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Regulatable Expression of the Interferon-Induced Double-Stranded RNA Dependent Protein
Kinase PKR Induces Apoptosis and Fas Receptor Expression
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PKR is an interferon-induced dsRNA-dependent protein kinase involved in the antiviral response as well as in cell growth
and differentiation. Studies using a transdominant negative mutant of PKR also have implicated the kinase in tumor
suppression and apoptosis. However, functional studies of PKR have been hampered by the lack of a suitable expression
system. In this study, we used a tetracycline-regulated inducible system in NIH3T3 cells to investigate the involvement of PKR
in programmed cell death (apoptosis). We show that expression of wild-type PKR causes apoptosis and correlates with
increased mRNA levels for the Fas receptor, a member of the tumor necrosis family of proteins. Expression of an inactive
form of PKR (K296R) or the vector alone did not induce apoptosis or elevate Fas mRNA levels. Our results clearly
demonstrate that expression of an active form of PKR triggers apoptosis, possibly through upregulation of the Fas receptor.

© 1999 Academic Press
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INTRODUCTION

Programmed cell death (apoptosis) plays a central
ole in development and homeostasis in metazoans.
poptosis is involved in pathological processes, in
hich it participates in defense mechanisms to re-
ove damaged cells such as tumorigenic and virus-

nfected cells. Apoptosis can be triggered by intracel-
ular and extracellular stimuli. Conditions that lead to
he onset of programmed cell death include intracel-
ular conflicting signals of proliferation and differenti-
tion. Additionally, the withdrawal of survival factors or

he exposure to stresses also may lead to apoptosis.
ediators of the latter effects have been studied ex-

ensively. These include members of the TNF receptor
uperfamily of proteins, which includes the TNFR1,
NFR2, CD40, and the CD95/FAS receptors. A number
f immediate downstream effectors such as FADD,
LICE, TRADD, and RIP have been identified. The

ecruitment of these proteins to their respective recep-
ors is thought to activate the caspase protease cas-
ade that ultimately leads to cell death (Wallach, 1997).
he link between the mediators and upstream effec-

ors of apoptosis during virus and interferon-mediated
ell death is still unclear (Nagata, 1997).

PKR is an interferon-induced, serine/threonine pro-
ein kinase (Samuel, 1991). Its activity is dependent on
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ouble-stranded RNA (dsRNA) and manifests two dis-
inct kinase activities: one for autophosphorylation
regulated by dsRNA) and the other for phosphoryla-
ion of eIF-2a. The phosphorylation of eIF-2a blocks
he exchange of GDP for GTP and consequently the
nhibition of formation of the eIF-2.GTP.Met.tRNA het-
rotrimeric complex. This results in inhibition of trans-

ation (for a review, see Hershey, 1991). PKR plays an
mportant role during viral infection, in cell growth
ontrol and differentiation (Petryshyn et al., 1984;
hong et al., 1992; Samuel, 1993; Donzé et al., 1995).
KR also is believed to be a tumor suppressor be-
ause the expression of dominant negative mutants of
KR in mouse NIH3T3 fibroblasts causes malignant

ransformation (Koromilas et al., 1992; Lengyel, 1993;
eurs et al., 1993; Sonenberg, 1993). Moreover, ex-

ression of wt PKR in yeast increases phosphorylation
f eIF-2a and results in the inhibition of cell growth

Chong et al., 1992; Dever et al., 1993). PKR is also of
entral importance in the antiviral defense by inter-

eron (Yang et al., 1995).
Several reports suggest that PKR is involved in pro-

rammed cell death after viral infection and in tumor
ecrosis factor-induced apoptosis. Expression of a

rans-dominant negative mutant of PKR or antisense
or PKR blocks apoptosis mediated by influenza and
accinia viruses, dsRNA, or TNF-a (Lee and Esteban,
994; Takizawa et al., 1995; Takizawa et al., 1996;
eung et al., 1996; Anderson, 1997; Der et al., 1997;
ibler et al., 1997; Srivasta et al., 1998). Although these

tudies suggest a role for PKR in programmed cell
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323TETRACYCLINE-INDUCIBLE PKR AND APOPTOSIS
eath, such a role has not been shown directly by
verexpressing wt PKR. Consequently, the mechanism
y which PKR induces apoptosis has been difficult to
ddress.

