration Diffk(γ,p) is invariant, the quantization may be chosen so that the block
matrix is lower triangular with diagonal entries π(γ,p)ii = πi , the usual representation on F(i).
From this point of view, one finds that

I (γ,p,m) = {
Ω ∈ U

(
Vec(R)

)
: π(γ,p)ij (Ω) = 0 whenever i − j < m

}
.

Next one proves that the quantization may be chosen so that the entries π(γ,p)ij take values
in Diff(j, i − j) and are covariant with respect to the affine subalgebra b = Span{e−1, e0}. It
follows that if Ω is in U(Vec(R))

e−1
n , then π(γ,p)ij (Ω) is in Diff(j, i − j)

e−1
n . But this space is

zero whenever i − j < m � n, so in such cases Ω is in I (γ,p,m).
Let us remark that in more detailed (but still inconclusive) examinations of the I (γ,p,m), we

have been led to study the associative algebra

U
(
Vec(R)

)e−1/e−1U
(
Vec(R)

)e−1 .

This algebra seems to be quite interesting. We can compute its dimension in each weight and
degree (its weights are non-negative), but we need more precise information to analyze the
I (γ,p,m). For example, generators and relations would be helpful.

In conclusion, note that in some sense “the ideals I (γ,p,m) are to I as the ideals
AnnVec(R) Diffk(γ,p) are to the annihilators of the tensor density modules.” For example, one
can make the following statement precise: “I (γ,p,3) consists of those elements of I that are
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annihilated by the Gel’fand–Fuks cocycle of the universal tensor density module F(Γ ).” We
expect the second approach to Question 7.2 to be more successful than the first, because we feel
that I , the annihilator of the universal tensor density module, is a more fundamental object than
the annihilator of any specific tensor density module.
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Appendix A. Modules of sl2 Csl2 Csl2 C

In this section we collect some elementary results on sl2 C-modules which we need dur-
ing the body of the paper. We continue to use the realization of sl2C as the subalgebra
a = SpanC{e−1, e0, e1} of Vec(R). Here ei = xi+1D, so [e0, ei] = iei and [e−1, e1] = 2e0.

We recall some notation for the convenience of the reader. The Borel subalgebra b and the
Casimir operator Q of a are

b = SpanC{e−1, e0}, Q = e2
0 − e0 − e1e−1 = e2

0 + e0 − e−1e1.

Given any a-module V , write Vμ for the μ-weight space of V , the μ-eigenspace of the action
of e0. Write V e−1 and V e1 for the kernels of the actions of e−1 and e1, the lowest weight vectors
and highest weight vectors of V , respectively.

The tensor density modules F(γ ) and the actions πγ of a on them are

F(γ ) = SpanC

{
dxγ xk: k ∈ N

}
, πγ (ei) = xi+1D + γ (i + 1)xi

(recall that by N we mean all non-negative integers, including zero). It is easy to check that as
a-modules, they have the following properties:

(1) For all γ , F(γ ) has a unique (up to a scalar) lowest weight vector, dxλ. The action of e−1 is
surjective and Q acts by the scalar γ 2 − γ .

(2) For γ not in −N/2, F(γ ) is irreducible under a and has no highest weight vectors.
(3) For γ in −N/2, F(γ ) is indecomposable of length 2 under a. It has a unique (up to a scalar)

highest weight vector, dxγ x−2γ , the highest weight vector of the unique non-trivial proper
submodule of F(γ ). We will denote this submodule by L(−γ ); up to equivalence, it is the
unique irreducible finite-dimensional module of a of highest weight −γ . It is (1 − 2γ )-
dimensional, with basis

L(−γ ) = SpanC

{
dxγ , dxγ x, . . . , dxγ x−2γ

}
.

The quotient F(γ )/L(−γ ) is isomorphic to F(1 − γ ). The differential operator
dx1−2γ D1−2γ is an a-covariant surjection from F(γ ) to F(1 − γ ) with kernel L(−γ )

(it is the well-known Bol operator; see for example [CMZ97,BO98], or [CS04]).
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Our goal in this appendix is to classify a-modules which are “good” in the following sense. In
conjunction with Lemmas A.6 and A.5, this will allow us to completely determine the a-structure
of U(Vec(R)).

