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ABSTRACT 

Several new representations for an analytic function f(A) of a complex matrix A, 
and in particular for eAt and A’, are derived, which also are numerically useful in that 
they avoid the computation of eigenvalues of A. 

1. INTRODUCTION 

The main purpose of this paper is to derive, in Sections 3 and 4, new 
representations for an analytic function f(A) of a complex matrix A which are 
of particular importance for numerical computations (Theorems 2, 3, 6). 
Section 2 contains new and short proofs of known formulas for f(A) and of 
related topics in order to give a unified, elementary, and self-contained 
approach to the subject (avoiding the Jordan canonical form). In Section 4 the 
new formulas are applied to the solution of linear systems of differential and 
difference equations and more general operator equations (Theorems 4, 5). In 
particular, new formulas [(30)-(34)] for eAt and A’ are obtained, which are 
theoretically interesting and numerically useful in that they do not require the 
computation of eigenvalues of A. The many publications on this subject show 
that there still is a demand for a theoretically simple and numerically useful 
method to compute f(A). 
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2. DEFINITION OF MATRIX FUNCTIONS 

Let A be a complex m X m matrix, whose different eigenvalues are 
x l,. . . ,A,, and denote by I the m X m identity matrix. Assume that c(A) = 0 
for c(h): = lIb=,(x - A,,)“” with ni + . . . + nk = n. For instance, c(h) can 
be the characteristic or the minimal polynomial of A or the polynomial 
[c(A)/d(h)l” = n:=,(A - A,)“, where c is the characteristic polynomial of A, 
d the g.c.d. of c and c’, and s E N sufficiently large. For i = 1,. . . , k we then 
put 9,(h): = c(h)/(h - Xi)“‘, 9(X): = C;,19i(X), Bi: = q,(A), B: = 9(A). All 
considerations below remain valid if A belongs to an arbitrary topological 
algebra over C with identity Z such that c(A) = 0. 

LEMMA 1. B is invertible. 

(See also [12, Lemma 21.) 

Proof. c(A)=0 and 9(x)-9(xi)=(A-h,)r,(X) imply lI:,,[q(A)- 
9(X,)Z]“i = 0, or p(B)= 0, where p(X)= IIf=,[X - 9(Xi)ln*. Since 9(xi)= 
gi(Xi) * 0, p(O) * 0 follows, and hence Br(B) = I holds with r(X) = [p(O) - 

?G)I/Ap(O). n 

LEMMA% ZfCi:=BiB-‘=B-lBi,i=l,...,k,then~~=,Ci=Z,CiCj=O 

fori#jandC~=Cifori,j=l,..., k. Zf, in addition, Cf= ICi = I holds, where 

the Cl are mXm matrices satisfying (A-xiZ)“~C~=O, i=l,...,k, then 

C;=C, fori=l,...,k. 

Proof. Since for i * j, Ci contains the factor (A - XjZ)“l, it follows that 
CiCj = 0 and CiCi = 0. Next, Lemma 1 yields Cf=,Ci = Z and hence Ci = 
C5_iCiCj = CiC,C = cflCjCi = C,C. In particular, Cf = Cj follows. n 

As an application of Lemma 2 we obtain 

THEOREM 1. Let 

ThenQ=“=V,@ ... @Vk. Furthermore the columns of Bj (and Cj) span V,(A), 
and the rows of Bj (and Cj) span V,( AT); hence rank Bj = rank Cj = dimVj 
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Proof. Let Vi be the subspace of Q=” spanned by the columns of Bj 
Since (A - h jZ)“jBj = c(A) = 0 holds, Vi C Vj follows. Thus B = C&lBj and 
Lemma 1 imply Cm = Vi + . . . + VL = V, + . . . + V,. Assume that x1 
+ . . . + xk = 0, where xj E Vr Since for i * j, Bi contains the factor (A - 
hjZ)“j, we have 0= Z?Jxr + ... +x,)= Bjxj=(B, + ... + Bk)xj= Bx, 
Thus, xi=O, j=l,...,k, and @"'=I'{@ ..* @Vi=V,@ ... @Vk. This and 
Vi c Vj Imply V; = Vj and hence rank B&= rank Cj = dimVi 

The rest follows from (AT - X jZ)“jBj = c( AT) = 0. 8 

Lemma 2 and Theorem 1 imply 

COROLLARY 1. Though Bj and nj depend on c(X), Cj and hence VJA) 
and Vi< A') are independent of the particular choice of c( A). 