Functional studies of PKR have been hampered by the
oxicity of the protein in tissue culture cells (Koromilas et
l., 1992). To overcome this problem, we generated PKR-

nducible cell lines, using a tetracycline-regulated trans-
ctivator system. This system should facilitate the study
f the growth-inhibiting properties of PKR and its function

n apoptosis and determine its effect on endogenous
arget genes. Here, we show that the expression of PKR

t induces programmed cell death in NIH3T3. Moreover,
e show that PKR induces expression of Fas receptor
RNA.

RESULTS

xpression of PKR using the tetracycline inducible
ystem in NIH3T3

Expression of the tetracycline-repressible transacti-
ator (tTA) allows strict regulation of a promoter con-
aining tet operator sequences (Gossen and Bujard,

FIG. 1. Inducible human PKR wt and mutant (K296R) in NIH3T3 cell
ines were generated using the tetracycline inducible system. Immu-
oblots are shown of lysates from NIH3T3 cells in which either PKR wt,
296R, or vector alone were induced for 24 h (A). NIH3T3 cell lines
ere grown in the absence of tetracycline (tet) and extracts were
btained at different times as indicated in the figure (B). Lysates (10 mg)
ere subjected to SDS–7.5% PAGE, and PKR was detected using a
onoclonal antibody against human PKR (Laurent et al., 1985). Actin
as used to normalize for loading variability.
992). Constructs coding for wt or a dominant negative i
utant (K296R) of PKR under the control of tetracycline
egulatable promoter were transfected into parental
2–6 cells, which stably express the transactivator

tTA) (Shockett et al., 1995). As a control, cells were
ransfected with the vector alone. Two stable cell lines
or wt PKR (wt 2 and 5), one for the mutant (K296R) and
ne for the vector, were chosen for further studies. No
rotein expression was detected by immunoblot anal-
sis for the transfected PKR plasmid in the presence of
etracycline (lanes indicated by 1, Fig. 1A). Tetracy-
line withdrawal induced PKR protein expression (ei-

her wt or mutant). Control cells showed no PKR ex-
ression in the presence or absence of tetracycline

Fig. 1A). As observed in earlier studies (Barber et al.,
993), PKR protein expression levels were lower in cell

ines expressing PKR wt as compared with mutant
KR, reflecting the autoinhibitory translational effect of
KR wt. After tetracycline removal, the expression of

he wild-type kinase was detectable within 3 h and
eached maximum expression at 24 h. The induction
inetic of PKR K296R was delayed compared with wt

Fig. 1B). Phosphorylation of PKR wt was assessed by
he slower migration of the phosphorylated form on a
DS–7.5% polyacrylamide gel. Interestingly, 3 h after

etracycline removal, PKR migrated as a single band.
t 6 h, an additional faint upper band appeared, which
ost likely represents the phosphorylated form (Ito et

l., 1994; Koromilas et al., 1995). At 16 and 24 h after
etracycline removal, PKR migrated as a clear doublet.
t 48 h, PKR is visible only as a single lower band,
uggesting that it is dephosphorylated and probably

nactivated. The level of PKR wt decreased dramati-
ally at 48 h, probably due to translational arrest trig-
ered by PKR wt. This effect requires kinase activity
ince the reduction was not seen for PKR K296R (com-
are Fig. 1B lane 48 h for PKR wt and K296R). The
ctivity of the different PKR kinase variants was exam-

ned by an autophosphorylation assay (Fig. 2). As
xpected, kinase activity was detected only in cell

ines expressing the wild-type protein. Taken together,

FIG. 2. In vitro kinase assay. Cell extracts from NIH3T3 cells express-
ng PKR wt, K296R, or the vector were performed in the presence of
sRNA as described under Materials and Methods. PKR proteins were
nduced (2tet) for 24 h.
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324 DONZÉ, DOSTIE, AND SONENBERG
hese results demonstrate that a functional PKR pro-
ein can be induced in NIH3T3 cells.

