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Detine A(n) to be the largest integer such that for each set A of size n and cover 
9 of A, there exist EC_ A and Q c F such that IBI = L(n) and the restriction of Q 
to B is a partition of B. It is shown that when n 2 3 

n 
------<i.(n)< 

2(n - 1) 
(1 +Inn) (I +Ig(n-l)-lglg(n-1)) 

The lower bound is proved by a probabilistic method. A related probabilistic 
algorithm for finding large sets partitioned by a subfamily of a cover is presented. 
p 1990 Academic Press. Inc. 

1. INTRODUCTION 

The exact cover problem asks whether, for a given set A and a cover 9 
of A, there is a subcover 9 E 9 that partitions A. When no such subcover 
exists, we may consider a related problem: is there a “large” set BE A 

which is partitioned by some $9, a subfamily of 9 (but perhaps not a 
subcover)? In this paper we investigate the problem of how large B can be 
in general. 
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For n > 0 fix a set A of size n. Let A(n) be the largest integer k such that 
if 4 G 2A is a cover of A, then there exist BE A and Y G 9 such that 
IBI=kand% rSfl={(BnCICE9} is a partition of B; i.e., each element 
of B is contained in precisely one set in 9. Let In n denote log, n and lg n 
denote log, n. We show that when n > 3 

n 
~ < 4n) < 

2(n- 1) 
l+lnn 1 + lg(n - 1) - lg lg(n - 1)’ 

The definition of A(n) may be formulated in the language of hypergraphs 
(see Berge [ 11): i(n) is the largest integer k such that every hypergraph of 
size n has a partial subhypergraph of size k that is a matching. 

The proof of the lower bound for l(n) is by a probabilistic argument. We 
assume that the reader is familiar with the basic concepts from probability 
theory found in introductory texts (see, e.g., Lotve [4]). We will present a 
related probabilistic algorithm for finding BE A and 9 G 9 partitioning B 
where IBI approaches A(n). 

We use the falling factorial notation (n), = n(n - 1). . . (n - i + 1). Thus 
(r) = (n),/i!. By convention (n),, = 1. H, will denote the nth harmonic 
number 1+(1/2)+(1/3)+ ... +(1/n). 

2. LOWER BOUND FOR A(n) 

We first establish the following simple identity. 

LEMMA 1. Let 0 < k < m. Then 

mpk+’ (m-k);_, 1 
c 

i=l 
(m)i =k’ 

Proof: Let n = m - k. Reversing the summation above, we see that we 
must show 2::: (n)ip,/(m)i= l/(m-n), when n 6m. We prove this by 
induction on n. It is clear lfor n = 0. If n > 0, 

“i’ @I,- I n+1(n).p1 
-=;+,;2g- 

1 n ’ (n-l)i-, 

,=, (mh 
=;+; ,c 

r=l (m- 1L 

=‘+L-=- 1 1 
m mm-n m-n 

by the induction hypothesis. [ 

We thank Joel Spencer for suggesting the following alternate proof of 
Lemma 1. Consider an urn containing m marbles, k of which are red, the 
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remainder being blue. Draw marbles from the urn (without replacement) 
until a red marble is found. Let us compute the probability that precisely 
i marbles will be drawn: Of the (m), possible sequences of i marbles, 
(m - k)jp, k consist of i - 1 blue marbles followed by a red one, so the 
probability is (m-k),_ , k/m,. Since a red marble will occur at the latest 
by the time m-k + 1 marbles are drawn, 

“-i+’ (m-k),-, kc 1 

i= I (mh 

We now prove the lower bound. 

THEOREM 2. n/( 1 + In n) 6 A(n). 

Proof Let IAl = n and 9 c 2A be any cover of A. We will show that 
there are a set B s A of size at least n/H,, and a subfamily 9 G p such that 
3 r B is a partition of B. We may suppose that 9 is a minimal covering 
of A-i.e., that no proper subfamily of 9 covers A. Put 191 = m. We know 
m < n since every element of 9 covers some element of A which is covered 
by no other element of 9. 

The proof proceeds as follows. We define a probability measure P on the 
set 0 = = (‘3’ G 9 1 3 # a}. For 3 E 52 let B(9) be the set of elements in 
A covered by precisely one set in Y and define a random variable X on Sz 
by X(g)= IB(Y)I. We then show that E(X), the expected value of X, is 
n/H,,, so there must be a subfamily ?I G 9 such that IB(%)I an/H,. 
Clearly, if we take B = B(B), 3 r B is a partition of a with I BI = n/H,. 

