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Abstract

Zagier proved that the traces of singular values of the classical j-invariant are the Fourier coefficients of a
weight 3/2 modular form and Duke provided a new proof of the result by establishing an exact formula for
the traces using Niebur’s work on a certain class of non-holomorphic modular forms. In this short note, by
utilizing Niebur’s work again, we generalize Duke’s result to exact formulas for traces of singular moduli
of higher level modular functions.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and statement of result

The classical j-invariant is defined for z in the complex upper half plane H by
j@ =g +744 +196884g + - - -,
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where g = e(z) = e2™Z and J(z) = j(z) — 744 is the normalized Hauptmodul for the group
I"' (1) = PSL>(Z). All the modular groups discussed in this paper are subgroups of I"(1). For a
positive integer D congruent to 0 or 3 modulo 4, we denote by Qp the set of positive definite
integral binary quadratic forms

O(x,y) =la, b, c] = ax* + bxy + cy*

with discriminant — D = b* —4ac. The group I'(1) actson Qp by Qo (;‘f aﬂ) = Q(ax+By, yx+
8y). For each Q € Qp, we let

_ —b+iVD

‘e 2a

’

the corresponding CM point in IHl and we write I"(1) o for the stabilizer of Q in I"(1). The trace
of a singular modulus of discriminant — D is defined as

(D)= )

QeQp/I'(1)

1
J .
RO

In [9, Theorem 1], Zagier proved that the generating series for the traces of singular moduli
g@)=q'=2— Y t;(D)g"=q"" —2+248¢> —492¢" + ...
D>0
D=0,3 (mod 4)

is a weakly holomorphic modular form (that is, meromorphic with poles only at the cusps) of
weight 3/2 on I(4). Recently, Bruinier, Jenkins, and Ono [2] obtained an explicit formula for
the Fourier coefficients of g(z) in terms of Kloosterman sums and Duke [4] derived an exact
formula for t; (D) as follows:

47/D
”{) (1)

t/(D)=-24H(D)+ ) Sp(c) sinh(
c>0
c=0 (mod 4)

where

1
Sp(e)= ) e@x/c) and H(D)= Tol
¥2=—D (mod ¢) 0eQp/I'(1) Q

is the Hurwitz class number. Using these two results together, Duke [4] reestablished Zagier’s
trace formula [9, Theorem 1].

The purpose of this paper is to give a generalization of (1) to traces of singular values of
modular functions of any prime level p. For prime p, let I7;'(p) be the group generated by I(p)
and the Fricke involution W), = L (2 _01

VP
such thata = 0 (mod p). The group Iy (p) acts on Qp, ,, where the action for elements of 15 (p)

is defined as above and Q o W, =[pc, —b, a/p]. Note that the discriminant —D is congruent to
a square modulo 4 p. We choose an integer 8 (mod 2p) with 82 = —D (mod 4p) and consider the

). Let Qp, , denote the set of quadratic forms Q € Qp
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set Op pp=1{la,b,cl€ Qp p | b= (mod2p)} on which I'h(p) acts. For a modular function
f for I'f(p), we define the class number H,(D) (resp. H;‘(D)) and the trace ty(D) (resp.

t7.(D)) by

1 1
HyD)= ) peser yD= 3 pesfGe,
0€Qp s/ To(p) ¢ 0€Qp 4/ To(p) ¢
HY D)= Y T ( ol D)=y T ( IR
0eQp /T 0 0eQp /I 0

Here I't(p)g and I'f(p)¢ are the stabilizers of Q in I'o(p) and Iy (p), respectively. It is easy
to see that

1 .
sH,(D), if B=0or p (mod2p),
* —)12Mp
HI’ (D) { H,(D), otherwise; &
and
l .
str(D), if B=0or p (mod2p),
* —12Y
tf(D) {tf(D), otherwise. 3)

The modularity for the traces ty(D) was established by one of the authors in [6,7] in the
case when I7(p) is of genus zero. If f is the Hauptmodul for such Ij(p) and if we define
tp(—1)=—1, t;(0) =2 and ty(D) = 0 for D < —1, then the series _, , t(4pn —r¥)q"¢",
where ¢ = e(w) for a complex number w, is a weak Jacobi form of weight 2 and index p. Mean-
while, using the theta correspondence, Bruinier and Funke [1] generalized Zagier’s trace formula
to traces of CM values of modular functions of arbitrary level. In particular, they showed that if
p is an odd prime and f =} a(n)g" is a modular function for I'j(p) with a(0) = 0, then

Yo 6D + Y (e +pon/p)at-n) = Y Y ma(-mmg™" @)

D>0 n>1 m>1n>1
—D=0 (mod 4p)

is a weakly holomorphic modular form of weight 3/2 and level 4p.

