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1. Introduction

Let G be a finite group an® a stronglyG-graded ring. The question of when
R is semisimple (meaning in this paper semisimple artinian) has been studied by
several authors. The most classical result is Maschke’s Theorem for group rings.
For crossed products over fields there is a satisfactory answer given by Aljadeff
and Robinson [3]. Another partial answer for skew group rings was given by
Alfaro et al. [1]. A reduction of the problem to crossed products over division
rings was first given by Jespers and (iski [10] and a more constructive version
was given by Haefner and del Rio [8]. So, in order to give a complete answer to
the problem there is still a gap between crossed products over division rings and
crossed products over fields. The first aim of the paper is to fill this gap, showing
that the semisimplicity question for crossed products over division rings reduces
to the same question for crossed products over fields. In Theorem 3.2 we make
this reduction and then in Theorem 3.3 we put together all the pieces of the puzzle.

A strongly G-graded ringR with identity componen# induces a group ho-
momorphisnu : G — Pic(A) (see Section 2 for the details). As a consequence of
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Theorem 3.3, one deduces some necessary conditions for a group homomorphism

o :G — Pic(A) to be induced by a semisimple stronglygraded ring, namely

the conditions (1)—(3) of Corollary 3.5. THevisting Problermasks whether these

necessary conditions are also sufficient, that is given a group homomorphism

oG — Pic(A) satisfying conditions (1)—(3) of Corollary 3.5, is there a semi-

simple stronglyG-graded ring with coefficient ringt inducingo ? This problem

has been investigated in [3] and in [4] for (outer) actions on fields. Our second

result (Theorem 4.6) shows that the Twisting Problemdoa cyclic group and

A finitely generated as a module over its centre has always a positive solution.
Our solution to the problem of semisimplicity of strongly graded rings has an

application to actions of finite groups on division rings of prime characteristic.

We include this in the last section of the paper. We show thatig a finite group

acting on a division ringD of characteristiqpp and H is the kernel of this action,

then tiz (D) # 0 if and only if the elements of @-Sylow subgroup ofG are

linearly independent oveb if and only if the elements of a-Sylow subgroup of

H are linearly independent ovér.

2. Preliminaries

Let S be a ring (we consider all rings unital and associative). We use the
following notation:

Z(S) = centre ofS,

S* = group of units ofS,

Aut(S) = group of automorphisms df,

Inn(S) = group of inner automorphisms 6f and

Out(S) = Aut(S)/ Inn(S) = group of outer automorphisms 8f

The action ofx € Aut(S) onx € S is denoted by*, so that the productin Aus)

is given byaB = B o . If u € S* then, denotes the inner automorphism $f
given byx = x* = y~1xy. If P is an invertibles-bimodule, ther{ P] denotes
the isomorphism class @t (as a bimodule) and Ri§) = {[P]: P is an invertible
S-modulg is the Picard group of. We consider OyfS) canonically embedded
in Pic(S). Recall that there is a canonical group homomorphésrRic(S) —
Aut(Z(S)) (see [5, 11, 5.4]). More explicitly, for every invertiblé-bimodule there
are two ring isomorphismsp, pp : Z(S) — End(s Ps) from Z(S) to the ring of
S-bimodule endomorphisms @f, given byip(a)(x) = ax andpp(a)(x) = xa.
Thenfp = pp o /\;1 is an automorphism af (S) and it does not depend on the
choice of the representativg in the clasq P]. Thené is given byd([P]) = 6p.

If B is asubset o (S), then Pig (S) denotes the subgroup of P consisting
of those elements that fix the elementsRyfi.e. [P] € Picg(S) if and only if
pb =bp foreveryp € P andb € B.
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Let G be a group with identity 1 anft a stronglyG-graded ring, that is there
is a decompositiolR = P, Re, Where eactR, is an additive subgroup and
Ry Ry = Ry, for everyg, h € G. We refer toA = R; as the coefficient ring of
the graded ringR. If H is a subgroup oz, thenRy = P, .y Rx is a strongly
H-graded ring. For every € G, R, is an invertibleA-bimodule and the map
g+ [Rg]is a group homomorphism: G — Pic(A). Composing with the group
homomorphism Picd) — Aut(Z(A)), one obtains an action ¢f on Z(A) called
the Miyashita action.

