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Abstract

Zagier proved that the traces of singular values of the classical j -invariant are the Fourier coefficients of a
weight 3/2 modular form and Duke provided a new proof of the result by establishing an exact formula for
the traces using Niebur’s work on a certain class of non-holomorphic modular forms. In this short note, by
utilizing Niebur’s work again, we generalize Duke’s result to exact formulas for traces of singular moduli
of higher level modular functions.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and statement of result

The classical j -invariant is defined for z in the complex upper half plane H by

j (z) = q−1 + 744 + 196884q + · · · ,
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where q = e(z) = e2πiz and J (z) = j (z) − 744 is the normalized Hauptmodul for the group
Γ (1) = PSL2(Z). All the modular groups discussed in this paper are subgroups of Γ (1). For a
positive integer D congruent to 0 or 3 modulo 4, we denote by QD the set of positive definite
integral binary quadratic forms

Q(x,y) = [a, b, c] = ax2 + bxy + cy2

with discriminant −D = b2 −4ac. The group Γ (1) acts on QD by Q◦( α β

γ δ

) = Q(αx+βy,γ x+
δy). For each Q ∈QD , we let

zQ = −b + i
√

D

2a
,

the corresponding CM point in H and we write Γ (1)Q for the stabilizer of Q in Γ (1). The trace
of a singular modulus of discriminant −D is defined as

tJ (D) =
∑

Q∈QD/Γ (1)

1

|Γ (1)Q|J (zQ).

In [9, Theorem 1], Zagier proved that the generating series for the traces of singular moduli

g(z) := q−1 − 2 −
∑
D>0

D≡0,3 (mod 4)

tJ (D)qD = q−1 − 2 + 248q3 − 492q4 + · · ·

is a weakly holomorphic modular form (that is, meromorphic with poles only at the cusps) of
weight 3/2 on Γ0(4). Recently, Bruinier, Jenkins, and Ono [2] obtained an explicit formula for
the Fourier coefficients of g(z) in terms of Kloosterman sums and Duke [4] derived an exact
formula for tJ (D) as follows:

tJ (D) = −24H(D) +
∑
c>0

c≡0 (mod 4)

SD(c) sinh

(
4π

√
D

c

)
, (1)

where

SD(c) =
∑

x2≡−D (mod c)

e(2x/c) and H(D) =
∑

Q∈QD/Γ (1)

1

|Γ (1)Q|

is the Hurwitz class number. Using these two results together, Duke [4] reestablished Zagier’s
trace formula [9, Theorem 1].

The purpose of this paper is to give a generalization of (1) to traces of singular values of
modular functions of any prime level p. For prime p, let Γ ∗

0 (p) be the group generated by Γ0(p)

and the Fricke involution Wp = 1√
p

( 0 −1
p 0

)
. Let QD,p denote the set of quadratic forms Q ∈ QD

such that a ≡ 0 (mod p). The group Γ ∗
0 (p) acts on QD,p , where the action for elements of Γ0(p)

is defined as above and Q ◦ Wp = [pc,−b, a/p]. Note that the discriminant −D is congruent to
a square modulo 4p. We choose an integer β (mod 2p) with β2 ≡ −D (mod 4p) and consider the
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set QD,p,β = {[a, b, c] ∈ QD,p | b ≡ β (mod 2p)} on which Γ0(p) acts. For a modular function
f for Γ ∗

0 (p), we define the class number Hp(D) (resp. H ∗
p(D)) and the trace tf (D) (resp.

t∗f (D)) by

Hp(D) =
∑

Q∈QD,p,β/Γ0(p)

1

|Γ0(p)Q| ; tf (D) =
∑

Q∈QD,p,β/Γ0(p)

1

|Γ0(p)Q|f (zQ),

H ∗
p(D) =

∑
Q∈QD,p/Γ ∗

0 (p)

1

|Γ ∗
0 (p)Q| ; t∗f (D) =

∑
Q∈QD,p/Γ ∗

0 (p)

1

|Γ ∗
0 (p)Q|f (zQ).

