
Marh&atical Modelling, Vol. 2, pp. 383-391, 1981 -5/81/04038~W~
Printed in the USA. All rights resmcd. COPYriM 0 I981 Pcr#amon Press Ltd.

A MODEL FOR LEARNING GLOBAL PROPERTIES

PAUL EITNER AND MANFRED KOCHEN

Mental Health Research Institute
University of Michigan

Ann Arbor, Michigan 48109, USA

Communicated by Frank Harary

Abstract-This paper reports developments in a mathematical model of cognitive
learning. The model describes the processes of formation, testing, and revision of
hypotheses held by a learner attempting to understand an environment. The fundamental
assumption is that learning proceeds by a feedback cycle, where hypotheses are tested for
validity against external reality and reweighted according to the outcome. A particular
application of this model to the case of a mechanical “beetle”, mapping a geometrical
environment, yields results of interest in artificial intelligence and robot design, including
results on the computability of several geometrical predicates.

1. INTRODUCTION

This paper reports another step in the long-term development of a mathematical theory
of learning [l, 21. The main idea is that learning proceeds by the formation, revision,
reweighting and use of hypotheses so that the learner can identify and cope with an ever
increasing variety of opportunities and traps. Hypotheses have the form of propositions
in an applied predicate calculus, e.g., “if the state of the world at time t is s(t), and the
learner takes action a(t), then T time units later the state is s(t + T) and this is (or is
not) preferred to the present state.” Hypotheses are reweighted, revised or formed on
the basis of information about the actual state of the world resulting from action a(t) and
about how the learner evaluated the change of state.

Previous results based on this general model pertained to the convergence properties
of particular schemes for reweighting hypotheses. It was proved, for example, by
Hantler and Kochen [3], that if hypotheses identical with the one that generates the
environment are stored along with numerous others, then there exists a reweighting
scheme for which the probability of selecting the most frequently confirmed hypothesis
is bounded from below by a reasonably large number.

A simplified model is sketched in Fig. 1. On the left side in each box, we specify the
general definition of an environment and a learner. On the right side, there are specific
interpretations of the various sets with reference to an imaginary beetle that can move
along surfaces or curves. We are interested in’ the possibility that this “beetle” could
learn to identify such concepts as “torus” or “Mobius band.” The importance for a
mathematical model of the distinction between the “state of the world,” e.g., “a bug is at
a certain point on the surface of a torus”; and the perceived state of the world, e.g., “the
bug thinks it is on a sphere,” has been recognized for a long time [4]. Only recently has it
become practically necessary to deal with that distinction in the context of robot design.
It has also been recognized for some time that a state of the world perceived through a
parallel input-at-a-distance system, such as vision, is quite different from the perception
of the world through a tactile sensor. Recent work in artificial intelligence [5] has
stressed the idea of a “frame,” also called a script or schema by various workers, as a

383

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82516621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

384 PAUL EITNER AND MANFRED KOCHEN

E (Environment)

S FINITE SET (of states) A. C. D

0 PARTIAL ORDER ON S A>D

A FINITE SET (of actions) Right. Left. Stay

F MAP: SxA- S (Law) (D. Right) - C

s(0) ELEMENT OF S (Starting State) A

L (Learner)

Y FINITE SET (of internal states)

3 PARTIAL ORDER ON 9 (Preference)

Hunger, Reflectiveness

d FINITE SET (Perceived action options)

3 4-tuple (Representation of E):

2’ (Internal language: Vocabulary,
Formation Rules.. .)

Right’, Left’, Stay’

Predicate calculus

48 (Data Base of state inputs)

“u (Data Base of value inputs)

X (Store of hypotheses: sentences +
weights)

(D. Right’) - C

A>D

Closed curve has low value

A ALGORITHM (Selects hypotheses, next internal
state, records input, changes weights)

s*(O) ELEMENT OF Y (Starting internal state)

Hypotheses: If s = (XI, yl. x2. YZ) and a = Q then s’ = (2x1, YI + I. x2+ a, ~2)
If s = (M > 40, 150, 170, High) and a = (2OOOcal. 500,300, IO, 0)

then s’=...

Fig. 1

promising approach to explaining the speed with which humans analyze scenes and
recognize forms.

To explore the relative roles and utility of systems like vision, tactile sensing and
construction (a torus = circle x circle) as an enrichment of the theory sketched in Fig. 1,
we introduced the idea of an artificial “beetle” that is $laced at a point on a curve or
surface [6]. It can move over a discrete set of points that we call sites. It can drop flags
at sites and thus sense if it has already been there. It can “see.” It was shown that
without “vision,” the beetle could not detect monotonicity, peaks, convexity, or the
absence of such properties of the curves on which it moves. Without the ability to
“construct,” it would not “imagine” a hollow spherical shell. Without the flag-dropping-
sensing ability, it could not detect the closedness of curves in its environment.

