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Abstract

The branching ratio and direct CP asymmetry of the ϒ(1S) → BcDs weak decay are estimated with the 
perturbative QCD approach firstly. It is found that (1) the direct CP-violating asymmetry is close to zero,
(2) the branching ratio Br(ϒ(1S) → BcDs) � 10−10 might be measurable at the future experiments.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The ϒ(1S) meson is the ground S-wave spin-triplet bottomonium (bound state of bb̄) with 
the well-established quantum number of IGJ PC = 0−1−− [1]. Its mass, mϒ(1S) = 9460.30 ±
0.26 MeV [1], is less than the kinematic open-bottom threshold. Phenomenologically, the domi-
nated ϒ(1S) hadronic decay through the bb̄ pairs annihilation into three gluons, with branching 
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ratio Br(ϒ(1S) → ggg) = (81.7 ± 0.7)% [1], is suppressed by the Okubo–Zweig–Iizuka rule 
[2–4]. The partial width of the ϒ(1S) electromagnetic decay through the bb̄ pairs annihilation 
into a virtual photon, (3 + R)��+�− , is proportional to Q2

b, where Qb = −1/3 is the electric 
charge of the bottom quark in the unit of |e|, R is the ratio of the inclusive production cross 
section of hadrons to the μ+μ− pair production cross section, and ��+�− is the partial width 
of the pure leptonic ϒ(1S) → �+�− decay. Besides,1 the ϒ(1S) meson can also decay via the 
weak interactions within the standard model, although the branching ratio is very small, about 
2/τB�ϒ(1S) ∼ O(10−8) [1], where τB and �ϒ(1S) are the lifetime of the Bu,d,s meson and the 
total width of the ϒ(1S) meson, respectively. In this paper, we will study the ϒ(1S) → BcDs

weak decays with the perturbative QCD (pQCD) approach [6–8]. The motivation is listed as 
follows.

From the experimental point of view, (1) over 108 ϒ(1S) data samples were accumulated by 
the Belle detector at the KEKB e+e− asymmetric energy collider [9]. It is hopefully expected 
that more and more upsilon data samples will be collected with great precision at the forthcoming 
SuperKEKB and the running upgraded LHC. A large amount of ϒ(1S) data samples offer a re-
alistic possibility to search for the ϒ(1S) weak decays which in some cases might be detectable. 
Theoretical studies on the ϒ(1S) weak decays are necessary to give a ready reference. (2) For 
the ϒ(1S) → BcDs weak decay, the back-to-back final states with opposite electric charges have 
definite momentums and energies in the center-of-mass frame of the ϒ(1S) meson. In addition, 
identification of either a single flavored Ds or Bc meson is free from the low double-tagging 
efficiency [10], and can provide an unambiguous evidence of the ϒ(1S) weak decay. Of course, 
it should be noticed that small branching ratios for the ϒ(1S) weak decays make the observa-
tion extremely challenging, and any evidences of an abnormally large production rate of either a 
single Ds or Bc meson might be a hint of new physics [10].

From the theoretical point of view, the ϒ(1S) weak decays permit one to crosscheck param-
eters obtained from the b-flavored hadron decays, to further explore the underlying dynamical 
mechanism of the heavy quark weak decay, and to test various phenomenological approaches. In 
recent several years, many attractive methods have been developed to evaluate hadronic matrix 
elements (HME) where the local quark-level operators are sandwiched between the initial and 
final hadron states, such as pQCD [6–8], the QCD factorization [11] and the soft and collinear ef-
fective theory [12–15], which could give reasonable explanation for many measurements on the 
nonleptonic Bu,d decays. The ϒ(1S) → BcDs weak decay is favored by the color factor due to 
the external W emission topological structure, and by the Cabibbo–Kobayashi–Maskawa (CKM) 
factors |VcbV

∗
cs |, so it should have a large branching ratio. However, as far as we know, there is 

no theoretical investigation on the ϒ(1S) → BcDs weak decay at the moment. In this paper, we 
will predict the branching ratio and direct CP-violating asymmetry of the ϒ(1S) → BcDs weak 
decay with the pQCD approach to confirm whether it is possible to search for this process at the 
future experiments.