Here Γ0(p)Q and Γ ∗
0 (p)Q are the stabilizers of Q in Γ0(p) and Γ ∗

0 (p), respectively. It is easy
to see that

H ∗
p(D) =

{
1
2Hp(D), if β ≡ 0 or p (mod 2p),

Hp(D), otherwise;
(2)

and

t∗f (D) =
{

1
2 tf (D), if β ≡ 0 or p (mod 2p),

tf (D), otherwise.
(3)

The modularity for the traces tf (D) was established by one of the authors in [6,7] in the
case when Γ ∗

0 (p) is of genus zero. If f is the Hauptmodul for such Γ ∗
0 (p) and if we define

tf (−1) = −1, tf (0) = 2 and tf (D) = 0 for D < −1, then the series
∑

n,r tf (4pn − r2)qnζ r ,
where ζ = e(w) for a complex number w, is a weak Jacobi form of weight 2 and index p. Mean-
while, using the theta correspondence, Bruinier and Funke [1] generalized Zagier’s trace formula
to traces of CM values of modular functions of arbitrary level. In particular, they showed that if
p is an odd prime and f = ∑

a(n)qn is a modular function for Γ ∗
0 (p) with a(0) = 0, then

∑
D>0−D≡� (mod 4p)

t∗f (D)qD +
∑
n�1

(
σ(n) + pσ(n/p)

)
a(−n) −

∑
m�1

∑
n�1

ma(−mn)q−m2
(4)

is a weakly holomorphic modular form of weight 3/2 and level 4p.

Remark. In the forthcoming paper [3], the authors generalize this result on modularity of traces
by Bruinier and Funke to any weakly holomorphic modular functions with arbitrary level, in-
cluding a composite level. We establish that the generating function for traces of singular moduli
of a weakly holomorphic modular function, whether its constant term is zero or not, plus certain
linear combination of class numbers is a weakly holomorphic modular form of weight 3/2.

We will obtain in the next section, the following exact formula for t∗f (D) which is a general-
ization of (1).
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Theorem 1. Suppose f is a modular function for Γ ∗
0 (p) with principal part

∑N
m=1 ame(−mz)

at i∞, and define for any positive integers m and c,

SD(m, c) =
∑

x2≡−D (mod c)

e(2mx/c).

Then

t∗f (D) =
N∑

m=1

am

[
cmH ∗

p(D) +
∑
c>0

c≡0 (mod 4p)

SD(m, c) sinh

(
4πm

√
D

c

)]
,

where

cm = −24

(−pα+1

p + 1
σ
(
m/pα

) + σ(m)

)
with pα‖m.

As an example, consider

f =
(

η(z)

η(37z)

)2

− 2 + 37

(
η(37z)

η(z)

)2

,

where η(z) is the Dedekind eta function defined by η(z) = q
1
24

∏∞
n=1(1 − qn). Then f is a

modular function for Γ ∗
0 (37) which is of genus 1 and has a Fourier expansion of the form q−3 −

2q−2 − q−1 + 0 + O(q). Since the representatives for Q148,37,0/Γ0(37) are given by [37,0,1]
and [74,−74,19], we find from equations (2), (3), and Theorem 1 that

24 · 3

38
+

∑
c>0

c≡0 (mod 148)

[
SD(3, c) sinh

(
12π

√
D

c

)
− 2SD(2, c) sinh

(
8π

√
D

c

)

− SD(1, c) sinh

(
4π

√
D

c

)]
= 1

2

(
f

(√
37i

37

)
+ f

(
37 + √

37i

74

))
,

where the latter is known to be −2.

2. Proof of Theorem 1

Throughout this section, Γ denotes Γ ∗
0 (p). For a positive integer m we consider Niebur’s

Poincaré series [8]

Fm(z, s) =
∑

M∈Γ∞\Γ
e(−mReMz)(ImMz)1/2Is−1/2(2πm ImMz), (5)

where Is−1/2 is the modified Bessel function of the first kind. Then Fm(z, s) converges absolutely
for Re s > 1 and satisfies

Fm(Mz, s) = Fm(z, s) for M ∈ Γ and 	Fm(z, s) = s(1 − s)Fm(z, s), (6)