We now define P. For ??EE, if 191 =i then set P(%j=(i(~)H,)p’. To 
see that P(Q) = 1 note that there are (7) elements 9~12 such that lgI= i. 
Hence, P(l9l =i)=(iH,)-‘. But for every YEQ, 1 d 191 dm, so P(Q)= 
x;=“=, (iH,J’=l. 

Define a function Y: Q x A -+ { 0, I} as follows. Y (Y, a) = 1 if and only if 
a is covered by precisely one element of 9. Thus X(9) = xacA Y(‘3, a). 
Also define for each a E A a random variable Y, on Q by Y,(Y) = Y(%, a). 
We have 

E(X)= 1 c Y(%> a) P{W C$ER USA 

We will show that E(Y,) = l/H, for every a E A, from which it follows that 
E(X) = n/H,,,. 

Express E(Y,) =x7=, E(Y,) )??I = i) P( 191 = i), where E(Y,I 1’31 = i) is 
the conditional expectation of Y, given that 1’3’1 = i. Suppose that precisely 
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k elements of 9 cover a. Then if i > m -k + 1, at least two elements of % 
cover a when \%I =i, so E(Y,I 1’Sl=i)=O. If i<m-k+l, there are (7) 
elements Y E Q with 1991 = i. Of these, k(y::) cover a precisely once. Form 
9 by choosing one of the k elements of 9 covering a and i - 1 of the n -k 
elements of F not covering a. Hence, 

m = ik(m - k)i-, -w,I 131 =d= (;) (m), ’ 
We know that P(jY =i)=(iH,)-’ so 

m-k+1 k(m-k)i-, 
WJ= c 

k “-i+‘(m-k),-, 1 
=- =- 

i= I (m)iH, H, ;=I (m)i Hm 

by Lemma 1. Thus, E(X) = n/H,,, and there is a ‘9 E Sz such that IB(S)l > 
NH,. 

We can improve this estimate slightly by observing that H, = y + In n + 
0(1/n), where y is Euler’s constant (see Knuth [3]). Hence A(n)>, 
n/(y + In n) + O( 1). 

3. UPPER BOUND FOR 2(n) 

The upper bound is obtained by construction. We will describe how to 
find, for a set A of size n, a cover 9 c 2A such for all Y E 9 

lB(‘%l G 
2(n- 1) 

1 + lg(n - 1) - lg lg(n - 1)’ 

LEMMA 3. Let to, t,, . . . . tk be a sequence of integers such that for all i 
with l<i<k,t,+t,+ ... + tip 1 < ti. Let n =Cf==, ti2kpi und m=xf=, ii. 
Then there is a cover B of each A of size n such that whenever 
9~9, IB(%)I Gm. 

ProoJ By induction on k. The case k = 0 is obvious. Induction step: 
Assume the statement for k. Let 

kfl k 

s= 1 qp-i, t,+,+2 c ti2k-i=tk+l+h 

i=o i=O 

k+l k 

fi= c ti=tk+, + 1 ti=tk+,+m. 

i=O i=O 



300 COMPTONANDMONTENEGRO 

By the induction hypotheses, for any set A of size y1 there is a cover 9 of 
A such that lB(%)I d m for every 9 c 8. Let F and 9-I’ be such covers for 
A and A’, respectively, where IA j = /A’1 = n and A n A’ = 0. Also let C be 
any set of size fk+ I disjoint from A and from A’. Define a cover of 
~=A~A’uC:~=(CUSI SE.F or SET’}. 

Since A, A’, and C are disjoint sets, 121 = E. We show that g is a cover 
of A” with the desired property. Let 9 E @ be any subset. If 1951 = 1, then 
IB(%I G t!f+ I + m = 53. If IYI > 1, then since each member of g contains C, 
B(B)cAuA’ and so ~B(~)162m<tk+,+m=rE (the last inequality 
holds by the assumption on the t,‘s). This shows that for all 53 ~9, IB(S)l <k 
and so the lemma follows. 1 

Now for a given m, let k = Llg mJ, and let ti= Lm/2k -‘A - Lm/2kp’+’ J. 
It is easy to see that the sequence to, t,, . . . . tk satisfies Lemma 3 and that 
m = cf=, ti. Let v(m) = Cl’=, ti2kpi. 

LEMMA 4. 2v(m) 3 (m + 1) lg(m + 1) for all m > 1. 

Proof: By definition 

where k = Llg ml. Doubling and summing by parts, we have 

2k-’ 

. 

We may suppose that this defines v(m) for all positive real m, where k is 
an integer such that 2k - 1 <m < 2” + ’ - 1. We prove by induction on k 
that 2v(m) 3 (m + 1) Ig(m + 1). 

