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A b s t r a c t - - I n  this note, a Schaefer fixed-point theorem is used to investigate the existence of 
solutions for first-order impulsive functional differential equations with variable times. © 2004 El- 
sevier Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

This note is concerned with the existence of solutions, for the initial value problems (IVP for 
short), for first-order functional differential equations with impulsive effects 

y' ( t )=f( t ,  yt), a.e. t e J = [ O , T ] ,  t¢Tk(y(t)), k = l , . . . , m ,  (1) 

y(t +) = Ik(y(t)) ,  t = ~k(y(t)),  k = 1 , . . .  , -~,  (2) 

y(t) = ¢(t) ,  t e I--r, 0], (3) 

where f : J × D --* R ~ is a given function, D = {~b : [-r ,  0] --+ R'~; ¢ is continuous everywhere 
except for a finite number of points ~ at which ¢(t-) and ¢(t+) exist and ¢ ( t - )  = ¢(~)}, ¢ e D, 
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0 < r < c~, 7k : N n --* R, Ik : R n --* ]R n, k = 1 , 2 , . . . , m  are given functions satisfying some 
assumptions that will be specified later. 

For any function y defined on I-r ,  T] and any t E J,  we denote by Yt the element of D defined 
by 

yt(0) = y(t + 0), 0 e  I-r,0].  

Here Yt(') represents the history of the state from time t - r, up to the present time t. 
Impulsive differential equations have become more important in recent years in some mathe- 

matical models of real processes and phenomena studied in physics, chemical technology, pop- 
ulation dynamics, biotechnology, and economics. There has been a significant development in 
impulse theory, in recent years, especially in the area of impulsive differential equations with 
fixed moments; see the monographs of Bainov and Simeonov [1], Lakshmikantham et al. [2], and 
Samoilenko and Perestyuk [3], and the references therein. The theory of impulsive differential 
equations with variable time is relatively less developed due to the difficulties created by the 
state-dependent impulses. Recently, some interesting extensions to impulsive differential equa- 
tions with variable times have been done by Bajo and Liz [4], Frigon and O'Regan [5-7], Kaul et 

al. [8], Kaul and Liu [9,10], Lakshmikantham et aI. [11,12], and Liu and Sallinger [13]. 
The main theorem of this note extends problem (1)-(3) considered by Benchohra et el. [14] 

when the impulse times are constant. Our approach is based on the Schaefer's fixed-point theorem 
(see [15, p. 29]). 

2.  P R E L I M I N A R I E S  

In this section, we introduce notations, definitions, and preliminary facts which are used 
throughout this paper. 

By C(J, ]Rn), we denote the Banach space of all continuous functions from J into ]R n with the 
norm 

Ilylloo := sup{[y(t)] : t E J ) .  

Also, D is endowed with norm II" II defined by 

I1¢11 := sup{l¢(o)I : - r  < 0 < 0}. 

In order to define the solutions of (1)-(3), we shall consider the space 

f~ =- {y : [-r ,  T] ~R" :  there e x i s t 0 = t 0 < t l < . - . < t m < t , ~ + l = T ,  suchthat ,  

tk = ~'k (y( tk) ) ,  y (t-~) and y (t +) exist, with y (t~-) = y (tk), 

k = 1 , . . . , m ,  and y E C( [ tk , tk+ l ] ,R") ,  k = 0 , . . . , m } .  

DEFINITION 2.1. A map  f : J x D ~ N '~ is said to be L1-Carathgodory if  

(i) t ~ ~ f ( t ,  u) is measurable for each u E D; 
(ii) u ~ f ( t ,  u) is continuous for almost a11 t E J; 

(iii) for each q > 0, there exists h a 6 L I ( J ,R+) ,  such that  

If  ( t ,u )  l < hq( t ), l'or a11 Ilu]l <_ q and t'or almost a11 t e J. 

In what follows, we will assume that f is an L1-Carath~odory function. 
The consideration of this paper is based on the following Schaefer's fixed-point theorem 

(cf. [15]). 

THEOREM 2.2. Let X be a Banach space and N : X --~ X be a completely continuous map. If 
the set 

£ ( N )  = {y e X :  y = AN(y) ,  for some 0 <)~ < 1} 

is bounded, then N has a fixed point. 
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3. M A I N  R E S U L T  

Let us start by defining what we mean by a solution of problem (1)-(3). 

DEFINITION 3.1. A function y E Q, is said to be a solution of (1)-(3) if y satisfies the equation 
y'(t) = S(t,y~), a.e. on J, t # ~k(y(t)), k = 1 , . . . , , ~ ,  and the conditions y(t+) = Ik(y(t)), 
t = 7k(y(t)) k = 1 , . . . , m  and y(t) = ¢(t) on I-r ,  0]. 

We are now in a position to state and prove our existence result for problem (1)-(3). For the 
study of this problem, we first list the following hypotheses. 