To ascertain that PKR function was abrogated in
ells expressing the trans-dominant negative mutant
f PKR (K296R), we studied the expression of a lucif-
rase reporter plasmid as reported previously (Kauf-
an et al., 1989; Donzé et al., 1995). Transient trans-

ections of some plasmids result in the activation of
KR and specific translational inhibition of the trans-

ected plasmids (Kaufman et al., 1989). Expression of a
KR trans-dominant negative mutant reverses this

ranslational inhibition (Barber et al., 1993). We ana-
yzed the expression of the luciferase gene when
ransfected in either PKR wt or PKR K296R-expressing
ells. Luciferase expression in NIH3T3 cell expressing
KR K296R was enhanced as expected (Fig. 3) (Kauf-
an et al., 1989; Donzé et al., 1995). In cells express-

ng PKR wt, reporter gene expression was reduced as
ompared with control cells (Fig. 3). Thus we gener-
ted an inducible-system expressing either a func-

ional kinase or a trans-dominant negative mutant of
KR.

KR suppresses growth of NIH3T3 cell lines

Next, we investigated the effect of PKR overexpres-

FIG. 3. Expression of luciferase in NIH3T3 cells expressing PKR
t, K296R PKR, or the vector alone. Cells were transfected with
cDNA3-luc. Luciferase activity was measured 48 h after trans-

ection in a luminometer using the luciferase assay system (Pro-
ega). The experiments were carried out twice with ,20% differ-

nce. V, NIH3T3 cells expressing the vector; C, NIH3T3 cells ex-
ressing PKR mutant (K296R) that were mock transfected (no DNA).
KR proteins were induced by tetracycline removal for the 24 h
efore harvesting.
ion on growth of NIH3T3 cells. Induction of PKR wt f
ramatically inhibited cell growth (Fig. 4). When PKR
t began to be expressed, cell growth decreased and

topped completely after ,3 days. Reduction in cell
umber was detected as early as 16 h after tetracy-
line removal. No effect on the growth of cells con-

aining the mutant or the vector alone was observed
Fig. 4, data not shown). Based on the results of Fig. 1,
t is evident that the increase in functional PKR wt
rotein causes reduction in cell growth. It is notewor-

hy, however, that in the absence of tetracycline when
oth PKR mutant and/or the transactivator (tTA) are

nduced, cell growth is affected slightly, probably due
o the effect of the tTA protein (Fig. 4) (Shockett et al.,
995).

KR wt induces programmed cell death in NIH3T3
ell lines

After PKR induction upon tetracycline removal, the
KR wt cells showed changes in morphology and loss
f adherence to the tissue culture dish within 24 h of
KR wt expression (data not shown). To determine
hether apoptosis occurred, flow cytometry was used

FACS) (Fig. 5). NIH3T3 cells displayed DNA content
rom 2 to 4 N, representing cells in Go/G1, S, and G2/M
hase. Twenty-four hours after removal of tetracycline,

he number of cells in G1 phase began to decrease
ith a concomitant appearance of a peak of hypodip-

oid cells characteristic of apoptosis (Fig. 5A, region
). Forty-eight hours after tetracycline removal, .40%
f the cells contained hypodiploid DNA. In the ab-
ence of PKR induction, the FACS analysis was iden-

ical to control cells with a large peak of cells at Go/G1
1 tet, Fig. 5A). NIH3T3 cells expressing the PKR

utant (K296R) or the vector alone did not contain
ells in the hypodiploid fraction either in the presence
r the absence of tetracycline (Fig. 5B). Electro-
horetic analysis of DNA from dying cells revealed the

ragmentation of chromatin into nucleosomal-size
ragments (ladder) characteristic of apoptosis (Fig. 6,
ane 4). These results indicate that induction of an
ctive form of PKR is sufficient to induce apoptosis in
IH3T3 cells.