Definition. An a-module is said to be admissible if e0 acts on it semisimply with finite-
dimensional weight spaces. We will say that such a module is good if, in addition to being
admissible, its weights are bounded below and e−1 acts on it surjectively.

We have noted that tensor density modules are good. It turns out that good modules have a
simple classification: they are all direct sums of tensor density modules and one other class of
modules, “extended tensor density modules.” We now define these modules and state a lemma
giving some of their properties. The lemma is elementary and we leave its proof to the reader.

Definition. For any γ in 1 + N/2, the extended tensor density module G(γ ) is the space
F(1 − γ ) ⊕ F(γ ) together with the linear map πG(γ ) from a to EndG(γ ) defined as fol-
lows. For ei in b, i.e., i = −1 or 0, πG(γ )(ei) is simply π1−γ (ei) ⊕ πγ (ei). The endomor-
phism πG(γ )(e1) acts on the summand F(γ ) as πγ (e1) and on the summand F(1 − γ ) as
π1−γ (e1) + dx2γ−1 D2γ−2.

Lemma A.1. πG(γ ) is a representation of a on G(γ ) = F(1 − γ ) ⊕F(γ ). It is indecomposable:
its restriction to the summand F(γ ) is πγ , so F(γ ) is a submodule, and the quotient module
G(γ )/F(γ ) is naturally equivalent to π1−γ .

G(γ ) is good. It is b-equivalent to F(1 − γ ) ⊕F(γ ). It has a 2-dimensional space of lowest
weight vectors: G(γ )e−1 = Span{dx1−γ , dxγ }. It has no highest weight vectors and no finite-
dimensional submodules.

The Casimir operator acts with generalized eigenvalue γ 2 − γ , such that πG(γ )(Q) − γ 2 + γ

is 2-step nilpotent. More precisely, πG(γ )(Q) acts as γ 2 − γ on the submodule F(γ ) and as
γ 2 − γ − dx2γ−1 D2γ−1 on the summand F(1 − γ ).

Remark. We thank the referee for pointing out that the extended tensor density modules are in
fact the duals of indecomposable projective objects of the well-known category O(sl2), intro-
duced in [BGG76]. More precisely, G(γ ) is the unique indecomposable injective object in the
dual of O(sl2) having F(γ ) as a submodule.

The next proposition classifies the good modules, and its corollary shows that any good mod-
ule is determined up to equivalence by its weight space dimensions and its finite-dimensional
submodules. The corollary is immediate from the proposition and the fact that G(γ ) is b-
equivalent to F(1 − γ ) ⊕F(γ ), so we omit its proof.

Proposition A.2. Any good a-module V is equivalent to a direct sum of countably many tensor
density modules and extended tensor density modules:

V
a∼=

(⊕
γ∈C

mγF(γ )

)
⊕

( ⊕
γ∈1+N/2

nγG(γ )

)
.

The multiplicities mγ and nγ are as follows:
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(1) For γ not in either 1 + N/2 or −N/2, mγ = dimV
e−1
γ .

(2) For γ in −N/2, mγ = dimV
e1−γ .

(3) For γ in 1 + N/2, mγ and nγ are determined by

mγ + nγ = dimV
e−1
γ , m1−γ + nγ = dimV

e−1
1−γ .

Proof. The weight spaces of V are finite-dimensional and Q preserves them, so V decomposes
as the direct sum

⊕
q∈C

GESq V , where GESq V denotes the generalized eigenspace of Q of

eigenvalue q , an a-submodule of V . Recall that Q acts on V
e−1
γ by P2(γ ) = γ 2 − γ . It fol-

lows that (GESP2(γ ) V )e−1 is (Vγ ⊕ V1−γ )e−1 . Therefore it suffices to prove the proposition on
each GESq V separately.