This paper is organized as follows. In section 2, we present the theoretical framework and the 
amplitude for the ϒ(1S) → BcDs decay. Section 3 is devoted to numerical results and discussion. 
Finally, we conclude with a summary in the last section.

1 In addition, there are the radiative decay ϒ(1S) → γgg and the magnetic dipole transition decay ϒ(1S) → γ ηb [5]. 
The branching ratio for the radiative decay is Br(ϒ(1S)→γgg) = (2.2 ± 0.6)% [1]. No signals of the magnetic dipole 
transition decay ϒ(1S) → γ ηb have been seen experimentally until now.
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2. Theoretical framework

2.1. The effective Hamiltonian

Using the operator product expansion and renormalization group equation, the effective 
Hamiltonian responsible for the ϒ(1S) → BcDs weak decay is written as [16]

Heff = GF√
2

{
VcbV

∗
cs

2∑
i=1

Ci(μ)Qi(μ) − VtbV
∗
ts

10∑
j=3

Cj (μ)Qj (μ)
}

+ H.c., (1)

where GF = 1.166 × 10−5 GeV−2 [1] is the Fermi coupling constant; the CKM factors are 
expressed as a power series in the Wolfenstein parameter λ ∼ 0.2 [1],

VcbV
∗
cs = +Aλ2 − 1

2
Aλ4 − 1

8
Aλ6(1 + 4A2) +O(λ8), (2)

VtbV
∗
ts = −VcbV

∗
cs − Aλ4(ρ − iη) +O(λ8). (3)

The Wilson coefficients Ci(μ) summarize the physical contributions above the scale of μ, and 
have been reliably evaluated to the next-to-leading logarithmic order. The local operators are 
defined as follows:

Q1 = [c̄αγμ(1 − γ5)bα][s̄βγ μ(1 − γ5)cβ ], (4)

Q2 = [c̄αγμ(1 − γ5)bβ ][s̄βγ μ(1 − γ5)cα], (5)

Q3 =
∑
q

[s̄αγμ(1 − γ5)bα][q̄βγ μ(1 − γ5)qβ ], (6)

Q4 =
∑
q

[s̄αγμ(1 − γ5)bβ ][q̄βγ μ(1 − γ5)qα], (7)

Q5 =
∑
q

[s̄αγμ(1 − γ5)bα][q̄βγ μ(1 + γ5)qβ ], (8)

Q6 =
∑
q

[s̄αγμ(1 − γ5)bβ ][q̄βγ μ(1 + γ5)qα], (9)

Q7 =
∑
q

3

2
Qq [s̄αγμ(1 − γ5)bα][q̄βγ μ(1 + γ5)qβ ], (10)

Q8 =
∑
q

3

2
Qq [s̄αγμ(1 − γ5)bβ ][q̄βγ μ(1 + γ5)qα], (11)

Q9 =
∑
q

3

2
Qq [s̄αγμ(1 − γ5)bα][q̄βγ μ(1 − γ5)qβ ], (12)

Q10 =
∑
q

3

2
Qq [s̄αγμ(1 − γ5)bβ ][q̄βγ μ(1 − γ5)qα], (13)

where Q1,2, Q3,···,6, and Q7,···,10 are usually called as the tree operators, QCD penguin operators, 
and electroweak penguin operators, respectively; α and β are color indices; q denotes all the 
active quarks at the scale of μ ∼O(mb), i.e., q = u, d, s, c, b.
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2.2. Hadronic matrix elements

To obtain the decay amplitudes, the remaining works are to calculate the hadronic matrix ele-
ments of local operators as accurately as possible. Based on the kT factorization theorem [17] and 
the Lepage–Brodsky approach for exclusive processes [18], HME can be written as the convo-
lution of hard scattering subamplitudes containing perturbative contributions with the universal 
wave functions reflecting the nonperturbative contributions with the pQCD approach, where the 
transverse momentums of quarks are retained and the Sudakov factors are introduced, in order to 
regulate the endpoint singularities and provide a naturally dynamical cutoff on nonperturbative 
contributions. Usually, the decay amplitude can be factorized into three parts: the hard effects 
incorporated into the Wilson coefficients Ci , the process-dependent scattering amplitudes T , and 
the universal wave functions �, i.e.,∫

dx dbCi(t) T (t, x, b)�(x, b)e−S, (14)

where t is a typical scale, x is the longitudinal momentum fraction of the valence quark, b is the 
conjugate variable of the transverse momentum, and e−S is the Sudakov factor.

