JOURNAL OF Number Theory

Exact formulas for traces of singular moduli of higher level modular functions

Dohoon Choi ${ }^{\text {a }}$, Daeyeol Jeon ${ }^{\text {b }}$, Soon-Yi Kang ${ }^{\text {a,* }}$, Chang Heon Kim ${ }^{\text {c }}$
${ }^{\text {a }}$ School of Mathematics, Korea Institute for Advanced Study, Seoul 130-722, South Korea
${ }^{\text {b }}$ Department of Mathematics Education, Kongju National University, Kongju 314-701, Chungnam, South Korea
${ }^{\text {c }}$ Department of Mathematics, Seoul Women's University, Seoul 139-774, South Korea

Received 18 August 2006
Available online 5 May 2007
Communicated by David Goss

Abstract

Zagier proved that the traces of singular values of the classical j-invariant are the Fourier coefficients of a weight $3 / 2$ modular form and Duke provided a new proof of the result by establishing an exact formula for the traces using Niebur's work on a certain class of non-holomorphic modular forms. In this short note, by utilizing Niebur's work again, we generalize Duke's result to exact formulas for traces of singular moduli of higher level modular functions.

© 2007 Elsevier Inc. All rights reserved.
MSC: 11F37; 11F03
Keywords: Trace of singular moduli; Modular functions of prime level p

1. Introduction and statement of result

The classical j-invariant is defined for z in the complex upper half plane \mathbb{H} by

$$
j(z)=q^{-1}+744+196884 q+\cdots,
$$

[^0]0022-314X/\$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jnt.2007.04.002
where $q=e(z)=e^{2 \pi i z}$ and $J(z)=j(z)-744$ is the normalized Hauptmodul for the group $\Gamma(1)=P S L_{2}(\mathbb{Z})$. All the modular groups discussed in this paper are subgroups of $\Gamma(1)$. For a positive integer D congruent to 0 or 3 modulo 4 , we denote by \mathcal{Q}_{D} the set of positive definite integral binary quadratic forms

$$
Q(x, y)=[a, b, c]=a x^{2}+b x y+c y^{2}
$$

with discriminant $-D=b^{2}-4 a c$. The group $\Gamma(1)$ acts on \mathcal{Q}_{D} by $Q \circ\left(\begin{array}{c}\alpha \\ \gamma \\ \gamma\end{array}\right)=Q(\alpha x+\beta y, \gamma x+$ $\delta y)$. For each $Q \in \mathcal{Q}_{D}$, we let

$$
z_{Q}=\frac{-b+i \sqrt{D}}{2 a}
$$

the corresponding CM point in \mathbb{H} and we write $\Gamma(1)_{Q}$ for the stabilizer of Q in $\Gamma(1)$. The trace of a singular modulus of discriminant $-D$ is defined as

$$
\mathbf{t}_{J}(D)=\sum_{Q \in \mathcal{Q}_{D} / \Gamma(1)} \frac{1}{\left|\Gamma(1)_{Q}\right|} J\left(z_{Q}\right)
$$

In [9, Theorem 1], Zagier proved that the generating series for the traces of singular moduli

$$
g(z):=q^{-1}-2-\sum_{\substack{D>0 \\ D \equiv 0,3(\bmod 4)}} \mathbf{t}_{J}(D) q^{D}=q^{-1}-2+248 q^{3}-492 q^{4}+\cdots
$$

is a weakly holomorphic modular form (that is, meromorphic with poles only at the cusps) of weight $3 / 2$ on $\Gamma_{0}(4)$. Recently, Bruinier, Jenkins, and Ono [2] obtained an explicit formula for the Fourier coefficients of $g(z)$ in terms of Kloosterman sums and Duke [4] derived an exact formula for $\mathbf{t}_{J}(D)$ as follows:

$$
\begin{equation*}
\mathbf{t}_{J}(D)=-24 H(D)+\sum_{\substack{c>0 \\ c \equiv 0(\bmod 4)}} S_{D}(c) \sinh \left(\frac{4 \pi \sqrt{D}}{c}\right), \tag{1}
\end{equation*}
$$

where

$$
S_{D}(c)=\sum_{x^{2} \equiv-D(\bmod c)} e(2 x / c) \quad \text { and } \quad H(D)=\sum_{Q \in \mathcal{Q}_{D} / \Gamma(1)} \frac{1}{\left|\Gamma(1)_{Q}\right|}
$$

is the Hurwitz class number. Using these two results together, Duke [4] reestablished Zagier's trace formula [9, Theorem 1].