KR wt induces expression of the Fas receptor

To start investigating the mechanism by which PKR
nduces apoptosis in NIH3T3 cells, we assayed for
ne potential target, the Fas antigen (CD95, APO-1)

for a review, see Nagata, 1997). Increased expression
f the Fas antigen upon virus infection or double-
tranded RNA addition has been reported recently

Takizawa et al., 1995, 1996). Because PKR is activated
ither by dsRNA or by virus infection, it is conceivable

hat Fas is a target of PKR (Der et al., 1997). Total RNA

rom NIH3T3 in which PKR wt has been induced for
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325TETRACYCLINE-INDUCIBLE PKR AND APOPTOSIS
4 h was subjected to RT–PCR with primers from the
urine Fas gene. As shown in Fig. 7, Fas mRNA is

xpressed in response to PKR wt at 24 h; a 400-nt
and is visible as expected. The PCR product was
haracterized further by restriction digest analysis to
onfirm the identity of the Fas sequence (data not
hown). In contrast, when PKR K296R is expressed, no
as mRNA synthesis was observed. This indicates that
KR induces Fas mRNA expression.

DISCUSSION

Functional studies of PKR have been hampered by
he lack of a suitable expression system. Due to the
oxicity of the protein, the establishment of stable cell
ines was not possible. To solve this problem, we
enerated tetracycline-inducible cell lines expressing
KR. Previous reports suggested a potential role for
KR in the process of cell death. However, they were
ased on indirect studies involving virus-based ex-
ression system, mutants, or knock-out mice of PKR

FIG. 4. Growth curve of NIH3T3 cells expressing PKR wt or PKR K2
resence or absence of tetracycline (6tet). Cells were seeded at 3 3 10
ere extensively washed with TBS to remove residual drug, and live cell

s plotted as log (3104).
Lee and Esteban, 1994; Takizawa et al., 1995, 1996; c
eung et al., 1996; Anderson, 1997; Der et al., 1997;
ibler et al., 1997; Srivasta et al., 1998). Here we
emonstrate that expression of an active form of PKR

s sufficient to induce apoptosis in NIH3T3 cells. Also
he occurrence of cell death is shown to correlate with
he induction of PKR wt.

Numerous studies have shown that PKR is activated
uring viral infection (Samuel, 1991; Takizawa et al.,
996). In many instances, viral infection ultimately

eads to apoptosis by a mechanism that is still un-
nown (Takizawa et al., 1993, Uehara et al., 1993).
pstein–Barr (EB) virus (Uehara et al., 1993) and influ-
nza (Takizawa et al., 1993, 1996), which cause apo-
tosis also lead to increased expression of Fas anti-
en. This observation indicates that Fas could play an

mportant role in the virus-induced apoptosis
Takizawa et al., 1995). Fas belongs to the tumor ne-
rosis factor (TNF) and nerve growth factor (NGF)
eceptor family (Steller, 1995). It triggers apoptosis
hen bound to Fas ligand (Nagata, 1997). We thus

IH3T3 cells expressing wt or mutant (K296R) PKR were grown in the
plate in the presence of tetracycline. Three hours after plating, cultures
counted in duplicate plates at daily intervals. The number of cells/plate
96R. N
4 cells/
s were
onsidered Fas as a putative target of PKR-induced
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326 DONZÉ, DOSTIE, AND SONENBERG
poptosis. We show that PKR expression leads to Fas
RNA upregulation. This result further suggests that

as may be a downstream effector of PKR during viral
nfection. It is conceivable that Fas oligomerization

ith FasL participates in transmitting the death signal
uring PKR-induced apoptosis.