(See also Corollary 3.) 
Next, Lemma 2 yields for 1 < i, j< k and r, s >, 0 

circjs = aijCi,r+s> where Ci, = (A - x,Z)‘C,. (1) 

Now for v >, 0 and f(X): = X’, Lemma 2 implies 

f(A)=A'= i A'C, 
i=l 

= ; (A-xiZ+A,Z)"Ci= 2 i (;)(A-hjZ)%"-"Ci 
i=l i=l s=o 

= ; i f(S’(Xi)(A-hiZ)“Cj 

s! 

= 2 “E’ f’Q(Xi)Ci, 

i=l s=O i=l s=O 
s! ’ 

since f("' = 0 for s > 1 and Ci, = (A - XiZ)"Ci = 0 for s > ni because c(A) = 0. 
Hence this also holds for arbitrary complex polynomials f(X), and we obtain 

LEMMA 3. Zf for a sequence of complex polynomials f,(X) and for a 
function f(h), f(“)(h.)= lim f(“)(x,) exist fw 0 < s < ni, 1 < i < k, then “‘03 Y 
f(A): = lim f (A\ exists and Y’cc Y 

&A) = i C 
T-l f'yx.)cj, 

i=l s=O 

s,r . (2) 
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This formula now will be used as the definition off(A) for every complex 
functionf(X) for which the right side of (2) exists. See also [3], [5], [8], [26], 
[27], [31], and [lo, pp. 104, 1071. 

One verifies immediately: 

if f(A), g(A) exist, then 

(f-t g)(A) = f(A)+g(A) and (.&)(A) = f(A)g(A) (3) 

(using Leibniz’s product differentiation rule); 

iff(A) exists and if aUf(Xi) f 0, then 

[f(A)] -‘also exists and 
(4) 

If some Cj = 0, then (A - Air)- ’ would exist by (4) and (3). Hence all Bi and 
Ci are * 0. In particular, there exists ri with 

This yields the following converse of Lemma 3. If lim, _ ,x(A) exists, 
then lim v_oofv(S)(hi) exists for O,<s<q:, l<i<k by multiplyingf,(A) by 
C,,, s = ri - 1,. . . ,O and using (1). 

With B = 9(A), (3) and (4) yield (l/q)(A) = B-’ and (f/9)(A) = 
f(A)B-‘. From this, (2), and (1/9)(‘)(Xi)= (l/qi)(‘)(Xi), 0 < s < q, 1~ i < 
k, we obtain the following well-known formula (see also [20], [27], and [lo, p. 
1011): 

We observe that 
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is the Lagrange-Sylvester interpolation polynomial (with p(s)(hi) = f(s)(x, ), 
O<s<ni, l<i<k)andwehavef(A)=p(A). 

3. PRACTICAL COMPUTATION OF MATRIX FUNCTIONS 

We now want to derive another representation for p(z) in (6) which 
requires the following notation: Let 

c(X)= t c,_,x, hO:=c,=l, h,(h)=Xh,_,(X)+c,, r=l,...,n, 
r=O 

so that h,(X) = c c,_,A” and h,(h) = c(X). (7) 
s=O 

Then 

n-l n-l 

(X-z> c h”_,_,(qz’=(bz) c Xh,_,_,(t)=c(X)-c(z) (8) 
r=O r=O 

can be verified immediately. Using (8) we define 

n-1 

H(X, z): = c hn_,_l(h)72 with H(h,z)=H(z,h). (9) 
r=O 

Observe that ZZ( X, z) depends on the particular choice of c(h). If now c(X) is 
an arbitrary complex polynomial satisfying c(A) = 0, then substituting A for z 
in (8) and (9) yields 