If R, has a unit, for everyg € G, thenR is said to be a crossed product. In
this casgu,: g € G} is a basis oiR as a rightA-module and there are maps

B:G — Aut(A), t:GxG— A"

called the action and twisting, respectively. They are defined by

aug = ugal'®, ughthy =ugnt(g,h)

for everyg,h € G anda € A. Usually we simplify the notation and write$
for a?®). The action and twisting satisfy the following conditions:

1(g182, g3)t (g1, 82)P 8 =1 (g1, g283)t (g2, 83),
B(8182)t1(g1,02) = B(g1)B(g2) (2.1)

for everygi, g2, g3 € G (see [15]). By (2.1), the map induces a homomorphism
a:G — Out(A) C Pic(A) which is precisely the group homomorphisneoming
from the structure of strongly graded ring &we call this an outer action @
on A) and restricts to an action ¢f on Z(A) which coincides with the Miyashita
action.

Note thatR is a crossed product if and only if the imagemfis embedded
in Out(A). It is customary to denote a crossed product avewith coefficient
ring A by A x G. When we want to emphasize the action and the twisting we will
use the notatio *f‘ G.* The action and twisting depend on the selection of a
unit in each homogeneous component; a change in this selection yields a change
in the action and twisting; this is called a diagonal change of basisvigted
group ring is a crossed product with trivial action; in this case the notation is
A %; G. Modulo a diagonal change of basis a twisted group ring is the same as a
crossed product with trivial outer action.gkew group rings a crossed product
with trivial twisting and the notation i\ «# G. If H is a subgroup of; and B
is a subring ofA with ¢(k, k") € B* for everyh, h’ ¢ H andB8(h) restricts to an
automorphism ofB for everyh € H, then the corresponding subcrossed product
is denoted byB « H or B *f’ H (with the usual abuse of notation).

4 This notation is slightly different from the one in [3].
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3. Criterion for semisimplicity

Let R be a stronglyG-graded ring with coefficient ringi. It is well known
that if R is semisimple the®  is semisimple for every subgroup of G. This is
a consequence of the fact thRy; is a direct summand aR as anRg-bimodule
(see, for example, [14, Propositions 1.2 and 1.3]). In particulRrigf semisimple
thenA is semisimple.

If C is a Morita context betweerd and another ringd’, then associated
with C there is a strongly grade®’ with coefficient ring A’ so that the
categories of graded modulésgr and R’-gr are graded equivalent and hence
R and R’ are graded Morita equivalent. In particular,Afis semisimple, then
R is graded Morita equivalent to a crossed product over a direct product of
division rings. (Recall that every strongly graded ring over a direct product
of division rings is a crossed product, see, e.g., the beginning of Section 6
in [8].) Since graded Morita equivalence implies Morita equivalence [11] and the
coefficient ring of a semisimple strongly graded ring is semisimple, we conclude
that in order to describe the semisimple strongly graded rings it is enough to
describe the semisimple crossed products with a direct product of division rings
as their coefficient rings. In fact, it is possible to reduce further, namely to
crossed products over one division ring. This was first given in [10] and more
constructively in [8]. That is, modulo the results of these two papers, it only
remains to produce a criterion to decide when a crossed product over a division
ring is semisimple. In this section we give one step ahead and reduce the problem
to the case when the coefficient ring is a field and then use the characterization
given by Aljadeff and Robinson [3] for this case.

Remark 3.1. Before going ahead we would like to mention that in the proof
of Lemma 7.2 in [8] (which is a stage in the proof of [8, Proposition 7.4], and
an essential step in the reduction of the semisimplicity problem from strongly
graded rings with semisimple coefficient ring to crossed products over division
rings) the authors make use of Skolem—Noether Theorem. This would suggest
the implicit assumption that each division subring is finite dimensional over its
centre. However, the use of Skolem—Noether Theorem in the mentioned lemma
can be avoided by using [16, Corollary 2.9.19].

LetDxG =D *f’ G be a crossed product where is a division ring with
centreK of characteristip (a divisor of |G| to avoid the trivial case solved by
Maschke’s Theorem). Let: G — Out(D) be the outer action induced Iy Let
H be the kernel of so that, after a diagonal change of baBis H = D %, H is
a twisted group ring for some twisting: G x G — D*. By (2.1),t'(g, h) € K*
for everyg, h € H and hence one can consider the twisted group king: H .

We obtain the following criterion for semisimple crossed products over
division rings.
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Theorem 3.2. With the above notation, the following are equivalent

(1) D =G is semisimple.
(2) D+ H =D ¢ H is semisimple.
(3) K %, H is semisimple.