Remark. In the forthcoming paper [3], the authors generalize this result on modularity of traces
by Bruinier and Funke to any weakly holomorphic modular functions with arbitrary level, in-
cluding a composite level. We establish that the generating function for traces of singular moduli
of a weakly holomorphic modular function, whether its constant term is zero or not, plus certain
linear combination of class numbers is a weakly holomorphic modular form of weight 3/2.

We will obtain in the next section, the following exact formula for t* (D) which is a general-
ization of (1).
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Theorem 1. Suppose f is a modular function for I'j(p) with principal part ZZ: 1 ame(—mz)
at 100, and define for any positive integers m and c,

Spm,c)y= > e(@mx/c).

x2=—D (mod ¢)

Then
t(D) =Y aw|cnHy(D)+ > Sp(m.c)sinh — )
m=1 c>0
¢c=0 (mod 4p)
where
_poz+l
—_24 o ith p®||m.
Cm (p+1 o(m/p )—l—a(m)) with p*||lm

As an example, consider

1) \* (n(37z) )2
= — 2437 ,
f (77(37z)) * n(z)

where 7n(z) is the Dedekind eta function defined by n(z) = qﬁ [T,2,(1 —¢™). Then f is a
modular function for I';"(37) which is of genus 1 and has a Fourier expansion of the form g3 —
Zq_2 — q_l + 0+ O(g). Since the representatives for Q143 37.0/10(37) are given by [37,0, 1]

and [74, —74, 19], we find from equations (2), (3), and Theorem 1 that

27D

8m/ﬁ)

c

24.%+ > [SD(S,c)sinh(1 >—2SD(2,c)sinh(

c>
¢=0 (mod 148)

—Sp(l.c) sinh<4n;/5>] = %(f(gl> + f(37+77:1/3_7l)>

where the latter is known to be —2.
2. Proof of Theorem 1

Throughout this section, I" denotes I7;(p). For a positive integer m we consider Niebur’s
Poincaré series [8]

Fn@z.5)= > e(-mReMz)(ImMz)" I, pQ2mmIm Mz), (5)
Mels\I"

where I;_1 > is the modified Bessel function of the first kind. Then F, (z, s) converges absolutely
for Res > 1 and satisfies

FnMz,5)=Fm(z,s) forMel' and AF,(z,s)=s(1—5)Fnu(z,s), (6)
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where A is the hyperbolic Laplacian A = —y2(a§ + 8)2,) for z = x 4 iy. Niebur showed that
Fm(z, s) has an analytic continuation to s = 1 [8, Theorem 5] and that F;, (z, s) has the following
Fourier expansion [8, Theorem 1]; for Res > 1,

Fn(z,8) =e(=mx)y' P I pQumy) + Y ba(y, s; —m)e(nx), @

n=—oo

where b, (y, s; —m) — 0 (n # 0) exponentially as y — ioco. Hence the pole of F,(z, 1) at ioco
may occur only in e(—mx)y1/211/2 (2mmy), which is equal to

1/2

sinh(2rmy)y e(—mz) — e(—mZ)). ®)

e(—mx) =

Ty 212 znml/z(

We normalize F,(z, 1) by multiplying with 2m!/?, so that the coefficient of e(—mz) is nor-
malized. Now we need to compute the constant term in (27tm1/ 2 Fon(z, 1).

Lemma 2. Let F,,(z,s) be the Poincaré series defined in (5). Then the constant term in
QrmY/?) Fu(z, 1) is given by

_p0l+1 N
24( T+ U(I’I’l/p )—l—cr(m)) = —Cp. )]

Proof. It follows from [8, Theorem 1] that by(y, s, —m) = a, (s)y'~*/(2s — 1). Here

am(s) =21'm* 2@ (5)/T(s) and  Gp(s) =D Sm.,0; )™, (10)

c>0

where S(m,n;c) is the general Kloosterman sum 20<d<|c| e((ma + nd)/c) for (?;) el.