Henceforth we assume that V = GESq V for some q , and we fix a γ with Re(γ ) � 1/2
such that P2(γ ) = q . Since e−1 :Vμ → Vμ−1 is surjective for all μ and V e−1 is in Vγ ⊕ V1−γ ,
the map e−1 :Vμ → Vμ−1 is bijective for μ �= γ or 1 − γ . Conversely, the alternate expression
Q = e2

0 +e0 −e−1e1 implies that e−1e1 acts on Vμ−1 with generalized eigenvalue P2(μ)−P2(γ ),
so e1 :Vμ−1 → Vμ is bijective for μ �= γ or 1 − γ .

We claim that Vμ = 0 unless μ is in γ + N or 1 − γ + N. This is because V ’s weights are
bounded below, so if Vμ �= 0 then some power of e−1 maps it to V e−1 .

The easy case is when either γ + N and 1 − γ + N have empty intersection or γ = 1/2.
Here V

e−1
γ is necessarily all of Vγ . Let mγ = dimVγ , let u1, . . . , umγ be a basis of Vγ , and let

Ui = C[e1]ui . Use the fact that Q acts by P2(γ ) on Ui to prove that it is a submodule equivalent
to F(γ ). Then use the bijectivity properties of e1 to prove that the Ui are independent and⊕

i U
i = ⊕

N
Vγ+n. Construct the F(1 − γ )’s similarly.

The other case is when γ ∈ 1 + N/2. Here V
e−1
1−γ is all of V1−γ , but V

e−1
γ might not be all

of Vγ . We pick out the F(1 − γ )’s first. Fix Wγ ⊆ Vγ such that e−1 :Wγ → V
e1
γ−1 is bijective.

Let m1−γ = dimWγ , let w1, . . . ,wm1−γ
be a basis of Wγ , and let Wi = U(a)wi . Check that Q

acts by P2(γ ) on Wi and then that Wi is a submodule equivalent to F(1 − γ ).
Next we pick the G(γ )’s. Fix Uγ−1 ⊆ Vγ−1 complementary to V

e1
γ−1 and let nγ = dimUγ−1.

Then nγ is as in the proposition because dimVγ−1 = dimV1−γ by the bijectivity properties
of e±1.

Fix Uγ ⊆ Vγ such that e−1 :Uγ → Uγ−1 is a bijection, let u1, . . . , unγ be a basis of Uγ , and
define Ui to be U(a)ui . We claim that Ui is a submodule equivalent to G(γ ). To verify this, first
note that e1 :Uγ−1 → e1(Vγ−1) is a bijection. The crucial point is that e1(Vγ−1) is in V

e−1
γ . This

is because Q acts as P2(γ ) on V1−γ and hence on all Vμ with μ < γ , so e−1e1 kills Vγ−1. We
leave the rest to the reader.

We pick the F(γ )’s last. Let Xγ ⊆ V
e−1
γ be any complement of e1(Vγ−1) and define mγ =

dimXγ . Check that mγ is as in the proposition, let x1, . . . , xmγ be a basis of Xγ , and define
Xi = C[e1]xi . Then Xi is a submodule equivalent to F(γ ).

Finally, use Vγ = Wγ ⊕ Uγ ⊕ V
e−1
γ and V

e−1
γ = Xγ ⊕ e1(Vγ−1) together with the bijectivity

properties of e±1 to prove that V is the direct sum of all of the Wi , Ui , and Xi . �
Corollary A.3. Any good a-module V is b-equivalent to a direct sum

⊕
γ∈C

bγF(γ ) of tensor
density modules. The multiplicities bγ are determined by the weight space dimensions of V :
bγ = dimV

e−1
γ = dimVγ − dimVγ−1.
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By Proposition A.2 we know that V is a-equivalent to
⊕

γ∈C
(mγF(γ ) ⊕ nγG(γ )) for some

multiplicities mγ and nγ (where we define nγ to be zero for γ not in 1+N/2). The bγ are related
to these multiplicities by bγ = mγ + nγ + n1−γ for all γ .