The purpose of this paper is to give a generalization of (1) to traces of singular values of modular functions of any prime level p. For prime p, let $\Gamma_{0}^{*}(p)$ be the group generated by $\Gamma_{0}(p)$ and the Fricke involution $W_{p}=\frac{1}{\sqrt{p}}\left(\begin{array}{cc}0 & -1 \\ p & 0\end{array}\right)$. Let $\mathcal{Q}_{D, p}$ denote the set of quadratic forms $Q \in \mathcal{Q}_{D}$ such that $a \equiv 0(\bmod p)$. The group $\Gamma_{0}^{*}(p)$ acts on $\mathcal{Q}_{D, p}$, where the action for elements of $\Gamma_{0}(p)$ is defined as above and $Q \circ W_{p}=[p c,-b, a / p]$. Note that the discriminant $-D$ is congruent to a square modulo $4 p$. We choose an integer $\beta(\bmod 2 p)$ with $\beta^{2} \equiv-D(\bmod 4 p)$ and consider the
set $\mathcal{Q}_{D, p, \beta}=\left\{[a, b, c] \in \mathcal{Q}_{D, p} \mid b \equiv \beta(\bmod 2 p)\right\}$ on which $\Gamma_{0}(p)$ acts. For a modular function f for $\Gamma_{0}^{*}(p)$, we define the class number $H_{p}(D)$ (resp. $H_{p}^{*}(D)$) and the trace $\mathbf{t}_{f}(D)$ (resp. $\left.\mathbf{t}_{f}^{*}(D)\right)$ by

$$
\begin{aligned}
H_{p}(D)=\sum_{Q \in \mathcal{Q}_{D, p, \beta} / \Gamma_{0}(p)} \frac{1}{\left|\Gamma_{0}(p)_{Q}\right|} ; & \mathbf{t}_{f}(D)=\sum_{Q \in \mathcal{Q}_{D, p, \beta} / \Gamma_{0}(p)} \frac{1}{\left|\Gamma_{0}(p)_{Q}\right|} f\left(z_{Q}\right), \\
H_{p}^{*}(D)=\sum_{Q \in \mathcal{Q}_{D, p} / \Gamma_{0}^{*}(p)} \frac{1}{\left|\Gamma_{0}^{*}(p)_{Q}\right|} ; & \mathbf{t}_{f}^{*}(D)=\sum_{Q \in \mathcal{Q}_{D, p} / \Gamma_{0}^{*}(p)} \frac{1}{\left|\Gamma_{0}^{*}(p)_{Q}\right|} f\left(z_{Q}\right) .
\end{aligned}
$$

Here $\Gamma_{0}(p)_{Q}$ and $\Gamma_{0}^{*}(p)_{Q}$ are the stabilizers of Q in $\Gamma_{0}(p)$ and $\Gamma_{0}^{*}(p)$, respectively. It is easy to see that

$$
H_{p}^{*}(D)= \begin{cases}\frac{1}{2} H_{p}(D), & \text { if } \beta \equiv 0 \text { or } p(\bmod 2 p) \tag{2}\\ H_{p}(D), & \text { otherwise }\end{cases}
$$

and

$$
\mathbf{t}_{f}^{*}(D)= \begin{cases}\frac{1}{2} \mathbf{t}_{f}(D), & \text { if } \beta \equiv 0 \text { or } p(\bmod 2 p) \tag{3}\\ \mathbf{t}_{f}(D), & \text { otherwise }\end{cases}
$$

The modularity for the traces $\mathbf{t}_{f}(D)$ was established by one of the authors in [6,7] in the case when $\Gamma_{0}^{*}(p)$ is of genus zero. If f is the Hauptmodul for such $\Gamma_{0}^{*}(p)$ and if we define $\mathbf{t}_{f}(-1)=-1, \mathbf{t}_{f}(0)=2$ and $\mathbf{t}_{f}(D)=0$ for $D<-1$, then the series $\sum_{n, r} \mathbf{t}_{f}\left(4 p n-r^{2}\right) q^{n} \zeta^{r}$, where $\zeta=e(w)$ for a complex number w, is a weak Jacobi form of weight 2 and index p. Meanwhile, using the theta correspondence, Bruinier and Funke [1] generalized Zagier's trace formula to traces of CM values of modular functions of arbitrary level. In particular, they showed that if p is an odd prime and $f=\sum a(n) q^{n}$ is a modular function for $\Gamma_{0}^{*}(p)$ with $a(0)=0$, then