Note that if M = (¢ S) € I' = I'j(p), then M € Iy(p) or M is of the form (ﬁi y\//%/wﬁ) with

X,¥,2, w € Z. In the former case, ¢ is a multiple of p and in the latter case, c = ,/pz with p tz.
For n € Z*, let u,, (n) denote the sum of mth powers of primitive nth roots of unity. We observe
that

o[, itple,
S(m,0;c)= {um(z), if c = \/pz with ptz.
If we define
w o |um@, if p|n,
uy,n)= {psum(l’l), ifp)[l’l,
then

P om(s)¢(2s) = p° Z S(m,0; c)e™ Z o2

c>0 e+

= Z (pruk, ()™ Z 7B = Z (Z psu,’;(c)>k_2s. (11)

ceZ* ceZ* keZ+t ~clk
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Note that if p t k, then
k, ifk|m
Sk _ _ ’ ’
§|k U (e) = §|k (€)= {O, ki (12)
c c

and if k = p'k’ with I > 1 and p { k', then

Yo Pun @ =Y pup)+) pup© =) un(d)+ Y punc). (13)
clk dlk’ cl‘k d|k’ c\lk
pic pic

By adding (p* — 1) Zdlk/ Uy, (d) on both sides of (13), we obtain

(p*—1) Zum (d)+ Zpsu,’;(c) = Zpsum (©).

d|k’ clk clk
Since
K, K | m, s [Pk, ifk|m,
Z”’"(d)—{o, ik 4 2P ”’"(C)—{o, itk fm,
dik’ clk
we find that
pk+ 0 —pHK, ifk|m,
> o prup =1 1-pHK, if ktm and k' | m, (14)
clk 0, ifk{mand k' f m.

Writing m = pm’ with p{m’, we can deduce from (12) and (14) that

> <Z psu;(c))k_zs =Y KK+ i S (1=K (p'K)

keZy " clk k'\m’ =1 K'|m’
o
+ Z Z ps(plk/)(plk/)_zs
=1 k'|m’

=o1_2(m) + (1 — pS)O'l—Zs (m") Z(prS)[ +p’ Z Z (plk/)1*23‘
=1

I<I<a K |m!

—2s
=01-24(m") [1 +(1-p°) #} + p*(01-25(m) — o125 (m"))
_p2x
=115 o1-25(m/p*) + p*o1-a5(m). (15)

Recall that the constant term in 27 m'/2)F,,(z, 1) is

slgnl 27m'Pbo(y, s, —m) = Slgn] 2em Pay (s)y' 7 /(25 — 1).
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By the definition of a, (s) in (10), it is equal to

lim 2wm'/2 (25 m* = 2, (5)/ T (5))y' =5 /(25 — 1)

s—1

It follows from (11) and (15) that this limit goes to

47‘[2}’}1( _p2 o (m/ O[)+ o (m))
pe@) \14p 7 WP )T PO )

Thus simple calculations lead us to have the constant term of QCrmYHF,(z,1)in ). O

Now we define
Fi(z,s) = (2nm1/2)Fm (z,8) +cm-

Then by (6), (7), (8), and Lemma 2, F,; (z, 1) is a I"-invariant harmonic function and F; (z, 1) —
e(—mz) has a zero at i00. Hence it follows from [8, Theorem 6] that

f@= Z amFp (2, 1)

m=1

for any modular function f for I;'(p) with principal part Z | ame(—mz) at ico. Hence

N

1
;<D>=Zam( > @f,ﬁ(zg,l)). (16)

m=1 QEQD,p/r

In order to complete the proof of Theorem 1, it suffices to determine the value ) 0eQp /T %

Fu(zo, D).
Lemma 3. Let F)(z,s) = Qam'?) Fp(z,5) + ¢, where Fp(z,s) and c,, are defined in (5)
and (9), respectively. Then the trace of CM values of F) is given by

1
> @f;’;(ZQ,l)zcmH;(D)—l— > Sp(m.c)sinh
0eQp /T

(4nm«/ D)
c>0 ¢
c=0 (mod 4p)

Proof. We first compute for Res > 1,

1
> —f*(zQ S=caHy(D)+2m/m Y ——Fulzg.s). (7
2%) 28%)
0eQp /T Qe€Qp.p/T"
By the Poincaré series expansion of 7, (z¢, s) in (5),
Fn(zo,s
3 Fm(z0.9) _ > e(-mRezg)(Imzg)'*I_1p(2rmImzg).  (18)

T
ocoyr 11 0€Qp /v



D. Choi et al. / Journal of Number Theory 128 (2008) 700-707 707

The series on the right-hand side of (18) is equal to

2mb\ (2D \? 2D
Z e Toa 1 Ii_12| 2rm 1
[ap.b,c1€Qp.p/Too pa pa pa
> 2mx\ (27D /? 2V/D
= Z Z e 4— 4 Is—l/2 27{m4—
a=1 x (mod 2ap) pa pa pa
x2=-D (mod 4ap)

1/2
= Z %SD(’",C)(@) ls—1/2<2ﬂm@>,

c>0
¢c=0 (mod 4p)

which converges uniformly for s € [1, 2] as explained in [5]. This combined with (17) completes
the proof of Lemma 3. O

Theorem 1 now follows from (16) and Lemma 3.
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