It is not known how PKR induces Fas mRNA expres-
ion. However, the Fas gene contains one NF-kB con-
ensus sequence in its promoter (Kimura et al., 1997).
KR is known to participate in the activation of NF-kB
y dsRNA (Maran et al., 1994). Therefore, it is possible

hat PKR induces Fas mRNA expression at the tran-
criptional level by activation of NF-kB. The mecha-
ism of activation is still unclear but might involve

he inhibitor I-kB. One study reported that PKR could
hosphorylate I-kB (Kumar et al., 1994). We attempted

o detect I-kB phosphorylation in the NIH3T3 cells
t different times after PKR wt expression but failed

Donzé and Sonenberg, unpublished data). This ob-
ervation is consistent with the lack of I-kB phos-
horylation using a vaccinia virus recombinant ex-
ressing PKR (Lee et al., 1997). The mechanism of
F-kB activation by PKR is still unclear but perhaps

nvolves translational control of I-kB by the PKR/eIF-2
athway. Further studies using cells expressing a non-
hosphorylatable mutant of eIF-2a will help to solve

his issue.
How is PKR activated in the absence of virus infection?

revious studies suggested that PKR is activated by its
wn mRNA (Barber et al., 1993, Thomis and Samuel,
995). In our system, one could follow the phosphoryla-
ion of PKR by visualizing the appearance of a doublet on

SDS–PAGE. The doublet is not present at 6 h but

FIG. 5. Flow cytometric analysis of NIH3T3 cells expressing wt (A)
etracycline and analyzed by flow cytometry as described under Materia
s indicated with h.
ppears at 16 h (Fig. 1B). The appearance of phosphor- s
lated PKR may result from the increase of its own mRNA
evels after induction.

In conclusion, using a tetracycline-based inducible
ystem, we show that expression of the interferon-in-
uced, dsRNA-dependent protein kinase PKR is suffi-
ient to trigger apoptosis in NIH3T3. We also observed

hat the Fas receptor mRNA is upregulated during this
rocess. This system should facilitate a detailed study of

he mechanism by which PKR acts as a tumor-suppres-
or and as a pre-apoptotic agent. Particularly, it would be

mportant to identify the targets, that are activated during
hese processes.

6R PKR (B). NIH3T3 cells were grown in the presence or absence of
Methods. 2C and 4C represent DNA content of cells. Hypodiploid DNA

FIG. 6. DNA fragmentation induced by PKR wt. DNA was isolated
rom adherent (1) or floating (2) NIH3T3 cells expressing PKR wt in
he presence of tetracycline or from adherent (3) or floating cells (4)
n the absence of tetracycline. DNA was fractionated by electro-
horesis on a 2% agarose gel and visualized by ethidium bromide
or K29
ls and
taining.
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327TETRACYCLINE-INDUCIBLE PKR AND APOPTOSIS
After submission of this paper for publication, a report
y Balachandran et al. (1998) appeared in which the
uthors show that induction of PKR in 3T3-L1 cells
auses apoptosis but only in the presence of dsRNA. In
ur system, apoptosis occurred in the absence of
sRNA. The reason for this difference is not immediately
lear.

MATERIALS AND METHODS

stablishment of PKR-inducible cell lines

wt or mutant (K296R) (Meurs et al., 1990) PKR cDNA
as subcloned into the tetracycline-regulatable ex-
ression vector, pUHD 10–3 (Gossen and Bujard, 1992)

o generate p10–3 PKR wt and PKR K296R constructs.
NIH3T3-derived cell line, S2–6 expressing the trans-

ctivator, tTA (Shockett et al., 1995), was cotransfected
ith p10–3 (control) or with p10–3 PKR clones and

elected for resistance to G418 (800 mg/ml). Cell lines
ere kept in the presence of 1 mg tetracycline/ml until

nduction. Cell lines were screened for PKR expres-
ion by immunoblotting. Seven clones were chosen for
KR wt expression, three for PKR K296R, and two for

he control vector. All wt clones began to die 24 h upon
etracycline withdrawal, and two clones demonstrating
ightly regulated induction were selected for this study.