$$
\begin{equation*}
\sum_{\substack{D>0 \\-D \equiv \square(\bmod 4 p)}} \mathbf{t}_{f}^{*}(D) q^{D}+\sum_{n \geqslant 1}(\sigma(n)+p \sigma(n / p)) a(-n)-\sum_{m \geqslant 1} \sum_{n \geqslant 1} m a(-m n) q^{-m^{2}} \tag{4}
\end{equation*}
$$

is a weakly holomorphic modular form of weight $3 / 2$ and level $4 p$.
Remark. In the forthcoming paper [3], the authors generalize this result on modularity of traces by Bruinier and Funke to any weakly holomorphic modular functions with arbitrary level, including a composite level. We establish that the generating function for traces of singular moduli of a weakly holomorphic modular function, whether its constant term is zero or not, plus certain linear combination of class numbers is a weakly holomorphic modular form of weight $3 / 2$.

We will obtain in the next section, the following exact formula for $\mathbf{t}_{f}^{*}(D)$ which is a generalization of (1).

Theorem 1. Suppose f is a modular function for $\Gamma_{0}^{*}(p)$ with principal part $\sum_{m=1}^{N} a_{m} e(-m z)$ at $i \infty$, and define for any positive integers m and c,

$$
S_{D}(m, c)=\sum_{x^{2} \equiv-D(\bmod c)} e(2 m x / c)
$$

Then

$$
\mathbf{t}_{f}^{*}(D)=\sum_{m=1}^{N} a_{m}\left[c_{m} H_{p}^{*}(D)+\sum_{\substack{c>0 \\ c \equiv 0(\bmod 4 p)}} S_{D}(m, c) \sinh \left(\frac{4 \pi m \sqrt{D}}{c}\right)\right]
$$

where

$$
c_{m}=-24\left(\frac{-p^{\alpha+1}}{p+1} \sigma\left(m / p^{\alpha}\right)+\sigma(m)\right) \quad \text { with } p^{\alpha} \| m
$$

As an example, consider

$$
f=\left(\frac{\eta(z)}{\eta(37 z)}\right)^{2}-2+37\left(\frac{\eta(37 z)}{\eta(z)}\right)^{2}
$$

where $\eta(z)$ is the Dedekind eta function defined by $\eta(z)=q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right)$. Then f is a modular function for $\Gamma_{0}^{*}(37)$ which is of genus 1 and has a Fourier expansion of the form q^{-3} $2 q^{-2}-q^{-1}+0+O(q)$. Since the representatives for $\mathcal{Q}_{148,37,0} / \Gamma_{0}(37)$ are given by $[37,0,1]$ and $[74,-74,19]$, we find from equations (2), (3), and Theorem 1 that

$$
\begin{aligned}
& 24 \cdot \frac{3}{38}+\sum_{\substack{c>0 \\
c \equiv 0(\bmod 148)}}\left[S_{D}(3, c) \sinh \left(\frac{12 \pi \sqrt{D}}{c}\right)-2 S_{D}(2, c) \sinh \left(\frac{8 \pi \sqrt{D}}{c}\right)\right. \\
& \left.\quad-S_{D}(1, c) \sinh \left(\frac{4 \pi \sqrt{D}}{c}\right)\right]=\frac{1}{2}\left(f\left(\frac{\sqrt{37} i}{37}\right)+f\left(\frac{37+\sqrt{37} i}{74}\right)\right)
\end{aligned}
$$

where the latter is known to be -2 .