Several other such results were obtained and several ideas for further mathematical
investigation and implementation of algorithms were generated. In this paper, we report
the results of these further investigations.

Learning global properties

2. MAP-MAKING: AN ALGORITHM FOR DESCRIBING
A SIMPLE ENVIRONMENT

385

We consider a “beetle” that is to form a “map” of the curve or surface on which it is
constrained to move so that it can select and attain goals, i.e., desirable points on that
surface or curve. It is to do this by forming and testing hypotheses about certain
properties of the curve on the basis of what it “sees.” The algorithm to form such maps
has been implemented in FORTRAN and tested for very simple environments.

Environment

The beetle is constrained to move on a curve specified by (x(t), y(t)), where the
integer-valued parameter t is interpreted as time. In the implemented program, t varies
from 0 to 49, corresponding to at most 50 sites on the curve that the beetle can occupy in
50 successive instants.

The environments for the beetle may be described as follows. A particular environ-
ment consists of a finite collection of sites in a “space” that consists of simple closed
curves joined by bridges, where the closed curves
2.

may have spars, e.g., as shown in Fig.

Input

Since the sites on the curves are discrete, it is necessary to input a directed graph on
the sites which gives orientation to the curves and adjacency between sites.

The “map” to be constructed is an array called SITE. It contains SITE(I) which
represents the “view” from site I.

At each site a tangent is defined to the curve in the direction of orientation which
determines the beetle’s horizon. Thus, at a given time, the beetle’s state is determined by

(i) its site at that time;
(ii) the tangent to the curve at the site (its visual horizon); and

(iii) relevant segments of the path it has taken to get to the site.
The visual input, SITE(I), consists of a sequence of coded projection-symbols of a ray
from the curve onto a semicircle around site I, as the semicircle is scanned counter-
clockwise. Each element of the sequence is one of the four codes: PP, if a simple
projection is present; PA, if there is no projection; PNF, if there is a near-to-far
discontinuity; and PFN if it is far-to-near discontinuity. This is illustrated in Fig. 3.

Procedure

First a graph traversing algorithm is used to get a decomposition of the environment
into closed curves, bridges, and spars. For the sake of simplicity, we assume, in this

under I yi ng space environment

Fig. 2.

386 PAULEITNERANDMANFREDKOCHEN

PA .
l

0
.

0 .

0

.

Y
PP

. .
. site . .

8 . .
-*..e-

I 0

Path
l ..*.

Fig. 3.

section, that the beetle already knows something of the general form that his environ-
ment may take, i.e., that it consists of closed curves, bridges, and spars, and it must
determine the particular form. This algorithm is completely “tactile” given that the
orientation on the environment induces a potential that the beetle can sense at each site
(corresponding to the adjacency relation between sites). Then each segment is checked
for concavity and convexity.

The fixed predicates are closed curve, open curve, bridge, spar, convex, concave, and
straight (= convex and concave). The output is a verbal description of the environment
in terms of these fixed predicates. The program is structured as shown in Fig. 4.

The environment section reads input consisting of the underlying directed graph, and
also computes the sites and the angles of tangent and sight vectors at the sites. The
traversing algorithm isolates a particular component of the environment, identifies it as
closed curve, bridge, or spar, and then the component is tested for concavity or
convexity by the visual processing section. This step is repeated until all components of
the environment have been isolated and analyzed. Then the description is printed. The

. psychological structure, which the program models, may be pictured as in Fig. 5.
The preprocessors filter “noise” from the visual and tactile input so that only

Environment Section

Graph Traversing Algorithm

4

Visual Processing Algorithm

Fig. 4.

Learning global properties 387

Visual Input Visual Preprocessor Tactile Preprocessor

Analytical Center

1 Description of Environment

Fig. 5.

information pertaining to the particular segment of the environment that the beetle is on
reaches the analytical center. The analytical center uses sensory input to generate a
description of the environment.

3. LOCATING ONESELF ON A MAP

For the purposes of this section we regard an environment as a set of points, E,
together with a set of relations RF on these points. In other words, we consider a
relational structure 8 = (E, Rr). A map of $ is then another relational structure JU =
(M, R?) whose relations reflect the relations of 8 in the sense that there is a function
f:E+M such that R& . . . tz,,)e R?(f(al) . . .f(o.)) for any ol . . . a,, E E. A learner
(i.e., the bug or beetle) may be said to be able to locate itself on the map J1c, at the
location a E E, if f(a) is the only element of M satisfying the same relations in J(c
(modulo representation) as a satisfies in $.