2.3. Kinematic variables

The light cone kinematic variables in the ϒ(1S) rest frame are defined as follows:

pϒ = p1 = m1√
2
(1,1,0), (15)

pBc = p2 = (p+
2 ,p−

2 ,0), (16)

pDs = p3 = (p−
3 ,p+

3 ,0), (17)

ki = xi pi + (0,0, �kiT ), (18)

ε
‖
ϒ = 1√

2
(1,−1,0), (19)

where xi and �kiT are the longitudinal momentum fraction and transverse momentum of the va-
lence quark, respectively; ε‖

ϒ is the longitudinal polarization vector of the ϒ(1S) meson. The 
notation of momentum is showed in Fig. 1(a). There are some relations among these kinematic 
variables:

p±
i = (Ei ± p)/

√
2, (20)

s = 2p2·p3, (21)

t = 2p1·p2 = 2m1 E2, (22)

u = 2p1·p3 = 2m1 E3, (23)

p =
√

[m2
1 − (m2 + m3)2] [m2

1 − (m2 − m3)2]
2m1

, (24)

where p is the common momentum of the final Bc and Ds states; m1 = mϒ(1S), m2 = mBc and 
m3 = mDs denote the masses of the ϒ(1S), Bc and Ds mesons, respectively.
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2.4. Wave functions

The HME of diquark operators squeezed between the vacuum and ϒ(1S), Bc, Ds mesons are 
defined as follows:

〈0|bi(z)b̄j (0)|ϒ(p1, ε‖)〉 = 1

4
fϒ

∫
dk1 e−ik1·z

{
/ε‖

[
m1 φv

ϒ(k1) − /p1 φt
ϒ(k1)

]}
ji

, (25)

〈B+
c (p2)|c̄i (z)bj (0)|0〉 = i

4
fBc

∫
dk2 eik2·z

{
γ5

[
/p2 + m2

]
φBc(k2)

}
ji

, (26)

〈D−
s (p3)|s̄i (z)cj (0)|0〉 = i

4
fDs

1∫

0

dk3 eik3·z
{
γ5

[
/p3 + m3

]
�Ds (k3)

}
ji

, (27)

where fϒ , fBc , fDs are decay constants.
There are several phenomenological models for the Ds meson wave functions (for example, 

Eq. (30) in Ref. [19]). In this paper, we will take the model favored by Ref. [19] via fitting with 
measurements on the B → DP decays:

φDs (x, b) = 6xx̄
{

1 + CD(1 − 2x)
}

exp
{

− 1

2
w2 b2

}
, (28)

where x̄ = 1 − x; x and b are the longitudinal momentum fraction and the conjugate variable of 
the transverse momentum kT of the strange quark in the Ds meson, respectively; the exponential 
term represents the kT distribution; CD = 0.4 ± 0.1 and w = 0.2 GeV [19].

Due to mϒ(1S) 
 2mb and mBc 
 mb +mc, nonrelativistic quantum chromodynamics [20–22]
and Schrödinger equation can be used to describe both ϒ(1S) and Bc mesons. The wave func-
tions of an isotropic harmonic oscillator potential are given in Ref. [23],

φv
ϒ(x) = Axx̄ exp

{
− m2

b

8β2
1 x x̄

}
, (29)

φt
ϒ(x) = B (x − x̄)2 exp

{
− m2

b

8β2
1 x x̄

}
, (30)

φBc(x) = C xx̄ exp
{

− x̄ m2
c + x m2

b

8β2
2 x x̄

}
, (31)

where βi = ξiαs(ξi) with ξi = mi/2; parameters A, B , C are the normalization coefficients sat-
isfying the following conditions:

1∫

0

dx φ
v,t
ϒ (x) = 1,

1∫

0

dx φBc(x) = 1. (32)

2.5. Decay amplitudes

The Feynman diagrams for the ϒ(1S) → BcDs decay are shown in Fig. 1. There are two 
types: the emission and annihilation topologies, where diagrams containing gluon exchanges 
between the quarks in the same (different) mesons are entitled (non)factorizable diagrams.
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Fig. 1. Feynman diagrams for the ϒ(1S) → BcDs decay with the pQCD approach, including the factorizable emission 
diagrams (a, b), the nonfactorizable emission diagrams (c, d), the nonfactorizable annihilation diagrams (e, f), and the 
factorizable annihilation diagrams (g, h).

