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Abstract-This paper reports developments in a mathematical model of cognitive 
learning. The model describes the processes of formation, testing, and revision of 
hypotheses held by a learner attempting to understand an environment. The fundamental 
assumption is that learning proceeds by a feedback cycle, where hypotheses are tested for 
validity against external reality and reweighted according to the outcome. A particular 
application of this model to the case of a mechanical “beetle”, mapping a geometrical 
environment, yields results of interest in artificial intelligence and robot design, including 
results on the computability of several geometrical predicates. 

1. INTRODUCTION 

This paper reports another step in the long-term development of a mathematical theory 
of learning [l, 21. The main idea is that learning proceeds by the formation, revision, 
reweighting and use of hypotheses so that the learner can identify and cope with an ever 
increasing variety of opportunities and traps. Hypotheses have the form of propositions 
in an applied predicate calculus, e.g., “if the state of the world at time t is s(t), and the 
learner takes action a(t), then T time units later the state is s(t + T) and this is (or is 
not) preferred to the present state.” Hypotheses are reweighted, revised or formed on 
the basis of information about the actual state of the world resulting from action a(t) and 
about how the learner evaluated the change of state. 

Previous results based on this general model pertained to the convergence properties 
of particular schemes for reweighting hypotheses. It was proved, for example, by 
Hantler and Kochen [3], that if hypotheses identical with the one that generates the 
environment are stored along with numerous others, then there exists a reweighting 
scheme for which the probability of selecting the most frequently confirmed hypothesis 
is bounded from below by a reasonably large number. 

A simplified model is sketched in Fig. 1. On the left side in each box, we specify the 
general definition of an environment and a learner. On the right side, there are specific 
interpretations of the various sets with reference to an imaginary beetle that can move 
along surfaces or curves. We are interested in’ the possibility that this “beetle” could 
learn to identify such concepts as “torus” or “Mobius band.” The importance for a 
mathematical model of the distinction between the “state of the world,” e.g., “a bug is at 
a certain point on the surface of a torus”; and the perceived state of the world, e.g., “the 
bug thinks it is on a sphere,” has been recognized for a long time [4]. Only recently has it 
become practically necessary to deal with that distinction in the context of robot design. 
It has also been recognized for some time that a state of the world perceived through a 
parallel input-at-a-distance system, such as vision, is quite different from the perception 
of the world through a tactile sensor. Recent work in artificial intelligence [5] has 
stressed the idea of a “frame,” also called a script or schema by various workers, as a 
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E (Environment) 

S FINITE SET (of states) A. C. D 

0 PARTIAL ORDER ON S A>D 

A FINITE SET (of actions) Right. Left. Stay 

F MAP: SxA- S (Law) (D. Right) - C 

s(0) ELEMENT OF S (Starting State) A 

L (Learner) 

Y FINITE SET (of internal states) 

3 PARTIAL ORDER ON 9 (Preference) 

Hunger, Reflectiveness 

d FINITE SET (Perceived action options) 

3 4-tuple (Representation of E): 

2’ (Internal language: Vocabulary, 
Formation Rules.. .) 

Right’, Left’, Stay’ 

Predicate calculus 

48 (Data Base of state inputs) 

“u (Data Base of value inputs) 

X (Store of hypotheses: sentences + 
weights) 

(D. Right’) - C 

A>D 

Closed curve has low value 

A ALGORITHM (Selects hypotheses, next internal 
state, records input, changes weights) 

s*(O) ELEMENT OF Y (Starting internal state) 

Hypotheses: If s = (XI, yl. x2. YZ) and a = Q then s’ = (2x1, YI + I. x2+ a, ~2) 
If s = (M > 40, 150, 170, High) and a = (2OOOcal. 500,300, IO, 0) 

then s’=... 

Fig. 1 

promising approach to explaining the speed with which humans analyze scenes and 
recognize forms. 

To explore the relative roles and utility of systems like vision, tactile sensing and 
construction (a torus = circle x circle) as an enrichment of the theory sketched in Fig. 1, 
we introduced the idea of an artificial “beetle” that is $laced at a point on a curve or 
surface [6]. It can move over a discrete set of points that we call sites. It can drop flags 
at sites and thus sense if it has already been there. It can “see.” It was shown that 
without “vision,” the beetle could not detect monotonicity, peaks, convexity, or the 
absence of such properties of the curves on which it moves. Without the ability to 
“construct,” it would not “imagine” a hollow spherical shell. Without the flag-dropping- 
sensing ability, it could not detect the closedness of curves in its environment. 