(XI - A)W(h, A) = (XI - A)H(A, A) = c(h)Z. (19) 

REMARK 1. If c(X)= cA(x): = JXZ - Al, then c*(A)= 0 and (10) imply 

77, - 1 m-1 

adj(XZ -A) = c h,_,_,(X)A’= c X&,_,_,(A). 
r=O r=O 
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REMARK 2. For cA( X) f 0, (10) yields 

c X”-‘-‘traceh,(A) = c,(X)trace(XZ - A)-‘. 
r=O 

(II) 

Now traceA = - cl*-‘)(O)/(rn - I)!, and hence from (tZ - (AZ - A))‘] = 
tmcA(A - tel)/cA(h) and 

a ( i m-lt*C*(X - t-1) -- 
at (m-l)! t=O =C‘G) 

we obtain trace(XZ - A)-’ = ci(X)/cA(X). Then (11) yields 

m-l m-1 
c X”-‘-‘traceh,(A) = c;(X) = c (m - r)c,l~“-‘~‘, 

r=O r=O 

and by comparing coefficients of X”-‘-I we obtain trace h,(A) = (m - r)c,. 
This and trace h,(A) = trace(Ah,_,(A))+ mc, from (7) yield the following 
well-known algorithm (see also [8]): If 

c = -traceAh’-1(A), r r=l,..., m. 
r 

Next, let y be a suitable simple closed positively oriented curve enclosing 
x A,, i,“‘., or the sum of k simple closed positively oriented sufficiently small 
circles around h,,...,hk. 

LEMMA 4. Let p(h) be a complex polynomial of degree -C n. Then with 
the notation (7) and (9) we have 

p(Z)=ly c(h)2ai 
p(X)H(X, ‘) dh (12) 
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Choosing in particular p(z) = .z ’ yields 

/ 
ml-r-l@) 

y c(X)27ri 
dh = S,, for O,(v,r<n. (13) 

Proof (8) implies l/(h - z) = H(A, z)/[c(h) - c(z)]. Then by Cauchy’s 
integral formula 

P(X) 2rip(.z) =/Gd” 
Y 

since 

jp(h){[c(h)- c(z)] -‘- c(A)-‘)ff(b)dh 
Y 

dh)H@, ‘1 
= +).&(x)[c(*) - c(z)] 

dh = 0 

’ 

because y can be replaced by an arbitrarily large circle around 0. 

We now can prove (see also [2], [7]): 

n 

THEOREM 2. Let p(h) be the interpolation polynomial (6) off. Then 
with the notation (9), 

lf, in particular, f is analytic at X,, . . . ,A,, then 

f(A)=4 
f(AjHtX, A) dX 

c(h)277i 

(14) 

(15) 

Proof. (14) follows from f(A) = p(A) in Section 2 and (12). (15) follows 
from (14), since [f(X) - p(h)]/c(X) has removable singularities at X,, . . . ,A,, 
and hence /,,H(h, A)[ f(h) - p(h)]/c(X)dh = 0. n 
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Applying the residue theorem to (14) and using p(‘)(X$ = f’“‘( Ai), 0 < s 
< nj, 1 < j< k, yields (se [18] for a special case): 

COROLLARY 2. Ifmj>nj,l<j<kk,then 

n-1 

f(A)= xA+ 
i 

f(X)h,_,_,(h)(X - Aj)mj 

r=O j=l c(X)(mj-l)! 
x = x, 

n-1 

= c h,(A) it 
f(x)xfl-r-l(x - Ai)? 

r=O j= 1 c(X)(mj- l)! 
X=X, 

provided all required derivatives off exist. Since always nj < n - k + 1, one 
cancbosemj=n-k+lormi=nforl< j<k. 

As a generalization of a result in [6] we then obtain 

COROLLARY 3 [see Corollary 1 and (9)]. 