By calculating these diagrams with the pQCD master formula Eq. (14), the decay amplitudes 
of ϒ(1S) → BcDs decay can be expressed as:

A(ϒ(1S)→BcDs) = √
2GF π fϒ fBc fDs

CF

N
m3

ϒ (εϒ ·pDs )

×
{
VcbV

∗
cs

[
ALL

a+b a1 +ALL
c+d C2

]
− VtbV

∗
ts

[
ALL

a+b (a4 + a10)

+ASP
a+b (a6 + a8) +ALL

c+d (C3 + C9) +ASP
c+d (C5 + C7)

+ALL
e+f (C3 + C4 − 1

2
C9 − 1

2
C10) +ALR

e+f (C6 − 1

2
C8)

+ALL
g+h (a3 + a4 − 1

2
a9 − 1

2
a10) +ALR

g+h (a5 − 1

2
a7)

+ASP
e+f (C5 − 1

2
C7)

]}
, (33)

where CF = 4/3 and the color number N = 3.
The parameters ai are defined as follows:

ai = Ci + Ci+1/N (i = 1,3,5,7,9); (34)

ai = Ci + Ci−1/N (i = 2,4,5,6,10). (35)

The building blocks Aa+b, Ac+d , Ae+f , Ag+h denote the contributions of the factorizable 
emission diagrams Fig. 1(a, b), the nonfactorizable emission diagrams Fig. 1(c, d), the nonfac-
torizable annihilation diagrams Fig. 1(e, f), the factorizable annihilation diagrams Fig. 1(g, h), 
respectively. They are defined as

Ak
i+j =Ak

i +Ak
j , (36)

where the subscripts i and j correspond to the indices of Fig. 1; the superscript k refers to one 
of the three possible Dirac structures, namely k = LL for (V − A) ⊗ (V − A), k = LR for 
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(V − A) ⊗ (V + A), and k = SP for −2(S − P) ⊗ (S + P). The explicit expressions of these 
building blocks are collected in the Appendix A.

3. Numerical results and discussion

In the rest frame of the ϒ(1S) meson, the CP-averaged branching ratio and direct CP-violating 
asymmetry for the ϒ(1S) → BcDs weak decay are written as

Br(ϒ(1S)→BcDs) = 1

12π

p

m2
ϒ�ϒ

|A(ϒ(1S)→BcDs)|2, (37)

ACP(ϒ(1S)→BcDs) = Br(ϒ(1S)→B+
c D−

s ) −Br(ϒ(1S)→B−
c D+

s )

Br(ϒ(1S)→B+
c D−

s ) +Br(ϒ(1S)→B−
c D+

s )
, (38)

where the decay width �ϒ = 54.02 ± 1.25 keV [1].
The numerical values of other input parameters are listed as follows.
(1) The Wolfenstein parameters [1]: A = 0.814+0.023

−0.024, λ = 0.22537 ± 0.00061, ρ̄ = 0.117 ±
0.021, and η̄ = 0.353 ± 0.013, where (ρ + iη) = (ρ̄ + iη̄)(1 + λ2/2 + · · ·).

(2) Masses of quarks [1]: mc = 1.67 ± 0.07 GeV and mb = 4.78 ± 0.06 GeV.
(3) Decay constants: fϒ(1S) = 676.4 ± 10.7 MeV [23], fBc = 489 ± 5 MeV [24], and fDs =

257.5 ± 4.6 MeV [1].
Finally, we get

Br(ϒ(1S)→BcDs) = (3.78+0.27+0.42+0.50+0.34
−0.26−0.38−0.25−0.32) × 10−10, (39)

ACP(ϒ(1S)→BcDs) = (4.79+0.21+1.14+0.18+0.36
−0.20−1.00−0.44−0.39) × 10−5, (40)

where the central values are obtained with the central values of input parameters; the first un-
certainties come from the CKM parameters; the second uncertainties are due to the variation of 
mass mb and mc; the third uncertainties arise from the typical scale μ = (1 ± 0.1)ti , where the 
expressions of ti for different topologies are given in Eqs. (A.31)–(A.34); and the fourth uncer-
tainties correspond to the variation of decay constants fϒ , fBc , fDs and shape parameter CD in 
Eq. (28). There are some comments.