2. Proof of Theorem 1

Throughout this section, Γ denotes $\Gamma_{0}^{*}(p)$. For a positive integer m we consider Niebur's Poincaré series [8]

$$
\begin{equation*}
\mathcal{F}_{m}(z, s)=\sum_{M \in \Gamma_{\infty} \backslash \Gamma} e(-m \operatorname{Re} M z)(\operatorname{Im} M z)^{1 / 2} I_{s-1 / 2}(2 \pi m \operatorname{Im} M z), \tag{5}
\end{equation*}
$$

where $I_{s-1 / 2}$ is the modified Bessel function of the first kind. Then $\mathcal{F}_{m}(z, s)$ converges absolutely for $\operatorname{Re} s>1$ and satisfies

$$
\begin{equation*}
\mathcal{F}_{m}(M z, s)=\mathcal{F}_{m}(z, s) \quad \text { for } M \in \Gamma \quad \text { and } \quad \Delta \mathcal{F}_{m}(z, s)=s(1-s) \mathcal{F}_{m}(z, s) \tag{6}
\end{equation*}
$$

where Δ is the hyperbolic Laplacian $\Delta=-y^{2}\left(\partial_{x}^{2}+\partial_{y}^{2}\right)$ for $z=x+i y$. Niebur showed that $\mathcal{F}_{m}(z, s)$ has an analytic continuation to $s=1\left[8\right.$, Theorem 5] and that $\mathcal{F}_{m}(z, s)$ has the following Fourier expansion [8, Theorem 1]; for $\operatorname{Re} s>1$,

$$
\begin{equation*}
\mathcal{F}_{m}(z, s)=e(-m x) y^{1 / 2} I_{s-1 / 2}(2 \pi m y)+\sum_{n=-\infty}^{\infty} b_{n}(y, s ;-m) e(n x), \tag{7}
\end{equation*}
$$

where $b_{n}(y, s ;-m) \rightarrow 0(n \neq 0)$ exponentially as $y \rightarrow i \infty$. Hence the pole of $\mathcal{F}_{m}(z, 1)$ at $i \infty$ may occur only in $e(-m x) y^{1 / 2} I_{1 / 2}(2 \pi m y)$, which is equal to

$$
\begin{equation*}
\frac{1}{\pi y^{1 / 2} m^{1 / 2}} \sinh (2 \pi m y) y^{1 / 2} e(-m x)=\frac{1}{2 \pi m^{1 / 2}}(e(-m z)-e(-m \bar{z})) . \tag{8}
\end{equation*}
$$

We normalize $\mathcal{F}_{m}(z, 1)$ by multiplying with $2 \pi m^{1 / 2}$, so that the coefficient of $e(-m z)$ is normalized. Now we need to compute the constant term in $\left(2 \pi m^{1 / 2}\right) \mathcal{F}_{m}(z, 1)$.

Lemma 2. Let $\mathcal{F}_{m}(z, s)$ be the Poincaré series defined in (5). Then the constant term in $\left(2 \pi m^{1 / 2}\right) \mathcal{F}_{m}(z, 1)$ is given by

$$
\begin{equation*}
24\left(\frac{-p^{\alpha+1}}{1+p} \sigma\left(m / p^{\alpha}\right)+\sigma(m)\right)=:-c_{m} . \tag{9}
\end{equation*}
$$

Proof. It follows from [8, Theorem 1] that $b_{0}(y, s,-m)=a_{m}(s) y^{1-s} /(2 s-1)$. Here

$$
\begin{equation*}
a_{m}(s)=2 \pi^{s} m^{s-1 / 2} \phi_{m}(s) / \Gamma(s) \quad \text { and } \quad \phi_{m}(s)=\sum_{c>0} S(m, 0 ; c) c^{-2 s} \tag{10}
\end{equation*}
$$

where $S(m, n ; c)$ is the general Kloosterman sum $\sum_{0 \leqslant d<|c|} e((m a+n d) / c)$ for $\left(\begin{array}{ll}a & * \\ c & d\end{array}\right) \in \Gamma$. Note that if $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma=\Gamma_{0}^{*}(p)$, then $M \in \Gamma_{0}(p)$ or M is of the form $\left(\begin{array}{c}\sqrt{p} x \\ \sqrt{p} z\end{array} \sqrt{p} w\right)$ with $x, y, z, w \in \mathbb{Z}$. In the former case, c is a multiple of p and in the latter case, $c=\sqrt{p} z$ with $p \nmid z$. For $n \in \mathbb{Z}^{+}$, let $u_{m}(n)$ denote the sum of m th powers of primitive nth roots of unity. We observe that

$$
S(m, 0 ; c)= \begin{cases}u_{m}(c), & \text { if } p \mid c, \\ u_{m}(z), & \text { if } c=\sqrt{p} z \text { with } p \nmid z .\end{cases}
$$