(H1) The functions ~'k E CI(N'~,R), for k = 1 , . . . ,  m. Moreover, 

0 < rl(X) < . . .  < TIn(X) < T, for all x E R'L 

(H2) There exist constants ck, such that IIk(x)l _< ck, k = 1 , . . . ,  m for each x E 1R ~. 
(H3) There exists a continuous nondeereasing function ¢ : [0, oo) ---. (0, oo) and p E LI(J, R+), 

such that 

lf(t,u)] < p(t)¢ (llull), 

for a.e. t E J and each u E D with 

~ ds ¢ (---~ = oo. 

(H4) For all (t, x) E [0, T] x R '~ and for all Yt E D, we have 

(r~(x) , f ( t ,  yt)) ¢ l, for k =  l , . . . , m ,  

where (., .) denotes the scalar product in R n. 
(H5) For all x E IR '~, 

~k (Ik(z)) _< rk(z) < ~k+~ (irk(~)), for k = 1 , . . . , , ~ .  

THEOREM 3.2. Assume that Hypotheses (H1)-(HS) hold. Then, the IVP (1)-(3) has at least 
one solution on [-r, T]. 

PROOF. The proof will be given in several steps. 

STEP 1. Consider the following problem 

y'(t) = f (t, y~), a.e. t e [0, T], (4) 

y(t) = ¢(t), t e I-r,  0]. (2) 

Transform problem (4),(5) into a fixed-point problem. Consider the operator N : C( [ - r ,  T], R ~) 
C([-r,  T], N n) defined by: 

¢(t), f0 if t E [-r ,  0]; t 
N ( y ) ( t ) =  ¢ ( 0 ) +  l ( s ,  ys)ds,  i f t E  [0,T]. 

We shall show that the operator N is completely continuous. 

CLAIM i .  N N continuous. 

Let {Yn} be a sequence, such that yn --* y in C( [ - r ,  T], ]Rn). 
Then, 

2 I N ( y , ) ( t ) - N ( y ) ( t ) l  < I f ( s , y , 8 ) - f ( s ,  ys)l ds 

<_ lY (s,y~8) - f (s,y~)l ds. 

Since f is an L1-Carath6odory function, we have by the Lebesgue dominated convergence theorem 

IIN (Y~) - N(Y)Iloo << - Ilf (',Yn(.~) -- f (',Y<'))IIL1--~ 0, as n --* oo. 
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CLAIM 2. N maps bounded sets into bounded sets in C ( [ - r ,  T], Rn). 

Indeed, it is enough to show tha t  for any q > 0, there exists a positive constant g, such that  for 
each y e Bq = {y • C([-r,T],~[n) : ]fyl[oo <_ q}, we have [[g(y)l[o~ < ~. By Definition 3.1 (iii), 
we have for each t • [0, T], 

~0 t IN(y)( t) l  ~ 14,(o)1 ÷ If(s, ys)l ds 

]I¢IL ÷ IlhqllL~. 

Thus, 

[[N(y)II~ ~ I1¢11 ÷ ][hql{L~ := £. 

CLAIM 3. N maps bounded sets into equicontinuous sets of C([-r ,  T], Rn). 

Let ll, 12 C [0, T], 11 < I2, Bq be a bounded set of C([-r,  T], ~n) as in Claim 2, and let y E Bq. 
Then, 

f/ iN(y) (12) - N(y)  (/1)[ _< hq(s) ds. 

As 12 ) ll, the right-hand side of the above inequality tends to zero. The  equicontinuity for 
the cases ll < 12 _< 0 and 11 _< 0 _< 12 is obvious. 

As a consequence of Claims 1-3, together with the Arzela-Ascoli theorem, we can conclude 
tha t  N :  C([-r,T],]~ n) ~ C( [ - r ,T] ,~  ~) is completely continuous. 

CLAIM 4. Now it remains to show tha t  the set 

$ (N)  := {y e C ( [ - r , T ] , R n ) :  y = AN(y), for some 0 < A < 1} 

is bounded. 

Let y C g (N) .  Then, y = AN(y) for some 0 < A < 1. Thus, for each t e [0, T], 

( /0 ) u ( t ) = A  ¢ ( 0 ) +  f ( s ,  ys) ds . 

This implies by (H2),(H3) that  for each t e J ,  we have 

lY(t)] <-I1¢11 + p(s)C (llysll) as. 

We consider the function # defined by 

i~(t) =sup{[y(s)[ : - r  < s < t} , O < t < T .  

Let  t* e [ -r , t  I be such tha t  #(t) = [y(t*)[. If t* e [0, T], by the previous inequality, we have for 

t e [o, T] 

. ( t )  <__ I!¢11 + p(s)~(~(s)) ds. 

If t* e [ - r ,  0], then #(t) = I1¢1] and the previous inequality holds. Let us take the right-hand side 
of the above inequality as v(t). Then, we have 

c = v ( O ) = N ¢ [ [ ,  # ( t ) < v ( t ) ,  t E [ O , T ] ,  

and 
~'(t) =p(t)~(~(t)) ,  a.e. t • [O,T]. 
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Using the nondecreasing character of 4, we get 

v'(t) < p( t )¢(v( t ) ) ,  a.e. t e [0, T]. 