(1) It is seen from Eq. (39) that branching ratio for the ϒ(1S) → BcDs decay can reach 
up to 10−10, which might be accessible at the running LHC and forthcoming SuperKEKB. For 
example, the ϒ(1S) production cross section in p–Pb collision is a few μb with the LHCb [25]
and ALICE [26] detectors at LHC. Over 1012 ϒ(1S) mesons per ab−1 data collected at LHCb 
and ALICE are in principle available, corresponding to a few hundreds of the ϒ(1S) → BcDs

events.
(2) Compared the ϒ(1S) → BcDs decay with the ϒ(1S) → Bcπ decay [23], they are both 

the color-favored and CKM-favored. There are only the emission topologies and only the tree 
operators contributing to the ϒ(1S) → Bcπ decay. Besides the emission topologies and tree 
operators, there are other contributions from the annihilation topologies and penguin operators 
for the ϒ(1S) → BcDs decay. In addition, there is another important factor, the decay constant 
fDs > 2fπ . This might explain the fact that although the final phase spaces for the ϒ(1S) →
BcDs decay is more compact than those for the ϒ(1S) → Bcπ decay, there is still the relation,2

Br(ϒ(1S)→BcDs) > Br(ϒ(1S)→Bcπ) with the pQCD approach.

2 The branching ratio for the ϒ(1S) → Bcπ decay is about Br(ϒ(1S)→Bcπ) ∼ O(10−11) [23] with the pQCD 
approach.
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Fig. 2. The contributions to the branching ratio from different region of αs/π (horizontal axises), where the numbers 
over histogram denote the percentage of the corresponding contributions.

(3) It is shown from Eq. (40) that the direct CP asymmetry for the ϒ(1S) → BcDs de-
cay is close to zero. The fact should be so. As it is well known, the magnitude of direct CP
asymmetry is proportional to the sine of weak phase difference. First and foremost, the weak 
phase difference between the CKM factors VcbV

∗
cs and VtbV

∗
ts are suppressed by the factor of 

λ2. Secondly, compared with the tree contributions appearing with VcbV
∗
cs , the penguin and an-

nihilation contributions always accompanied with VtbV
∗
ts are suppressed by the small Wilson 

coefficients.
(4) As it is well known, due to mass mBc > mϒ(1S)/2, the momentum transition in the 

ϒ(1S) → BcDs decay may be not large enough. One might question whether the pQCD ap-
proach is applicable and whether the perturbative calculation is reliable. Therefore, it is necessary 
to check what percentage of the contributions comes from the perturbative region. The contribu-
tions to branching ratio from different region of αs/π are showed in Fig. 2. One can clearly see 
from Fig. 2 that more than 90% contributions to branching ratio come from the αs/π ≤ 0.3 re-
gion, and the contributions from nonperturbative region with large αs/π are highly suppressed. 
One important reason is that assisting with the typical scale in Eqs. (A.31)–(A.34), the quark 
transverse momentum is retained and the Sudakov factor is introduced to effectively suppress 
the nonperturbative contributions within the pQCD approach [6–8].

(5) There are many uncertainties on our results. Other factors, such as the contributions of 
higher order corrections to HME, relativistic effects and so on, which are not considered here, 
deserve the dedicated study. Our results just provide an order of magnitude estimation.