If we define

$$
u_{m}^{*}(n)= \begin{cases}u_{m}(n), & \text { if } p \mid n, \\ p^{-s} u_{m}(n), & \text { if } p \nmid n,\end{cases}
$$

then

$$
\begin{align*}
p^{s} \phi_{m}(s) \zeta(2 s) & =p^{s} \sum_{c>0} S(m, 0 ; c) c^{-2 s} \sum_{c^{\prime} \in \mathbb{Z}^{+}} c^{\prime-2 s} \\
& =\sum_{c \in \mathbb{Z}^{+}}\left(p^{s} u_{m}^{*}(c)\right) c^{-2 s} \sum_{c^{\prime} \in \mathbb{Z}^{+}} c^{\prime-2 s}=\sum_{k \in \mathbb{Z}^{+}}\left(\sum_{c \mid k} p^{s} u_{m}^{*}(c)\right) k^{-2 s} . \tag{11}
\end{align*}
$$

Note that if $p \nmid k$, then

$$
\sum_{c \mid k} p^{s} u_{m}^{*}(c)=\sum_{c \mid k} u_{m}(c)= \begin{cases}k, & \text { if } k \mid m \tag{12}\\ 0, & \text { if } k \nmid m\end{cases}
$$

and if $k=p^{l} k^{\prime}$ with $l \geqslant 1$ and $p \nmid k^{\prime}$, then

$$
\begin{equation*}
\sum_{c \mid k} p^{s} u_{m}^{*}(c)=\sum_{d \mid k^{\prime}} p^{s} u_{m}^{*}(d)+\sum_{\substack{c|k \\ p| c}} p^{s} u_{m}^{*}(c)=\sum_{d \mid k^{\prime}} u_{m}(d)+\sum_{\substack{c|k \\ p| c}} p^{s} u_{m}(c) \tag{13}
\end{equation*}
$$

By adding $\left(p^{s}-1\right) \sum_{d \mid k^{\prime}} u_{m}(d)$ on both sides of (13), we obtain

$$
\left(p^{s}-1\right) \sum_{d \mid k^{\prime}} u_{m}(d)+\sum_{c \mid k} p^{s} u_{m}^{*}(c)=\sum_{c \mid k} p^{s} u_{m}(c) .
$$

Since

$$
\sum_{d \mid k^{\prime}} u_{m}(d)=\left\{\begin{array}{ll}
k^{\prime}, & \text { if } k^{\prime} \mid m, \\
0, & \text { if } k^{\prime} \nmid m
\end{array} \quad \text { and } \quad \sum_{c \mid k} p^{s} u_{m}(c)= \begin{cases}p^{s} k, & \text { if } k \mid m, \\
0, & \text { if } k \nmid m,\end{cases}\right.
$$

we find that

$$
\sum_{c \mid k} p^{s} u_{m}^{*}(c)= \begin{cases}p^{s} k+\left(1-p^{s}\right) k^{\prime}, & \text { if } k \mid m \tag{14}\\ \left(1-p^{s}\right) k^{\prime}, & \text { if } k \nmid m \text { and } k^{\prime} \mid m \\ 0, & \text { if } k \nmid m \text { and } k^{\prime} \nmid m\end{cases}
$$

Writing $m=p^{\alpha} m^{\prime}$ with $p \nmid m^{\prime}$, we can deduce from (12) and (14) that

$$
\begin{align*}
\sum_{k \in \mathbb{Z}_{+}} & \left(\sum_{c \mid k} p^{s} u_{m}^{*}(c)\right) k^{-2 s}=\sum_{k^{\prime} \mid m^{\prime}} k^{\prime} k^{\prime-2 s}+\sum_{l=1}^{\infty} \sum_{k^{\prime} \mid m^{\prime}}\left(1-p^{s}\right) k^{\prime}\left(p^{l} k^{\prime}\right)^{-2 s} \\
& \quad+\sum_{l=1}^{\alpha} \sum_{k^{\prime} \mid m^{\prime}} p^{s}\left(p^{l} k^{\prime}\right)\left(p^{l} k^{\prime}\right)^{-2 s} \\
= & \sigma_{1-2 s}\left(m^{\prime}\right)+\left(1-p^{s}\right) \sigma_{1-2 s}\left(m^{\prime}\right) \sum_{l=1}^{\infty}\left(p^{-2 s}\right)^{l}+p^{s} \sum_{1 \leqslant l \leqslant \alpha} \sum_{k^{\prime} \mid m^{\prime}}\left(p^{l} k^{\prime}\right)^{1-2 s} \\
= & \sigma_{1-2 s}\left(m^{\prime}\right)\left[1+\left(1-p^{s}\right) \frac{p^{-2 s}}{1-p^{-2 s}}\right]+p^{s}\left(\sigma_{1-2 s}(m)-\sigma_{1-2 s}\left(m^{\prime}\right)\right) \\
= & \frac{-p^{2 s}}{1+p^{s}} \sigma_{1-2 s}\left(m / p^{\alpha}\right)+p^{s} \sigma_{1-2 s}(m) \tag{15}
\end{align*}
$$