For the basis case k = 0 we must verify that 2m 3 (m + 1) lg(m + 1) when 
0 < m 6 1. The functions 2m and (m + 1) lg(m + 1) have the same values at 
m = 0 and 1. Also, 2m is linear while (m + 1) lg(m + 1) is convex since its 
second derivative is positive. Therefore, 2m dominates (m + 1) lg(m + 1) on 
the interval 0 < m < 1. 

Suppose that k > 1 and the result holds for smaller values. Then 

NOW 2k ~ ’ - 1 < (m - 1)/2 < 2” - 1, so by the induction hypothesis, 

2v(~)B~lg(~). 
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Combining inequalities and simplifying, we have 2v(m)a(m+l) 

k(m+l). I 

We now prove the upper bound. 

THEOREM 5. ~~(n)~2(n-1)/(1+lg(n-1)-lglg(n-1)) when n33. 

Proof Given n, let be m such that v(m - 1) <n < v(m). By Lemma 3, 
there is a cover 9 of each A of size v(m) such that whenever 
9 c 9, IB(S)l <m. Since n 6 v(m), the same statement holds for each A of 
size n. 

By Lemma 4 

m lg m 
-<v(m- l)<n- 1. 

2 

Apply the function f(x) = x/(lg x - lg lg x) to this inequality to obtain 

m k m n-l 
22lg((mlgm)/2)-lglg((mlgm)/2)‘lg(n- 1)-lglg(n- 1) 

The inequality is preserved because f is monotonic. It is easy to check that 
the left side is at least m/2 so we have 

4n)6m< 
2(n- 1) 

lg(n - 1) - lg Ig(n - 1)’ I 

4. A PROBABILISTIC ALGORITHM 

Theorem 2, which gives the lower bound for ,X(n), is not constructive. 
However, it does provide a polynomial time probabilistic algorithm for 
finding a large set partitioned by a subfamily of a cover. We do not expect 
that there is a deterministic polynomial time algorithm for finding the 
largest set partitioned by a subfamily of a cover because the exact cover 
problem is a special case of this problem. (Recall that the exact cover 
problem asks whether there is a subcover 3~9 that partitions A.) The 
exact subcover problem is NP-complete, even when the sets in 9 are 
restricted to be three element sets (see Garey and Johnson [2, p. 531). 

Let IA I= n and 9 & 2A be a cover of A. We may assume that 9 = m < n. 
Consider the random variable X(9) = IB(S)l defined in the proof of 
Theorem 2. It was shown there that E(X), the expected value of X with 
respect to the probability measure P, is n/H,,, (denote this value by M). 
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Take E > 0 and let p = P(X > ( 1 - s)M). Now since X is bounded by n, we 
have 

pn+(l -p)(l -E)M>M 

whence 

EM EM 
> a-2- 

“n-(l-s)M n H,‘ 

That is, if a nonempty 9 G .Y is selected according to the probability 
measure P, the probability that 99 partitions a set of size at least (1 - E)M 
is at least E/H,~. Suppose we independently repeat such a selection N times. 
The probability that we do not find a set of size (1 - E)M partitioned by 
some 9 among the N choices is at most (1 - .z/Hm)“‘. Take E = s(n) tending 
to 0 and a polynomial N= N(n) such that NE/H, tends to co. (For exam- 
ple, let E = l/n and N= n’.) Then (2 - E/H,,)~ tends to 0 so the probability 
of finding 9 with IB(C+Z)I nearly as large as n(n) within N selections is nearly 
certain. 

Our algorithm can now be simply stated for E and N as above. 

GIVEN: A of size n; cover 9 s 2A of size m 6 n. 
REPEAT 

Select k E { 1, . . . . m} according to the harmonic distribution; 
Select 9 s 9 of size k according to the uniform distribution; 

N TIMES OR UNTIL IB(S)l 2 (1 -E) A(a). 

5. CONCLUDING REMARKS 

The lower bound for A(n) proved in Theorem 2 is asymptotic to n/in n. 
The upper bound proved in Theorem 5 is asmptotic to (2 In 2) n/inn = 
(1.386 -.) n/in n, which is surprisingly close to the lower bound. We are 
naturally led to conjecture that l(n) * Kn/ln n for some constant K. Since 
the lower bound was obtained by probabilistic methods, we would expect 
K to correspond more closely to the upper bound value 2 In 2. 

The algorithm in the previous section is quite modest. For a given cover 
F c_ 2A, the size k of the largest set partitioned by a subfamily of 9 may 
be much larger than A(n). However, the algorithm yields only a set of size 
(1 - E) l(n) with high probability. We would like to have an algorithm that 
yields a set of size (1 - c)k in all cases, or an algorithm that yields a set of 
size k with high probability. 
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