Let cγ be the multiplicity of the finite-dimensional irreducible module L(γ ) in V . Then cγ =
dimV

e1
γ , and the bγ and cγ together determine the mγ and nγ as follows. For γ not in either

1 + N/2 or −N/2, mγ = bγ . For γ in −N/2, mγ = c−γ . For γ in 1 + N/2, nγ = b1−γ − cγ−1
and mγ = bγ − nγ = bγ − b1−γ + cγ−1.

We conclude this appendix with Corollary A.5 and Lemma A.6, which, in light of Corol-
lary A.3, completely determine the a-structure of SkF(γ ). First we prove Lemma A.4, which
we learned from O. Mathieu.

Given any module V of any Lie algebra g, let Vf be the locally finite part of V : the sum of
all finite-dimensional submodules of V . Let gf be the locally finite part of g under the adjoint
action, an ideal in g.

Lemma A.4. (V ⊗ W)f = Vf ⊗ Wf for any complex modules V and W of any complex Lie
algebra g. In particular, (

⊗
V )f = ⊗

(Vf ), (SV )f = S(Vf ), (ΛVf ) = Λ(Vf ), and (Ug)f =
U(gf ).

Proof. It is enough to prove the first sentence, for which it suffices to prove (V ⊗ W)f ⊆
V ⊗ (Wf ). Write Un for Un(g). For any t ∈ V ⊗ W not in V ⊗ (Wf ), we must prove that
Unt �= Un−1t for all n. Express t as

∑k
i=1 vi ⊗ wi , where the vi are linearly independent. Let

W ′ = Span{w1, . . . ,wn}. Note that by assumption W ′ �⊆ Wf , so UnW ′ �= Un−1W ′ for all n.
For all Ω ∈ Un, we have Ωt ≡ ∑

i vi ⊗ Ωwi modulo V ⊗ Un−1W ′, which implies that Unt �⊆
V ⊗ Un−1W ′. But Un−1t ⊆ V ⊗ Un−1W ′. �
Corollary A.5. For k � 1 and γ not in −N/2, SkF(γ ) has no finite-dimensional a-submodules.
For γ in −N/2, the sum of all of its finite-dimensional a-submodules is SkL(−γ ).

Proof. Apply Lemma A.4 with g = a and V = F(γ ). �
Lemma A.6. For k � 1, the kth symmetric power SkF(γ ) is a good a-module. For k � 2, its
b-decomposition is

SkF(γ )
b∼=

∞⊕
i2,i3,...,ik=0

F(2i2 + 3i3 + · · · + kik + kγ ).

Proof. To prove that SkF(γ ) is good it will suffice to prove that πγ (e−1) = D acts on it sur-
jectively. We may assume by induction on k that Sk−1F(γ ) is good. By definition, D acts
as a derivation of the symmetric algebra structure, so the induction assumption together with
D(dxγ ) = 0 shows that D maps the subspace dxγ · Sk−1F(γ ) of SkF(γ ) surjectively to it-
self. Another easy induction argument, this time on j , shows that D maps (

⊕j

i=0 Cdxγ xi) ·
Sk−1F(γ ) surjectively to itself for all j . Thus SkF(γ ) is good.

By Corollary A.3, the b-equivalence will follow if we prove that the weight space dimensions
of the two sides match. For this, note that{(

dxγ xr1
) · · · (dxγ xrk

)
: r1 � · · · � rk

}
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is a basis of SkF(γ ) consisting of monomial weight vectors. At k = 2 it is easy to see that this
basis has the same weight multiplicities as

⊕
i F(2i + 2γ ), so we may induct on k.

For arbitrary k, the weight space dimensions of the span of those monomials with r1 = 0 are
the same as the weight space dimensions of Sk−1F(γ ), but all shifted by γ because of the leading
factor dxγ . Similarly, the weight space dimensions of the span of those monomials with r1 fixed
at some value r are the same as those of Sk−1F(γ ), but all shifted by γ + kr because of the
leading factor dxγ xr and the fact that r1 � · · · � rk . The result for k now follows from the result
for k − 1 by summing over all r1 � 0. �
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