704 D. Choi et al. / Journal of Number Theory 128 (2008) 700–707
where 	 is the hyperbolic Laplacian 	 = −y2(∂2
x + ∂2

y ) for z = x + iy. Niebur showed that
Fm(z, s) has an analytic continuation to s = 1 [8, Theorem 5] and that Fm(z, s) has the following
Fourier expansion [8, Theorem 1]; for Re s > 1,

Fm(z, s) = e(−mx)y1/2Is−1/2(2πmy) +
∞∑

n=−∞
bn(y, s;−m)e(nx), (7)

where bn(y, s;−m) → 0 (n �= 0) exponentially as y → i∞. Hence the pole of Fm(z,1) at i∞
may occur only in e(−mx)y1/2I1/2(2πmy), which is equal to

1

πy1/2m1/2
sinh(2πmy)y1/2e(−mx) = 1

2πm1/2

(
e(−mz) − e(−mz̄)

)
. (8)

We normalize Fm(z,1) by multiplying with 2πm1/2, so that the coefficient of e(−mz) is nor-
malized. Now we need to compute the constant term in (2πm1/2)Fm(z,1).

Lemma 2. Let Fm(z, s) be the Poincaré series defined in (5). Then the constant term in
(2πm1/2)Fm(z,1) is given by

24

(−pα+1

1 + p
σ
(
m/pα

) + σ(m)

)
=: −cm. (9)

Proof. It follows from [8, Theorem 1] that b0(y, s,−m) = am(s)y1−s/(2s − 1). Here

am(s) = 2πsms−1/2φm(s)/Γ (s) and φm(s) =
∑
c>0

S(m,0; c)c−2s , (10)

where S(m,n; c) is the general Kloosterman sum
∑

0�d<|c| e((ma + nd)/c) for
( a ∗

c d

) ∈ Γ .

Note that if M = (
a b
c d

) ∈ Γ = Γ ∗
0 (p), then M ∈ Γ0(p) or M is of the form

( √
px y/

√
p√

pz
√

pw

)
with

x, y, z,w ∈ Z. In the former case, c is a multiple of p and in the latter case, c = √
pz with p � z.

For n ∈ Z+, let um(n) denote the sum of mth powers of primitive nth roots of unity. We observe
that

S(m,0; c) =
{

um(c), if p | c,
um(z), if c = √

pz with p � z.

If we define

u∗
m(n) =

{
um(n), if p | n,

p−sum(n), if p � n,

then

psφm(s)ζ(2s) = ps
∑
c>0

S(m,0; c)c−2s
∑

c′∈Z+
c′−2s

=
∑

+

(
psu∗

m(c)
)
c−2s

∑
′ +

c′−2s =
∑

+

(∑
psu∗

m(c)

)
k−2s . (11)
c∈Z c ∈Z k∈Z c|k
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Note that if p � k, then

∑
c|k

psu∗
m(c) =

∑
c|k

um(c) =
{

k, if k | m,

0, if k � m
(12)

and if k = plk′ with l � 1 and p � k′, then

∑
c|k

psu∗
m(c) =

∑
d|k′

psu∗
m(d) +

∑
c|k
p|c

psu∗
m(c) =

∑
d|k′

um(d) +
∑
c|k
p|c

psum(c). (13)

By adding (ps − 1)
∑

d|k′ um(d) on both sides of (13), we obtain

(
ps − 1

)∑
d|k′

um(d) +
∑
c|k

psu∗
m(c) =

∑
c|k

psum(c).

Since

∑
d|k′

um(d) =
{

k′, if k′ | m,

0, if k′ � m
and

∑
c|k

psum(c) =
{

psk, if k | m,

0, if k � m,

we find that

∑
c|k

psu∗
m(c) =

⎧⎨
⎩

psk + (1 − ps)k′, if k | m,

(1 − ps)k′, if k � m and k′ | m,

0, if k � m and k′ � m.