To find its position on a map J4 of $, a learner begins at the point a E E by finding all
points ml . . . mk E M that satisfy all relations in & corresponding to those that a satisfies
in 8. The points ml.. . mk are the possible candidates for points representing a. It then
proceeds by matching successively larger sections of the environment against
the map in order to reduce the number of candidates for points representing its
location. This process terminates if the learner finds a point, a’ E E with only one point,
M ’ E M satisfying the relations corresponding to those that a’ satisfies in 8, or if all
points in E have been visited. In the latter case the sequence of matchings between E
and M give all automorphisms of J1c. The following proposition holds.

Proposition. A learner can locate himself on the map JIG at the location a E E, if and
only if f(a) is a fixed point of every automorphism of .k

Proof. Suppose f(a) is not a fixed point of every automorphism of J(c. Then there is at
least one other point m’ E M that is indistinguishable from f(a) according to all relations
Rf. Conversely if f(a) is a fixed point of every automorphism of J(l, any other point of M
is distinguishable from f(a) by relations holding in A.

The content of this proposition, roughly speaking, is that the more symmetry there is
in an environment, the more difficult it is to locate oneself on a map. Figure 6 illustrates
this point. Of course, if an environment is highly symmetrical one may say that the
problem of locating oneself loses importance since one might just as well be at one point

388 PAULEITNERANDMANFREDKOCHEN

Points a and b are difficult to
distinguish because of local symmetry

Fig. 6.

as any other. However, in an asymmetrical environment there may be local symmetries
making it difficult to locate oneself exactly on a map.

4. GAUSS CODES

Various algorithms have been given for traversing and mapping graphs or mazes that
are known as myopic algorithms because they are computable by diameter limited
machines [7]. Most of these are based on a principle similar to that of Tarry [g]. We wilI
describe an algorithm that in concert with Tarry’s labyrinth traversing algorithm enables
the myopic beetle to compute a particular property of his environment, that of being a
“normal closed curve.”

Define a closed curve to be normal if it has only finitely many self-intersections and
these are transverse double points. The Gauss code of such a curve is the word formed
by labehing the intersection points and recording these labels in the other in which they
are traversed. It is known that the Gauss code of a curve and another minor condition
determine the curve up to a “sense-preserving” homeomorphism of the plane [9]. The
first characterization of these words that has purely combinatorial content was obtained
recently by Lovasz and Marx [lo]. We present an algorithm based on their
characterization and its implementation in SNOBOL.

Let w = AaAP = AA,. . . AkAB,. . . J3, be any word in which the letter A occurs
exactly twice. Define the vertex split of w at A to be the word a-‘&3 = Al,. . . A&. . . Bt.
Define the loop removal of w at A to be the word obtained from w by removing A and
all occurrences of the letters in a. Then a subword of w is any word formed from w by a
sequence of vertex splits and loop removals.

THEOREM. A word w is the Gauss code of a normal closed curve if and only if each
letter in w occurs exactly twice and w has no subword of the form A1 . . . A.AI . . . A,,
where n is even [lo].

The program to determine whether a word is a Gauss code of a normal closed curve
(NCC) is given in the Appendix. It is assumed for simplicity that each letter in the word
to be tested occurs exactly twice. Input to the program are the string OCCUR that

.
Learning global properties 389

contains each letter in the string to be tested, and the actual string to be tested. Output,
for example, testing the string DABCABCDEE is

DABCABDCEE

VSA

DCBBDCEE

VSB

DCDCEE

FORBIDDEN SUBSTRING ENCOUNTERED

STRING IS NOT NCC

The algorithm generates a recursive tree search for the forbidden substring and may be
charted as shown in Fig. 7.

The Gauss code characterization shows that a myopic beetle can deduce certain global
properties of its environment without viewing it from the outside. A SNOBOL program for
the Gauss codes problem is appended, to show how well suited SNOBOL is for this purpose.
Some interesting questions pertaining to Gauss codes follow:

1. Can a more efficient algorithm be devised for testing whether a word is the Gauss
code of an NCC? What is the computational complexity of the Gauss code
problem?

2. How many words with n letfers are the Gauss codes of normal closed curves?

CONCLUSIONS

Our purpose has been to model on the computer the process of constructing
representations of an environment, and to investigate under what conditions these
representations may be used to locate oneself in that environment. In doing this we have
found that ease or difficulty of locating oneself on a map is a function of symmetry in the
environment. We have also uncovered certain global properties which may be serially
computed without viewing an environment from the outside, namely that of being a
normal closed curve, and also the decomposition of an environment into closed curves,
bridges, and spars. Doubtless many other examples of such properties may be found.
Much of the discussion in Perceptrons [41] deals with the limitations of parallel
computation, and we have been able to serially compute with impunity many of the
properties which are not perceptron-computable, such as connectedness. This points to
an ideal model of a learning machine as a combination of serial and parallel machines.