Recall that the constant term in $\left(2 \pi m^{1 / 2}\right) \mathcal{F}_{m}(z, 1)$ is

$$
\lim _{s \rightarrow 1} 2 \pi m^{1 / 2} b_{0}(y, s,-m)=\lim _{s \rightarrow 1} 2 \pi m^{1 / 2} a_{m}(s) y^{1-s} /(2 s-1)
$$

By the definition of $a_{m}(s)$ in (10), it is equal to

$$
\lim _{s \rightarrow 1} 2 \pi m^{1 / 2}\left(2 \pi^{s} m^{s-1 / 2} \phi_{m}(s) / \Gamma(s)\right) y^{1-s} /(2 s-1)
$$

It follows from (11) and (15) that this limit goes to

$$
\frac{4 \pi^{2} m}{p \zeta(2)}\left(\frac{-p^{2}}{1+p} \sigma_{-1}\left(m / p^{\alpha}\right)+p \sigma_{-1}(m)\right)
$$

Thus simple calculations lead us to have the constant term of $\left(2 \pi m^{1 / 2}\right) \mathcal{F}_{m}(z, 1)$ in (9).
Now we define

$$
\mathcal{F}_{m}^{*}(z, s)=\left(2 \pi m^{1 / 2}\right) \mathcal{F}_{m}(z, s)+c_{m} .
$$

Then by (6), (7), (8), and Lemma 2, $\mathcal{F}_{m}^{*}(z, 1)$ is a Γ-invariant harmonic function and $\mathcal{F}_{m}^{*}(z, 1)-$ $e(-m z)$ has a zero at $i \infty$. Hence it follows from [8, Theorem 6] that

$$
f(z)=\sum_{m=1}^{N} a_{m} \mathcal{F}_{m}^{*}(z, 1)
$$

for any modular function f for $\Gamma_{0}^{*}(p)$ with principal part $\sum_{m=1}^{N} a_{m} e(-m z)$ at $i \infty$. Hence

$$
\begin{equation*}
\mathbf{t}_{f}^{*}(D)=\sum_{m=1}^{N} a_{m}\left(\sum_{Q \in \mathcal{Q}_{D, p} / \Gamma} \frac{1}{\left|\Gamma_{Q}\right|} \mathcal{F}_{m}^{*}\left(z_{Q}, 1\right)\right) \tag{16}
\end{equation*}
$$

In order to complete the proof of Theorem 1, it suffices to determine the value $\sum_{Q \in \mathcal{Q}_{D, p} / \Gamma} \frac{1}{\left|\Gamma_{Q}\right|} \times$ $\mathcal{F}_{m}^{*}\left(z_{Q}, 1\right)$.

Lemma 3. Let $\mathcal{F}_{m}^{*}(z, s)=\left(2 \pi m^{1 / 2}\right) \mathcal{F}_{m}(z, s)+c_{m}$, where $\mathcal{F}_{m}(z, s)$ and c_{m} are defined in (5) and (9), respectively. Then the trace of $C M$ values of \mathcal{F}_{m}^{*} is given by

$$
\sum_{Q \in \mathcal{Q}_{D, p} / \Gamma} \frac{1}{\left|\Gamma_{Q}\right|} \mathcal{F}_{m}^{*}\left(z_{Q}, 1\right)=c_{m} H_{p}^{*}(D)+\sum_{\substack{c>0 \\ c \equiv 0(\bmod 4 p)}} S_{D}(m, c) \sinh \left(\frac{4 \pi m \sqrt{D}}{c}\right)
$$