NA fragmentation analysis

Equal number of cells were seeded into 100-mm
ishes, and tetracycline was withdrawn after cells had
ttached to the dish. At the times indicated in the

igure legends, cells were harvested and lysed in 0.5
l buffer A [10 mM Tris–HCl (pH 7.5), 400 mM NaCl, 1%

FIG. 7. Fas mRNA is induced in NIH3T3 cells expressing PKR wt.
IH3T3 cells expressing PKR wt, PKR mutant (K296R), or the vector
ere induced for 24 h. Fas mRNA levels were detected by reverse

ranscription–PCR (35 cycles) and analysed using 2% agarose gel
lectrophoresis. To normalize for RNA levels in the RT–PCR reac-

ion, GAPDH mRNA was used for reverse transcription–PCR (30
ycles).
DS, 1 mM EDTA, and 0.2 mg/ml proteinase K]. For p
NA isolation, lysates were incubated at 50°C for 2 h,
reated twice with phenol/chloroform/isoamyl alcohol,
ollowed by chloroform/isoamylalcohol extraction and
recipitation with one volume of isopropanol. DNA
as resuspended in Tris–EDTA buffer [10 mM Tris–HCl

pH 8.0) and 1 mM EDTA] and treated with RNase A for
5 min at 37°C.

low cytometry analysis

Attached and floating cells were pooled after with-
rawal of tetracycline. Cells were gently suspended in
.5 ml hypotonic fluorochrome solution (propidium io-
ide, 50 mg/ml in 0.1% sodium citrate plus 0.1% Triton
-100). DNA content was measured using a FACScan

low cytometer (Becton and Dickinson, Mountain View,
A) (Nicoletti et al., 1991).

n vitro kinase assay

PKR wt and mutant were immunoprecipitated from cell
xtracts with an antiserum against human PKR (a kind
ift of Dr. M. Matthews). An in vitro kinase reaction was
erformed as described previously (Koromilas et al.,
992). The resulting products were separated on a SDS–
.5% PAGE.

rotein analysis

Cells (5 3 106) were washed twice with cold phos-
hate-buffered saline [140 mM NaCl, 15 mM KH2PO4

pH 7.2), and 2.7 mM KCl] and incubated on ice with
00 ml of lysis buffer [10 mM Tris–HCl (pH 7.5), 1%
riton X-100, 50 mM KCl, 1 mM dithiothreitol (DTT), 2
M MgCl2, 0.2 mM phenylmethylsulfonylfluoride

PMSF), and 0.2 mg/ml aprotinin]. The lysate was cen-
rifuged at 10,000 g for 5 min, and aliquots containing
qual amounts of protein (determined by Bradford)
ere electrophoresed on an SDS–7.5% polyacrylamide
el (Sambrook et al., 1989). Proteins were transferred

o a nitrocellulose membrane (Schleicher and Schuell)
n 25 mM Tris–HCl (pH 7.5), 190 mM glycine, and 20%
v/v) methanol for 1 h at 100 V. Filters were incubated

ith 5% (w/v) non-fat dried skimmed milk powder in
BS and 0.2% Tween 20 for 30 min at room tempera-

ure and then with PBS plus 0.2% Tween 20 and 2%
SA containing a mouse monoclonal antibody to PKR

Laurent et al., 1985) or rabbit antibody against mouse
ctin (ICN Biomedicals) for 1 h. After washings with
BS and 0.2% Tween 20, the filter was incubated for
h with HRP goat antibody against mouse immuno-

lobulin G (Amsersham). After washings the mem-
rane was dried and exposed to an X-ray film.

everse transcription–PCR

Total RNA (1 mg) was reverse-transcribed using

oly(dT) primer with MuLV reverse transcriptase (GIBCO)
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328 DONZÉ, DOSTIE, AND SONENBERG
s described by the manufacturer. PCR was performed
n 2-ml aliquots from each cDNA reaction, using primer
ets for detecting Fas (59-CATCTCC-GAGAGTTTAAAG-
TGAGG, 59-GTTTCCTGCAGTTTGTATTGCT-GGTTGC) or
lyceraldehyde-3-phosphate dehydrogenase (GAPDH)

59-CCATGGAGAAGGCTGGGG, 59-CAAAGTTGTCATGG-
TGACC) (Der et al., 1997).
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