(16) 

if mj2 nj, then Cj= 
H(X, A)@ - hj)mJ 

c(X)(mj- l)! 
for l< jck. 

h=h, 

(17) 

Observe that Cj is independent of the particular choice of c(h) by Lemma 
2. 

Proof. (16) follows from Corollary 2 with f(h) = qJX) and mj = ni. Next, 
Cj = $(A), where f;(h) = qJX)/q(X) by Lemma 2. Since [@A) - 11/c(X) 
has a removable singularity at Xi, 

holds for 0 < u < mi. Hence Corollary 2 yields (17). W 
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REMARK 3. If one defines f(A) = J,f(X)(XZ - A))‘/27ri dh and Cj = 
/,,(XZ - A)-‘/2ri dX, where yj is a small circle around h j, then (10) im- 
mediately yields (15) and (17). 

REMARK 4. In order to apply Corollary 2, only the different eigenvalues 
h i, . . . , A, of A have to be known, but not their exact multiplicities. Observe 
that X,,...,h, are the simple zeros of the kth order polynomial c*(X) = 
c(h)/d(h), where d(X) is the g.c.d. of c(A) and c’(X). c(X) may be replaced 
by [c*(h)]” = IIz=,(X - X,)’ for sufficiently large s EN. 

REMARK 5. Assume that h i, . . . ,A, are known approximately. The ad- 
vantage of the formulas in Corollary 2 over (2) is that only for the coefficients 
of A0 ,..., A”-’ or of h,(A) ,..., h,_,(A) is new computation necessary 
whenever the accuracy of computation of Xi,. . . , h, is increased. 

REMARK 6. For other definitions of f(A) involving finite differences see 
[4, 11, 301. 

We conclude this section by deriving from (15) new formulas for f(A). 
(See also [2].) 

THEOREM 3. Let l/c(h) = CFz”=,d,Ap” for IhI > M: = maxr 4 j,k{lhj]}, 
and let f(h) be analytic in IhI -C K where K > M. Then 

f(A)= E d, , 
“=?I X=0 

n-l 

f(A) = c A’ i c~_~ E 
r=O s=r+l y=n+r--s 

dv+,lf(“(o) , 

n-1 

f(A) = c h,(A) 5 dV+‘-;f”‘(o) , 
r=o Y=T 

08) 

(19) 

(20) 

v=n+r--s 

Proof Let y be a sufficiently large circle with center at 0. Then (15) 
implies f(A) = C~=“=,d,l,f(h)ZZ(h, A)X-“/27ri dh, which is (18) by Cauchy’s 
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integral formula. Observing (7) and (9) we again obtain from (15) 

n-1 n-r-l 

f(A)= c A’ c cn-r-1-s ' r=O S=O 

which implies (19). (20) is obtained similarly from f(A) = 
C:_,‘h,(A)l,f(h)X’-‘-‘/c(X)2~idh. Finally, using g,(A): =Cz=,c,_,A” = 
c(X) - X+‘h,_,_i(X), we obtain 

/ 
fG+n-r-l@) 
Y 4) 

dh=jf(h)h-'-'dh-jf(h)g;j:jh'~ldh, 
Y Y 

Substituting this in (15) yields (21). 

REMARK 7. The obvious advantage of the formulas (18)-(21) over the 
earlier ones is that the eigenvalues Xi,. . . ,A, of A need not be known. In 

l/c(X)= E~‘,,dyX-Y, we have d, = j,XYp1/c(X)2ridh and hence d, = 1 
(since co = l), and for v > n, 

Therefore d y can be computed recursively by 

d, = - i: c,d,_, 
s=l 

for v> n (22) 

using d, = 0 for v < n and d, = 1. From this the following upper bounds for 
d, are obtained by induction on v. Put a: = C:=,]c,]. If a > 1, then Id,1 < a’-“, 

v~n.Ifa~l,then]dny+,~~u “<lforl<p<n,~>O.Foraconnectionof 
the d, with the Lucas polynomials see [2]. By induction on v one can easily 
prove that 

ul+...+“, 

d, = c 
( - 1) c;‘. . . Cny”(Vl‘t . . . + v,)! 

v,+2uz+ .‘. +*v,=v--n, 
Y,! 1 . . V”! 