This implies that for each t E [0, T] 

v(t) ds < p(s) ds < 
Jr(0) ¢ ( s )  - (0) ¢ ( s )  

Thus, there exists a constant K,  such that v(t) <_ K ,  t E [0, T], and hence, #(t) < K, t E [0, T]. 

Since for every t e [0,T], Ilyt]l -< #(t), we have 

]lylloo -< g '  = ma~ {]]¢1] , K } ,  

where K '  depends on T and on the functions p and 4- This shows that £(N) is bounded. 
Set Z := C([-r ,  T], R~). As a consequence of Schaefer's theorem (see [15, p. 29]), we deduce 

that N has a fixed-point y which is a solution to problem (4),(5). Denote this solution by Yt- 

Define the function 
rk,l(t) = ~-k (yl(t))  - t, for t >_ 0. 

(H1) implies that 

If 

i.e., 

rk,l(0) # 0, for k = 1 , . . . , m .  

~k,l(t) # 0, 

t # ~k (y l ( t ) ) ,  

then Yl is a solution of problem (1)-(3). 
It remains to consider the case when 

~ , l ( t )  = 0, 

on [0, T] for k = 1 , . . . , m ,  

on [0, T] and for k = 1 , . . . ,  m, 

for some t E [0, T]. 

STEP 2.Consider now the following problem 

y(t) = yl(t ) ,  t e [tl - ~ , t l ] ,  (6) 

y ' ( t )  = f ( t ,  y~), a.e. t e [tl ,  T],  

Y ( t t )  = I1 (Yl ( t l ) )  • (7) 

Transform problem (6),(7) into a fixed-point problem. Consider the operator N~ : C([tl - r, 
T], ~n) __. C([tl - r, T], R n) defined by: 

t 
y(t) = f 1 ( y ( t l ) ) +  f ( s ,  ys) ds, if r e  ( t l ,T] .  

r l , l ( t l )  = 0 and rl , l ( t )  # O, for all t e [O,t,). 

Thus, by (HI), we have 

rk, l ( t ) # O ,  f o r a l l t E [ O ,  t l)  and k = l , . . . , m .  

Now, since 
~t,1(0) # 0 

and r1,1 is continuous, there exists tl  > 0, such that 
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As in Step 1, we can show that N1 is completely continuous, and the set 

$(N1) : :  {y e C([tl - r , T ] , ] ~ n ) :  y = ANI(y), for some 0 < l < 1} 

is bounded. 

Set X := C([tl - r ,  T],~{n). As a consequence of Schaefer's theorem, we deduce that N1 has a 
fixed-point y which is a solution to problem (6),(7). Denote this solution by Y2. Define 

If 

rk,2(t) =Tk(y2(t)) --t, for t > tl. 

~k,2(t )  ~ o, 

then 
{ yl(t), 

y ( t ) =  y2(t), 

is a solution of problem (1)-(3). 
It remains to consider the case when 

on (tl ,T] and for all k = 1 , . . .  ,m, 

if t E [0, tl], 

if t E (tl, T], 

~ , 2 ( t )  = 0, for some t C (tl, T]. 

By (H5), we have 

r2,2(t~)=T2(Y2(t~))-tl 
=T2(Ii(yl(tl)))--tl 
>71(yl(tl))--tl 
=r l , z ( t l )  = 0 .  

Since  r2, 2 is continuous, there exists t2 > t l ,  such that 

r2,2(t2) = 0 

and 
r2,2(t) ¢ 0, for all t E (tl, t2). 

It is clear by (H1) that 

rk,2(t) ~ 0, for all t E (tl, t2), 

Suppose now, that there is ~ E (tt,t2], such that 

r l , 2 ( ~ )  = 0. 

From (H5), it follows that 

k-- 2,...,m. 

y~(t) = / (t, (y2)~), 

~1,2(t~ + )  = ~ l (y2( t~+))  - t~ 

= ~ ( I i ( y ~ ( t l ) ) )  - t l  

< ~ ( y l ( t l ) )  - t~ 

---- r l , l ( t l )  - :  O. 

Thus, the function rl,2 attains a nonnegative maximum at some point Sl E ( t l ,  T].  Since 
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then, 

Therefore, 

r ! 1,2 ( s l )  = T~ (Y2 ( s l ) )  y& (SO -- 1 = 0. 

(~; (y2 (Sl)),  f (sl,  (y~)sl)) = 1, 

which is a contradiction by (H4). 

STEP 3. We continue this process and taking into account that ym+l :=  Yl[tm,T] is a solution to 
the problem 

y( t )  = y ~ ( t ) ,  t e [ t~  - ~, t ~ ] ,  

y'(t) : f (t, yt) ,  a.e. t c ( t ~ ,  T ) ,  

y (t+~) = z~ ( y~- i  ( t in))  

(8) 

(9) 

The solution y of problem (1)-(3) is then defined by 

Yl (t), if t E [--r, t l ] ,  

y2(t), if t E (&, t2], 
y(t) = 

y,~+l(t), i f t  E (tin,T]. 
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