In terms of the long-term program outlined in the introduction, we have clarified the
relationship between an external environment and its representation internal to a learner.
This is a necessary step, for ultimately the formation of hypotheses about an environ-
ment depeitds on its internal representation.; the hypotheses thus formed may be tested
and the results of this testing used to obtain more exact representations.

It is this-feedback cycle that embodies the process of a learner coming to terms with
his world.

390 PAULEITNERANDMANFREDKOCHEN

ENTRY GAUSS CODE

No

CHECK FOR FORBIDDEN
SUBSTRING

I

PRINT ‘CURVE IS NCC”

No

PRINT “CURVE IS NOT NCC” FORM VERTEX SPLIT

I

I CALL GAUSS CODE
(VERTEX SPLIT)

I I

Fig. 7

REFERENCES

1:’ M. Kochen, Cognitive mechanisms. RAP-3. IBM Research Center. Yorktown Heights, NY (1960).
2 ,M. Kochen, Representations and algorithms for cognitive learning. Artif. Intell. 5, 199-216 (1974).
3 ;z3ytler and M. Kochen, ASP: A program using stored hypotheses to select actions. J. Cybemet. 3, l-12

e-M. Kochen, An information theoretical model of organizations. Trans. IRE PGIT-4.67-75 (1954).
S/I. Minsky, A framework for representing knowledge, in P. H. Winston, ed., The Psychology of Computer

Vision, McGraw-Hill, New York (1975).

Learning global properties 391

in Proceedings of the Milwaukee Symposium on

7.
P

Rosenstiehl, J. R. Fisel, and A. Holliger, Intelligent graphs, in R. C. Read, ed., Graph Theory and
Covrtputing, pp. 219-265, Academic Press, New York (1972).

a/G. Tarry, Le probltme des labyrinthes. Nouuelles Annales de Math. 14, 187 (1895).
92. M. Gehman, On extending a continuous (l-l) correspondence of two plane continuous curves to a

correspondence of their planes. Trans. Am. Math. Sot. UI, 252-265 (1926).
19 L. Lovasz and M. Marx. A forbidden substructure characterization of Gauss codes. Bull. Am. Math. Sot.

82, 121-122 (1976).
11” M. Minsky and S. Papert, Perceptrons, MIT Press, Cambridge (1%9).

APPENDIX

Gauss codes program

NCC
REV

L-R

s2

V-S

DEFINE('REVERSE(STRINGl)','REV')
DEFINE(‘LOOP_RE37uIOVAL(WORD1,CH1)’,’L_R’)
DEFINE('VERTEX_SPLIT(WORD2,CH2)','V_S')
DEFINE('GAUSS_CODE(WORD3,LIST)LIST2,LETTER','G_C')
DEFINE('SUB_STRING(WCFtD4)','S_S')
&TRIM=1
OCCUR = INPUT
G?iUSS_CODE(INPUT,OCCUR) :S(NCC)
OUTPUT = 'CURVE IS NOT NCC' :(END)
OUTPUT = 'CURVE IS NOT NCC' :(END)
STRING1 LEN(l) . Xl = :F(RETURN)
REVERSE = Xl REVERSE :wV)
WCRDl (CHl BREAK(CH1)) . DELIST = :F(FETURN)
OUTPUT = 'IR' CHl
WORD1 ANY(DELIST) = :S(S2)
LOOP_RiMVAL=WORDl :(RETURN)
Wm2 BREAK(CH2) . Wl CH2 BREAK(CH2) . W2 CH2 = :F(RETURN)
OUTPUT = 'V'S' CH2
VERTEX-SPLIT = Wl REVERSE(W2) WORD2 :(RETURN)
WORD4 LEN(l) . Yl = :F(RE'KlRN)
WORD4 BREAK(Y1) . Zl Yl REM . 22 :F(S S)
22 POS(0) Zl :F(S_S)
N= SIZE(Z1)
OUTPUT = NE(N / 2 * 2,N) 'FORBIDDEN SUBSTRING

ENCOUNTERED'
G-C

: S(RETURN) F(S_S)
OUTPUT = WORD3
IDENT(WORD3,") :S(RETURN)
SUB STRING (-3)
LIST2

:F(F’RETBN)
= LIST

NEW_LlTR LIST2 LEN(l) . LETTER = :F(RETURN)
GAUSS_CODE(VERTEX_SPLIT(WCRD3,LETTER),LIST) :F(FRETURN)
GAUSS_CODE(LOOP_Rl9lO~(WDFtD3,LETTER),LIST) :F(ERETURN)
:(NEh'_L'lTR)

s-s