4. Summary

The ϒ(1S) weak decay is legal within the standard model. With the potential prospects of 
the ϒ(1S) at high-luminosity dedicated heavy-flavor factories, the ϒ(1S) → BcDs weak decays 
are studied with the pQCD approach. It is found that with the nonrelativistic wave functions for 
ϒ(1S) and Bc mesons, branching ratios Br(ϒ(1S)→BcDs) � 10−10, which might be measur-
able in future experiments. The direct CP-violating asymmetry for the ϒ(1S) → BcDs decay is 
close to zero because of the tiny weak phase difference.
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Appendix A. The building blocks of decay amplitudes

For the sake of simplicity, we decompose the decay amplitude Eq. (33) into some building 
blocks Ak

i , where the subscript i on Ak
i corresponds to the indices of Fig. 1; the superscript k

on Ak
i refers to one of the three possible Dirac structures �1 ⊗ �2 of the four-quark operator 

(q̄1�1q2)(q̄1�2q2), namely k = LL for (V − A) ⊗ (V − A), k = LR for (V − A) ⊗ (V + A), 
and k = SP for −2(S − P) ⊗ (S + P). The explicit expressions of Ak

i are written as follows:

ALL
a =

1∫

0

dx1

1∫

0

dx2

∞∫

0

b1db1

∞∫

0

b2db2 φv
ϒ(x1)φBc(x2)

Ea(ta)αs(ta)Hab(αe,βa, b1, b2)
{
x2 + r2

3 x̄2 + r2rb

}
, (A.1)

ASP
a = −2 r3

1∫

0

dx1

1∫

0

dx2

∞∫

0

b1db1

∞∫

0

b2db2 φv
ϒ(x1)φBc(x2)

Ea(ta)αs(ta)Hab(αe,βa, b1, b2)
{
rb + r2x̄2

}
, (A.2)

ALL
b =

1∫

0

dx1

1∫

0

dx2

∞∫

0

b1db1

∞∫

0

b2db2 φBc(x2)Eb(tb)αs(tb)

Hab(αe,βb, b2, b1)
{
φv

ϒ(x1)
[
2 r2 rc − r2

2 x1 − r2
3 x̄1

]

+ φt
ϒ(x1)

[
2 r2 x1 − rc

]}
, (A.3)

ASP
b = −2 r3

1∫

0

dx1

1∫

0

dx2

∞∫

0

b1db1

∞∫

0

b2db2 φBc(x2)Eb(tb)αs(tb)

Hab(αe,βb, b2, b1)
{
φv

ϒ(x1) (2 r2 − rc) − φt
ϒ(x1) x̄1

}
, (A.4)

ALL
c = 1

N

1∫

0

dx1

1∫

0

dx2

1∫

0

dx3

∞∫

0

db1

∞∫

0

b2db2

∞∫

0

b3db3 δ(b1 − b2)

φBc(x2)φDs (x3, b3)Ec(tc)αs(tc)Hcd(αe,βc, b2, b3){
φv

ϒ(x1)
[ s (x1 − x̄3)

m2
+ 2 r2

2 (x1 − x2)
]
+ φt

ϒ(x1) r2 (x2 − x1)
}
, (A.5)
1
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ASP
c = − 1

N
r3

1∫

0

dx1

1∫

0

dx2

1∫

0

dx3

∞∫

0

db1

∞∫

0

b2db2

∞∫

0

b3db3 αs(tc)

δ(b1 − b2)φBc(x2)φDs (x3, b3)Ec(tc)Hcd(αe,βc, b2, b3){
φv

ϒ(x1) r2 (x̄3 − x2) + φt
ϒ(x1) (x1 − x̄3)

}
, (A.6)

ALL
d = 1

N

1∫

0

dx1

1∫

0

dx2

1∫

0

dx3

∞∫

0

db1

∞∫

0

b2db2

∞∫

0

b3db3 δ(b1 − b2)

φBc(x2)φDs (x3, b3)Ed(td)αs(td)Hcd(αe,βd, b2, b3){
φv

ϒ(x1)
[ s (x3 − x2)

m2
1

− r3 rc

]
+ φt

ϒ(x1) r2 (x2 − x1)
}
, (A.7)

ASP
d = − 1

N
r3

1∫

0

dx1

1∫

0

dx2

1∫

0

dx3

∞∫

0

db1

∞∫

0

b2db2

∞∫

0

b3db3 αs(td)

δ(b1 − b2)φBc(x2)φDs (x3, b3)Ed(td)Hcd(αe,βd, b2, b3){
φv

ϒ(x1) r2 (rc/r3 + x2 − x3) + φt
ϒ(x1) (x3 − x1 − rc/r3)

}
, (A.8)