(14)

Writing m = pαm′ with p � m′, we can deduce from (12) and (14) that

∑
k∈Z+

(∑
c|k

psu∗
m(c)

)
k−2s =

∑
k′|m′

k′k′−2s +
∞∑
l=1

∑
k′|m′

(
1 − ps

)
k′(plk′)−2s

+
α∑

l=1

∑
k′|m′

ps
(
plk′)(plk′)−2s

= σ1−2s(m
′) + (

1 − ps
)
σ1−2s(m

′)
∞∑
l=1

(
p−2s

)l + ps
∑

1�l�α

∑
k′|m′

(
plk′)1−2s

= σ1−2s(m
′)
[

1 + (
1 − ps

) p−2s

1 − p−2s

]
+ ps

(
σ1−2s(m) − σ1−2s(m

′)
)

= −p2s

1 + ps
σ1−2s

(
m/pα

) + psσ1−2s(m). (15)

Recall that the constant term in (2πm1/2)Fm(z,1) is

lim 2πm1/2b0(y, s,−m) = lim 2πm1/2am(s)y1−s/(2s − 1).

s→1 s→1
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By the definition of am(s) in (10), it is equal to

lim
s→1

2πm1/2(2πsms−1/2φm(s)/Γ (s)
)
y1−s/(2s − 1).

It follows from (11) and (15) that this limit goes to

4π2m

pζ(2)

( −p2

1 + p
σ−1

(
m/pα

) + pσ−1(m)

)
.

Thus simple calculations lead us to have the constant term of (2πm1/2)Fm(z,1) in (9). �
Now we define

F∗
m(z, s) = (

2πm1/2)Fm(z, s) + cm.

Then by (6), (7), (8), and Lemma 2, F∗
m(z,1) is a Γ -invariant harmonic function and F∗

m(z,1)−
e(−mz) has a zero at i∞. Hence it follows from [8, Theorem 6] that

f (z) =
N∑

m=1

amF∗
m(z,1)

for any modular function f for Γ ∗
0 (p) with principal part

∑N
m=1 ame(−mz) at i∞. Hence

t∗f (D) =
N∑

m=1

am

( ∑
Q∈QD,p/Γ

1

|ΓQ|F
∗
m(zQ,1)

)
. (16)

In order to complete the proof of Theorem 1, it suffices to determine the value
∑

Q∈QD,p/Γ
1

|ΓQ| ×
F∗

m(zQ,1).

Lemma 3. Let F∗
m(z, s) = (2πm1/2)Fm(z, s) + cm, where Fm(z, s) and cm are defined in (5)

and (9), respectively. Then the trace of CM values of F∗
m is given by

∑
Q∈QD,p/Γ

1

|ΓQ|F
∗
m(zQ,1) = cmH ∗

p(D) +
∑
c>0

c≡0 (mod 4p)

SD(m, c) sinh

(
4πm

√
D

c

)
.

Proof. We first compute for Re s > 1,

∑
Q∈QD,p/Γ

1

|ΓQ|F
∗
m(zQ, s) = cmH ∗

p(D) + 2π
√

m
∑

Q∈QD,p/Γ

1

|ΓQ|Fm(zQ, s). (17)

By the Poincaré series expansion of Fm(zQ, s) in (5),

∑
Q∈Q /Γ

Fm(zQ, s)

|ΓQ| =
∑

Q∈Q /Γ

e(−mRe zQ)(Im zQ)1/2Is−1/2(2πm Im zQ). (18)
D,p D,p ∞
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The series on the right-hand side of (18) is equal to

∑
[ap,b,c]∈QD,p/Γ∞

e

(
2mb

4pa

)(
2
√

D

4pa

)1/2

Is−1/2

(
2πm

2
√

D

4pa

)

=
∞∑

a=1

∑
x (mod 2ap)

x2≡−D (mod 4ap)

e

(
2mx

4pa

)(
2
√

D

4pa

)1/2

Is−1/2

(
2πm

2
√

D

4pa

)

=
∑
c>0

c≡0 (mod 4p)

1

2
SD(m, c)

(
2
√

D

c

)1/2

Is−1/2

(
2πm

2
√

D

c

)
,

which converges uniformly for s ∈ [1,2] as explained in [5]. This combined with (17) completes
the proof of Lemma 3. �

Theorem 1 now follows from (16) and Lemma 3.
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