“, > 0 

holds for v > n. 
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4. APPLICATIONS 

Let T: F + F be a linear operator, where F is a vector space of complex 
functions y(t), t E R (a region in W or C). We define 

for N E N, y,( t ) E F, and arbitrary complex m X 1~1 matrices A,, 0 d T < N. T 
may be D or E, where Dy(t) = y’(t), Ey(t) = y(t + 1). More generally, T may 
be a polynomial in D and E. 

Next, let L be an open set in IF? or 6: containing X,, . . . ,A,, and let y(X, t), 

ji’o...i,!X,t),0d20,..., i, < N be complex functions of A E L, t E R such that 
y(A, t) and &...i,JA, t) exist according to (2) or (14). We assume that 
(~/c%I)~(T’~(A, t)) and (d/dh)Sf;o...iu(h, t) exist and that (J/ax)‘y(x, t)~ F 

forO,<T<U,O<s<<: =max{n, ,..., n,},hEL, tER. 

As an illustration how to apply matrix functions we prove (see also [29]) 

THEOREM 4. Assume that y( X, t ) satisfies 

E ~,...i,,(~,t)[y(X,t)]“‘[Ty(X,t)]i’...[T”y(X,t)]iu=O (23) 
i,, , i,, = 0 

and 

Tr((~)‘y(~,t))=~~)‘(T’y(X,t)) for XEL> tGR> (24) 

1~ T < u and 0 B s < p. Then y( A, t) satisfies 

T’(y(A, t)) = (Try@, t))lx=A (25) 

and 

f fi‘,,,....i,,(Ay t)[Y( 
to ,.... i,,=O 

Zf, in addition, T’y(X, to) 

T’y(A, to) = a?Z, 0 < r < v. 

A,l)]iO-- [T”y(A,t)]““=O fir tER. 

(26) 

=a7 for O<r<v, XEL, and t,ER, then 
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Proof. (24) and (2) imply (25). (25) and (3) yield 

=C&,,...i,.(A,t)[ Y(A,~)I~=A]~~... [ (~~y(~,t))l,=~]“u 

= (Cf;,...i~X,t)Y(X,t)in... [~"Yw)1'")l,_* 

which is = 0 by (23). This proves (26), and T’y(A, to) = ar,I follows from 
(25) (2) and Lemma 2. n 

THEOREM 5. Assume that (24) and hence (25) hold. Assume furthermore 

that y( X, t ) satisfies 

Ty(X,t)=Xy(X,t),y(X,t,)=l for MEL, t,tOER. 

Then 

Ty(A,t)=Ay(A,t) and y(A,t,)=I for tER. 

In addition 

where for 0 < r < n 

n-l 

y(O)= c cp,(t)A’, 
r=O 

‘i-1 y(X) t)h,_,_l(X)(’ -hj)nJ 
c(x)(nj- l)! II h=X, 

and 

(27) 

(28) 

(29) 

Observe that also (14), (15), Cor. 2, (19) and (21) can be used to evaluate 

%(t ). 

Proof. The first part of Theorem 5 is a special case of Theorem 4. (28) 
follows from Corollary 2. In order to prove (29) we observe that (24) and (27) 
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imply 

173 

or 

Hence 

=s!(T-A)y(h,t)=O for XEL, tER. 

(T-hj)n'[ ( &)‘Y~A~t)~A=Aj] =Oz OGs<nj’ l<j<k, tER, 

and therefore c(T)rp,(t) = 0, t E R. Finally, (24), (27) and (13) imply 

= J X”L-,@I 
c(X)27ri 

dX = S,, for O,<r,v<n. n 
Y 

REMARK 8. In order to find n solutions y = cp,(t ), 0 < r < n, of c(T)y = 0 
with T”q+(t,) = S,.,, 0 < r, Y < n, one only has to determine a solution y = 
y(A, t) of TY = Ay with y(X, to) = 1 for X E L and evaluate q+.(t) according to 
(28), provided (24) holds. 
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REMARK 9. The equation (TP + AITP-’ + . . . + A,T’)X(t) = 0 with 
v x v matrices A,, . . . , A, can be transformed into TY = AY with 

A= 

0 I *.* 0 
. . * . 

0 . . . 0 I 

-A, .‘. -A, -A, 

The eigenvalues of A are the roots of (hPZ + Xp - ‘A 1 + . . . + A 1, ) = 0. 