ALL
e = 1

N

1∫

0

dx1

1∫

0

dx2

1∫

0

dx3

∞∫

0

b1db1

∞∫

0

b2db2

∞∫

0

db3 δ(b2 − b3)

φBc(x2)φDs (x3, b3)Ee(te)αs(te)Hef (αa,βe, b1, b2){
φv

ϒ(x1)
[ s (x1 − x̄3)

m2
1

+ 2 r2
2 (x1 − x2) + r2 r3 (x2 − x̄3)

]
− rb φt

ϒ(x1)
}
, (A.9)

ALR
e = 1

N

1∫

0

dx1

1∫

0

dx2

1∫

0

dx3

∞∫

0

b1db1

∞∫

0

b2db2

∞∫

0

db3 δ(b2 − b3)

φBc(x2)φDs (x3, b3)Ee(te)αs(te)Hef (αa,βe, b1, b2){
φv

ϒ(x1)
[ s (x2 − x1)

m2
1

+ 2 r2
3 (x̄3 − x1) + r2 r3 (x2 − x̄3)

]
+ rb φt

ϒ(x1)
}
, (A.10)

ASP
e = 1

N

1∫

0

dx1

1∫

0

dx2

1∫

0

dx3

∞∫

0

b1db1

∞∫

0

b2db2

∞∫

0

db3 δ(b2 − b3)

φBc(x2)φDs (x3, b3)Ee(te)αs(te)Hef (αa,βe, b1, b2){
φv

ϒ(x1) rb (r2 + r3) + φt
ϒ(x1)

[
r2 (x2 − x1) + r3 (x̄3 − x1)

]}
, (A.11)

ALL
f = 1

N

1∫

0

dx1

1∫

0

dx2

1∫

0

dx3

∞∫

0

b1db1

∞∫

0

b2db2

∞∫

0

db3 δ(b2 − b3)

φBc(x2)φDs (x3, b3)Ef (tf )αs(tf )Hef (αa,βe, b1, b2)
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{
φv

ϒ(x1)
[ s (x̄1 − x2)

m2
1

+ 2 r2
3 (x3 − x1) + r2 r3 (x̄3 − x2)

]
− rb φt

ϒ(x1)
}
, (A.12)

ALR
f = 1

N

1∫

0

dx1

1∫

0

dx2

1∫

0

dx3

∞∫

0

b1db1

∞∫

0

b2db2

∞∫

0

db3 δ(b2 − b3)

φBc(x2)φDs (x3, b3)Ef (tf )αs(tf )Hef (αa,βe, b1, b2){
φv

ϒ(x1)
[ s (x1 − x3)

m2
1

+ 2 r2
2 (x2 − x̄1) + r2 r3 (x̄3 − x2)

]
+ rb φt

ϒ(x1)
}
, (A.13)

ASP
f = 1

N

1∫

0

dx1

1∫

0

dx2

1∫

0

dx3

∞∫

0

b1db1

∞∫

0

b2db2

∞∫

0

db3 δ(b2 − b3)

φBc(x2)φDs (x3, b3)Ef (tf )αs(tf )Hef (αa,βe, b1, b2){
φv

ϒ(x1) rb (r2 + r3) + φt
ϒ(x1)

[
r2 (x2 − x̄1) + r3 (x1 − x3)

]}
, (A.14)

ALL
g = ALR

g =
1∫

0

dx2

1∫

0

dx3

∞∫

0

b2db2

∞∫

0

b3db3 φBc(x2)φDs (x3, b3)

Ef (tg)αs(tg)Hgh(αa,βg, b2, b3)
{
x2 + r3 x̄2 (r3 − 2 r2)

}
, (A.15)

ALL
h = ALR

h =
1∫

0

dx2

1∫

0

dx3

∞∫

0

b2db2

∞∫

0

b3db3 φBc(x2)φDs (x3, b3)

Eh(th)αs(th)Hgh(αa,βh, b3, b2)
{
x̄3 + r2 x3 (r2 − 2 r3)

+ rb (r3 − 2 r2)
}
, (A.16)

where the mass ratio ri = mi/m1; x̄i = 1 −xi ; variable xi is the longitudinal momentum fraction 
of the valence quark; bi is the conjugate variable of the transverse momentum ki⊥; and αs(t) is 
the QCD coupling at the scale of t .