Several other such results were obtained and several ideas for further mathematical 
investigation and implementation of algorithms were generated. In this paper, we report 
the results of these further investigations. 
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2. MAP-MAKING: AN ALGORITHM FOR DESCRIBING 
A SIMPLE ENVIRONMENT 
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We consider a “beetle” that is to form a “map” of the curve or surface on which it is 
constrained to move so that it can select and attain goals, i.e., desirable points on that 
surface or curve. It is to do this by forming and testing hypotheses about certain 
properties of the curve on the basis of what it “sees.” The algorithm to form such maps 
has been implemented in FORTRAN and tested for very simple environments. 

Environment 

The beetle is constrained to move on a curve specified by (x(t), y(t)), where the 
integer-valued parameter t is interpreted as time. In the implemented program, t varies 
from 0 to 49, corresponding to at most 50 sites on the curve that the beetle can occupy in 
50 successive instants. 

The environments for the beetle may be described as follows. A particular environ- 
ment consists of a finite collection of sites in a “space” that consists of simple closed 
curves joined by bridges, where the closed curves 
2. 

may have spars, e.g., as shown in Fig. 

Input 

Since the sites on the curves are discrete, it is necessary to input a directed graph on 
the sites which gives orientation to the curves and adjacency between sites. 

The “map” to be constructed is an array called SITE. It contains SITE(I) which 
represents the “view” from site I. 

At each site a tangent is defined to the curve in the direction of orientation which 
determines the beetle’s horizon. Thus, at a given time, the beetle’s state is determined by 

(i) its site at that time; 
(ii) the tangent to the curve at the site (its visual horizon); and 

(iii) relevant segments of the path it has taken to get to the site. 
The visual input, SITE(I), consists of a sequence of coded projection-symbols of a ray 
from the curve onto a semicircle around site I, as the semicircle is scanned counter- 
clockwise. Each element of the sequence is one of the four codes: PP, if a simple 
projection is present; PA, if there is no projection; PNF, if there is a near-to-far 
discontinuity; and PFN if it is far-to-near discontinuity. This is illustrated in Fig. 3. 

Procedure 

First a graph traversing algorithm is used to get a decomposition of the environment 
into closed curves, bridges, and spars. For the sake of simplicity, we assume, in this 

under I yi ng space environment 

Fig. 2. 
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Fig. 3. 

section, that the beetle already knows something of the general form that his environ- 
ment may take, i.e., that it consists of closed curves, bridges, and spars, and it must 
determine the particular form. This algorithm is completely “tactile” given that the 
orientation on the environment induces a potential that the beetle can sense at each site 
(corresponding to the adjacency relation between sites). Then each segment is checked 
for concavity and convexity. 

The fixed predicates are closed curve, open curve, bridge, spar, convex, concave, and 
straight (= convex and concave). The output is a verbal description of the environment 
in terms of these fixed predicates. The program is structured as shown in Fig. 4. 

The environment section reads input consisting of the underlying directed graph, and 
also computes the sites and the angles of tangent and sight vectors at the sites. The 
traversing algorithm isolates a particular component of the environment, identifies it as 
closed curve, bridge, or spar, and then the component is tested for concavity or 
convexity by the visual processing section. This step is repeated until all components of 
the environment have been isolated and analyzed. Then the description is printed. The 

. psychological structure, which the program models, may be pictured as in Fig. 5. 
The preprocessors filter “noise” from the visual and tactile input so that only 

Environment Section 

Graph Traversing Algorithm 

4 

Visual Processing Algorithm 

Fig. 4. 
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Visual Input Visual Preprocessor Tactile Preprocessor 

Analytical Center 

1 Description of Environment 

Fig. 5. 

information pertaining to the particular segment of the environment that the beetle is on 
reaches the analytical center. The analytical center uses sensory input to generate a 
description of the environment. 