Proof. We first compute for $\operatorname{Re} s>1$,

$$
\begin{equation*}
\sum_{Q \in \mathcal{Q}_{D, p} / \Gamma} \frac{1}{\left|\Gamma_{Q}\right|} \mathcal{F}_{m}^{*}\left(z_{Q}, s\right)=c_{m} H_{p}^{*}(D)+2 \pi \sqrt{m} \sum_{Q \in \mathcal{Q}_{D, p} / \Gamma} \frac{1}{\left|\Gamma_{Q}\right|} \mathcal{F}_{m}\left(z_{Q}, s\right) \tag{17}
\end{equation*}
$$

By the Poincaré series expansion of $\mathcal{F}_{m}\left(z_{Q}, s\right)$ in (5),

$$
\begin{equation*}
\sum_{Q \in \mathcal{Q}_{D, p} / \Gamma} \frac{\mathcal{F}_{m}\left(z_{Q}, s\right)}{\left|\Gamma_{Q}\right|}=\sum_{Q \in \mathcal{Q}_{D, p} / \Gamma_{\infty}} e\left(-m \operatorname{Re} z_{Q}\right)\left(\operatorname{Im} z_{Q}\right)^{1 / 2} I_{s-1 / 2}\left(2 \pi m \operatorname{Im} z_{Q}\right) . \tag{18}
\end{equation*}
$$

The series on the right-hand side of (18) is equal to

$$
\begin{aligned}
& \sum_{[a p, b, c] \in \mathcal{Q}_{D, p} / \Gamma_{\infty}} e\left(\frac{2 m b}{4 p a}\right)\left(\frac{2 \sqrt{D}}{4 p a}\right)^{1 / 2} I_{s-1 / 2}\left(2 \pi m \frac{2 \sqrt{D}}{4 p a}\right) \\
= & \sum_{a=1}^{\infty} \sum_{\substack{x(\bmod 2 a p) \\
x^{2}=-D(\bmod 4 a p)}} e\left(\frac{2 m x}{4 p a}\right)\left(\frac{2 \sqrt{D}}{4 p a}\right)^{1 / 2} I_{s-1 / 2}\left(2 \pi m \frac{2 \sqrt{D}}{4 p a}\right) \\
= & \sum_{\substack{c>0 \\
c \equiv 0(\bmod 4 p)}} \frac{1}{2} S_{D}(m, c)\left(\frac{2 \sqrt{D}}{c}\right)^{1 / 2} I_{s-1 / 2}\left(2 \pi m \frac{2 \sqrt{D}}{c}\right),
\end{aligned}
$$

which converges uniformly for $s \in[1,2]$ as explained in [5]. This combined with (17) completes the proof of Lemma 3.

Theorem 1 now follows from (16) and Lemma 3.

References

[1] J.H. Bruinier, J. Funke, Traces of CM-values of modular functions, J. Reine Angew. Math. 594 (2006) 1-33.
[2] J.H. Bruinier, P. Jenkins, K. Ono, Hilbert class polynomials and traces of singular moduli, Math. Ann. 334 (2006) 373-393.
[3] D. Choi, D. Jeon, S.-Y. Kang, C.H. Kim, Traces of singular moduli of arbitrary level modular functions, Preprint.
[4] W. Duke, Modular functions and the uniform distribution of CM points, Math. Ann. 334 (2006) 241-252.
[5] W. Duke, J.B. Friedlander, H. Iwaniec, Equidistribution of roots of a quadratic congruence to prime moduli, Ann. of Math. 141 (2) (1995) 423-441.
[6] C.H. Kim, Borcherds products associated with certain Thompson series, Compos. Math. 140 (2004) 541-551.
[7] C.H. Kim, Traces of singular values and Borcherds products, Bull. London Math. Soc. 38 (2006) 730-740.
[8] D. Niebur, A class of nonanalytic automorphic functions, Nagoya Math. J. 52 (1973) 133-145.
[9] D. Zagier, Traces of singular moduli, in: Motives, Polylogarithms and Hodge Theory, Part I, Irvine, CA, 1998, in: Int. Press Lect. Ser., vol. 3, I, Int. Press, Somerville, MA, 2002, pp. 211-244.

[^0]: * Corresponding author.

 E-mail addresses: choija@kias.re.kr (D. Choi), dyjeon@kongju.ac.kr (D. Jeon), sykang@kias.re.kr (S.-Y. Kang), chkim@swu.ac.kr (C.H. Kim).