EXAMPLE 1. For T = D (27) has the solution y(X, t) = &-‘Q) for h, t, to 
EC. Hence by Theorem 5, Y’= AY has the solution Y(t) = y(A, t) = eA(t-to), 
which can be computed for t, to E C according to (2), (15), (20): 

zz 
/ 

eh(t-tO)H(X, A) dh 

Y c(X)2xi 

n-l 

= c h,(A) E dv+n+f$ - to)y 
r=O p=r 

and according to (15), (19), (21), (28) we obtain 
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Observe that the d, are given by (22) and that c(D)cp,(t) = 0, D”q,(,(t,) = a,,, 
0 < T Y < n. Since exj(t-to) f 0, (eA(t-W-l exists by (4) for all t, to E Q=. The 
first iepresentation of eActPtn) shows that eA(t-fn) tends to zero (remains 
bounded)ast-,+coifallReXj<O(if,foreachj,Rehj<OorReXi=Oand 
Cjs = 0 for s > 0). The converse follows by multiplying eA(‘- ‘(I) by Cjs, 
s=rj-1 , . . . ,O, 1 G j< k, and using (S), (1). 

See also [l], [51, PI, [121-[Ml, [181, [191, [211-[231a [311, [lo, PP. m- 
1291, and [15, pp. 36-381. 

EXAMPLE 2. For T = E, (27) has the solution y(X, t j = At-‘0 for X, t, to E 
C, X * 0. Hence by Theorem 5 the system of difference equations EY = AY 
has the solution Y(t)=y(A,t)=AtPL O, which can be computed for t, to E Q: 
according to (2), (15) provided all Xi * 0: 

where y does not wind around 0. 
If, in particular, k = t - to and k + 1 E N, then also X j = 0 is allowed and 

(20) yields 

Ak = c hn-r-h%+l+r with d y from (22). (31) 
r=O 

Next, (28), (19), and (21) yield for k + 1 EN 

n-1 

Ak = 1 4&+‘, 
r=O 

where 

k(k)= ii 'n-sdk+s-r 
s=r+l 

(32) 

= sr,k - 1 Cn-sdkts-r 
s=o 
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satisfies 

c(E)&(k) = 0, E%(O) = a,,, O<r,v<n. 

As in Example 1, one can easily see that Ak tends to zero (remains bounded) 
as k + + 00 iff all ]hj( < 1 (iff for each j (hi] < 1 or (h j( = 1 and Cjs = 0 for 
s > 0). 

REMARK 10. In order to determine for k + 1 E N the fundamental system 
$Jk), 0 < r < n, of c(E)y = 0 with E’#r(0)= a,,, 0 < T, v < n, one has to 
compute the particular solution d, (22) of the inhomogeneous equation 

X=oc”-,d,-,+S = 6,” with d, = 0 for v < n and d, = 1. Then G,.(k) is given 

by (32). 

Using (32) we obtain 

THEOREM 6. f(A) = C~~“=,Kf(“)(O)/v! exists iff 

+ E swfYo) 
v! 

v=?l. 

exists and (see (28)) for 0 < T < n 

provided the right side exists. 
In particular, always (see (30))) 

e4-b) = (t -to)’ + g \C/,(v)(t - to>” 
T! v! 

Y=* 

Observe that Remark 7 yields ]&(v)] (u’+~-” for v > n if a 2 1 and 
]&.(nv + p)] < u” < 1 for 1 < p G 12, v > 1 if a < 1, 0 < r < n. 

See also [2, 17, 19, 24, 25, 281. 
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