3. LOCATING ONESELF ON A MAP 

For the purposes of this section we regard an environment as a set of points, E, 
together with a set of relations RF on these points. In other words, we consider a 
relational structure 8 = (E, Rr). A map of $ is then another relational structure JU = 
(M, R?) whose relations reflect the relations of 8 in the sense that there is a function 
f:E+M such that R& . . . tz,,)e R?(f(al) . . .f(o.)) for any ol . . . a,, E E. A learner 
(i.e., the bug or beetle) may be said to be able to locate itself on the map J1c, at the 
location a E E, if f(a) is the only element of M satisfying the same relations in J(c 
(modulo representation) as a satisfies in $. 

To find its position on a map J4 of $, a learner begins at the point a E E by finding all 
points ml . . . mk E M that satisfy all relations in & corresponding to those that a satisfies 
in 8. The points ml.. . mk are the possible candidates for points representing a. It then 
proceeds by matching successively larger sections of the environment against 
the map in order to reduce the number of candidates for points representing its 
location. This process terminates if the learner finds a point, a’ E E with only one point, 
M ’ E M satisfying the relations corresponding to those that a’ satisfies in 8, or if all 
points in E have been visited. In the latter case the sequence of matchings between E 
and M give all automorphisms of J1c. The following proposition holds. 

Proposition. A learner can locate himself on the map JIG at the location a E E, if and 
only if f(a) is a fixed point of every automorphism of .k 

Proof. Suppose f(a) is not a fixed point of every automorphism of J(c. Then there is at 
least one other point m’ E M that is indistinguishable from f(a) according to all relations 
Rf. Conversely if f(a) is a fixed point of every automorphism of J(l, any other point of M 
is distinguishable from f(a) by relations holding in A. 

The content of this proposition, roughly speaking, is that the more symmetry there is 
in an environment, the more difficult it is to locate oneself on a map. Figure 6 illustrates 
this point. Of course, if an environment is highly symmetrical one may say that the 
problem of locating oneself loses importance since one might just as well be at one point 
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Points a and b are difficult to 
distinguish because of local symmetry 

Fig. 6. 

as any other. However, in an asymmetrical environment there may be local symmetries 
making it difficult to locate oneself exactly on a map. 

4. GAUSS CODES 

Various algorithms have been given for traversing and mapping graphs or mazes that 
are known as myopic algorithms because they are computable by diameter limited 
machines [7]. Most of these are based on a principle similar to that of Tarry [g]. We wilI 
describe an algorithm that in concert with Tarry’s labyrinth traversing algorithm enables 
the myopic beetle to compute a particular property of his environment, that of being a 
“normal closed curve.” 

Define a closed curve to be normal if it has only finitely many self-intersections and 
these are transverse double points. The Gauss code of such a curve is the word formed 
by labehing the intersection points and recording these labels in the other in which they 
are traversed. It is known that the Gauss code of a curve and another minor condition 
determine the curve up to a “sense-preserving” homeomorphism of the plane [9]. The 
first characterization of these words that has purely combinatorial content was obtained 
recently by Lovasz and Marx [lo]. We present an algorithm based on their 
characterization and its implementation in SNOBOL. 

Let w = AaAP = AA,. . . AkAB,. . . J3, be any word in which the letter A occurs 
exactly twice. Define the vertex split of w at A to be the word a-‘&3 = Al,. . . A&. . . Bt. 
Define the loop removal of w at A to be the word obtained from w by removing A and 
all occurrences of the letters in a. Then a subword of w is any word formed from w by a 
sequence of vertex splits and loop removals. 

THEOREM. A word w is the Gauss code of a normal closed curve if and only if each 
letter in w occurs exactly twice and w has no subword of the form A1 . . . A.AI . . . A,, 
where n is even [lo]. 

The program to determine whether a word is a Gauss code of a normal closed curve 
(NCC) is given in the Appendix. It is assumed for simplicity that each letter in the word 
to be tested occurs exactly twice. Input to the program are the string OCCUR that 
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contains each letter in the string to be tested, and the actual string to be tested. Output, 
for example, testing the string DABCABCDEE is 

DABCABDCEE 

VSA 

DCBBDCEE 

VSB 

DCDCEE 

FORBIDDEN SUBSTRING ENCOUNTERED 

STRING IS NOT NCC 

The algorithm generates a recursive tree search for the forbidden substring and may be 
charted as shown in Fig. 7. 