The functions Hi are defined as follows:

Hab(αe,β, bi, bj ) = K0(
√−αebi)

{
θ(bi − bj )K0(

√−βbi)I0(
√−βbj ) + (bi↔bj )

}
,

(A.17)

Hcd(αe,β, b2, b3) =
{
θ(−β)K0(

√−βb3) + π

2
θ(β)

[
iJ0(

√
βb3) − Y0(

√
βb3)

]}

×
{
θ(b2 − b3)K0(

√−αeb2)I0(
√−αeb3) + (b2↔b3)

}
, (A.18)

Hef (αa,β, b1, b2) =
{
θ(−β)K0(

√−βb1) + π

2
θ(β)

[
iJ0(

√
βb1) − Y0(

√
βb1)

]}

× π

2

{
θ(b1 − b2)

[
iJ0(

√
αab1) − Y0(

√
αab1)

]
J0(

√
αab2) + (b1↔b2)

}
,

(A.19)
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Hhg(αa,β, bi, bj ) = π2

4

{
iJ0(

√
αabj ) − Y0(

√
αabj )

}

×
{
θ(bi − bj )

[
iJ0(

√
βbi) − Y0(

√
βbi)

]
J0(

√
βbj ) + (bi↔bj )

}
,

(A.20)

where J0 and Y0 (I0 and K0) are the (modified) Bessel function of the first and second kind, 
respectively; αe (αa) is the gluon virtuality of the emission (annihilation) diagrams; the subscript 
of the quark virtuality βi corresponds to the indices of Fig. 1. The definition of the particle 
virtuality is listed as follows:

αe = x̄2
1m2

1 + x̄2
2m2

2 − x̄1x̄2t, (A.21)

αa = x2
2m2

2 + x̄2
3m2

3 + x2x̄3s, (A.22)

βa = m2
1 − m2

b + x̄2
2m2

2 − x̄2t, (A.23)

βb = m2
2 − m2

c + x̄2
1m2

1 − x̄1t, (A.24)

βc = x2
1m2

1 + x2
2m2

2 + x̄2
3m2

3 − x1x2t − x1x̄3u + x2x̄3s, (A.25)

βd = x2
1m2

1 + x2
2m2

2 + x2
3m2

3 − m2
c − x1x2t − x1x3u + x2x3s, (A.26)

βe = x2
1m2

1 + x2
2m2

2 + x̄2
3m2

3 − m2
b − x1x2t − x1x̄3u + x2x̄3s, (A.27)

βf = x̄2
1m2

1 + x2
2m2

2 + x̄2
3m2

3 − m2
b − x̄1x2t − x̄1x̄3u + x2x̄3s, (A.28)

βg = x2
2m2

2 + m2
3 + x2s, (A.29)

βh = x̄2
3m2

3 + m2
2 + x̄3s − m2

b. (A.30)

The typical scale ti and the Sudakov factor Ei are defined as follows, where the subscript i

corresponds to the indices of Fig. 1:

ta(b) = max(
√−αe,

√−βa(b),1/b1,1/b2), (A.31)

tc(d) = max(
√−αe,

√|βc(d)|,1/b2,1/b3), (A.32)

te(f ) = max(
√

αa,
√|βe(f )|,1/b1,1/b2), (A.33)

tg(h) = max(
√

αa,
√

βg(h),1/b2,1/b3), (A.34)

Ei(t) =
⎧⎨
⎩

exp{−Sϒ(1S)(t) − SBc(t)}, i = a, b

exp{−Sϒ(1S)(t) − SBc(t) − SDs (t)}, i = c, d, e, f

exp{−SBc(t) − SDs (t)}, i = g,h

(A.35)

Sϒ(1S)(t) = s(x1,p
+
1 ,1/b1) + 2

t∫

1/b1

dμ

μ
γq, (A.36)

SBc(t) = s(x2,p
+
2 ,1/b2) + 2

t∫

1/b2

dμ

μ
γq, (A.37)

SDs (t) = s(x3,p
+
3 ,1/b3) + 2

t∫
dμ

μ
γq, (A.38)
1/b3
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where γq = −αs/π is the quark anomalous dimension; the explicit expression of s(x, Q, 1/b)

can be found in the appendix of Ref. [6].
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