The Gauss code characterization shows that a myopic beetle can deduce certain global 
properties of its environment without viewing it from the outside. A SNOBOL program for 
the Gauss codes problem is appended, to show how well suited SNOBOL is for this purpose. 
Some interesting questions pertaining to Gauss codes follow: 

1. Can a more efficient algorithm be devised for testing whether a word is the Gauss 
code of an NCC? What is the computational complexity of the Gauss code 
problem? 

2. How many words with n letfers are the Gauss codes of normal closed curves? 

CONCLUSIONS 

Our purpose has been to model on the computer the process of constructing 
representations of an environment, and to investigate under what conditions these 
representations may be used to locate oneself in that environment. In doing this we have 
found that ease or difficulty of locating oneself on a map is a function of symmetry in the 
environment. We have also uncovered certain global properties which may be serially 
computed without viewing an environment from the outside, namely that of being a 
normal closed curve, and also the decomposition of an environment into closed curves, 
bridges, and spars. Doubtless many other examples of such properties may be found. 
Much of the discussion in Perceptrons [41] deals with the limitations of parallel 
computation, and we have been able to serially compute with impunity many of the 
properties which are not perceptron-computable, such as connectedness. This points to 
an ideal model of a learning machine as a combination of serial and parallel machines. 

In terms of the long-term program outlined in the introduction, we have clarified the 
relationship between an external environment and its representation internal to a learner. 
This is a necessary step, for ultimately the formation of hypotheses about an environ- 
ment depeitds on its internal representation.; the hypotheses thus formed may be tested 
and the results of this testing used to obtain more exact representations. 

It is this-feedback cycle that embodies the process of a learner coming to terms with 
his world. 
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ENTRY GAUSS CODE 

No 

CHECK FOR FORBIDDEN 
SUBSTRING 

I 

PRINT ‘CURVE IS NCC” 

No 

PRINT “CURVE IS NOT NCC” FORM VERTEX SPLIT 

I 

I CALL GAUSS CODE 
(VERTEX SPLIT) 

I I 

Fig. 7 
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APPENDIX 

Gauss codes program 

NCC 
REV 

L-R 

s2 

V-S 

DEFINE('REVERSE(STRINGl)','REV') 
DEFINE(‘LOOP_RE37uIOVAL(WORD1,CH1)’,’L_R’) 
DEFINE('VERTEX_SPLIT(WORD2,CH2)','V_S') 
DEFINE('GAUSS_CODE(WORD3,LIST)LIST2,LETTER','G_C') 
DEFINE('SUB_STRING(WCFtD4)','S_S') 
&TRIM=1 
OCCUR = INPUT 
G?iUSS_CODE(INPUT,OCCUR) :S(NCC) 
OUTPUT = 'CURVE IS NOT NCC' :(END) 
OUTPUT = 'CURVE IS NOT NCC' :(END) 
STRING1 LEN(l) . Xl = :F(RETURN) 
REVERSE = Xl REVERSE :wV) 
WCRDl (CHl BREAK(CH1)) . DELIST = :F(FETURN) 
OUTPUT = 'IR' CHl 
WORD1 ANY(DELIST) = :S(S2) 
LOOP_RiMVAL=WORDl :(RETURN) 
Wm2 BREAK(CH2) . Wl CH2 BREAK(CH2) . W2 CH2 = :F(RETURN) 
OUTPUT = 'V'S' CH2 
VERTEX-SPLIT = Wl REVERSE(W2) WORD2 :(RETURN) 
WORD4 LEN(l) . Yl = :F(RE'KlRN) 
WORD4 BREAK(Y1) . Zl Yl REM . 22 :F(S S) 
22 POS(0) Zl :F(S_S) 
N= SIZE(Z1) 
OUTPUT = NE(N / 2 * 2,N) 'FORBIDDEN SUBSTRING 

ENCOUNTERED' 
G-C 

: S(RETURN) F(S_S) 
OUTPUT = WORD3 
IDENT(WORD3,") :S(RETURN) 
SUB STRING (-3) 
LIST2 

:F(F’RETBN) 
= LIST 

NEW_LlTR LIST2 LEN(l) . LETTER = :F(RETURN) 
GAUSS_CODE(VERTEX_SPLIT(WCRD3,LETTER),LIST) :F(FRETURN) 
GAUSS_CODE(LOOP_Rl9lO~(WDFtD3,LETTER),LIST) :F(ERETURN) 
:(NEh'_L'lTR) 

s-s 