Proof. (1) = (2) is explained in the first paragraph of the section.

To prove the equivalence between (2) and (3) note thaiy H = D Qk
(K % H). Then(3) = (2) is a consequence of [9, Lemma 4.1.1]. Furthermore,
D ®kx J(K % H) C J(D x H), whereJ stands for the Jacobson radical, and
(2) = (3) follows.

(2) = (1). Assume thatD « H is semisimple and lefu,}scc be the set
of homogeneous units that leads to the given action and twigtirend ¢.
ConsiderD « G = (D = H) +/ (G/H) as a crossed product 6f = G/H with
coefficients inD x H. The actiony permutes the primitive central idempotents
of the (semisimple) ringD x H. For every primitive central idempoteant of
D x H let G, be the stabilizer ok under the actiory and B, = (D % H)e.

By [8, Theorem 7.5] there is an induced crossed prodBct«)’ G., and
D x G is semisimple if and only iB, %z G. is semisimple for every primitive
idempotent. We claim thaty, is outer, that is ify. (¢ + H) is inner, therg € H.

Assume thaty, (g + H) = 1, whereu =}, _ unx;, is a unit of B,. That is
ux?e@+tH) — xy for everyx € B,. By the natural embedding @ in B, we have
ua” @+ — qy for everya e D. Howevera® = a”&+H and sox,a ¢ = ax;,
for everyh in the support oft. Thereforeg,,-1, is inner, so that~1g € H and
henceg € H. This proves the claim.

Now by a folklore argument (see, e.g., the proof of [12, Theorem 2.3]) one
deduces thaB, x G, is simple. O

Now the characterization of semisimple strongly graded rings is complete
by a combination of Theorem 3.2. [8] and [3]. We put together all the pieces.
Let R = @gec R, be a stronglyG-graded ring with coefficient ringRy = A.

A necessary condition foR to be semisimple is that is semisimple, so let us
assume that for the rest of the section. Bebe thebasic ringof A. That isB
is a direct product of all division rings that appear in the decompositioA.of
Then A and B are Morita equivalent and hence P& = Pic(B) = Out(B) so
thato : G — Pic(R) induces an outer action @ on B. In fact, the structure of
strongly G-graded ring ofR induces a structure of crossed prodBct G with
coefficients inB [8]. Moreover,o induces an action oA (A) = Z(B). LetE be a
set of representatives of the orbits of the primitive central idempotents under this
action and for every € E let G, be the stabilizer oé. Theno induces group
homomorphisms, : G, — Out(D,), whereeA = M,,,(D,) for somen, > 1 and
a division ring D,.. In fact, o, also induces crossed product structufest G,
and M,,(D,) * G, for everye € E [8]. Let H, be the kernel ob, and letP,
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be ap-Sylow subgroup ofH,, wherep is the characteristic ob,. (If D, has
characteristic 0, therP, is the trivial group.) Recall that ifP = [/, C; is
an abelianp-group where eaclt; is cyclic of orderp¢ and K is a field of
characteristicp then the second cohomology grod?(P, K*) is isomorphic
to P/, K*/(K*)P“ [3], thus every element aff2(P, K*) is represented by an
m-tuple (a1 (K*)P7, ..., am(K*)P™).

Theorem 3.3. With the above notation, the following are equivalent

(1) R issemisimple.
(2) M,,(D.) * G, is semisimple for everyc E.
(3) D, * G, is semisimple for everye E.
(4) D * He = D, ;; H, is semisimple for everye E.
(5) K. *; H, is semisimple for everye E, wherek, = Z(D,).
(6) Ke*; P.is semisimple for everye E.
(7) Foreverye € E,
(a) |H]| is prime top (so thatP, is abelian, sayP, = [/, C; with C; cyclic
of order p¢), and
(b) if the restriction ofr, to P, is represented by am-tuple (ay(K*)P?, ...,
am(K*)P™") thenX = {ax, ..., an} is p-independent ovek ”; that is,
KP(Y) # KP?(X) for every proper subseét of X.
(8) Foreverye € E, K, x;; P, is a purely inseparable field extensionf.

Proof. The equivalence between (1)—(3) was proved in [8], the equivalence
between (3)—(5) is Theorem 3.2 and the equivalence between (5)—(8) was proved
in [3]. See also [4, Theorem 1 and “Reductions” in pp. 411-412].

Corollary 3.4. Let R = P, R, be a stronglyG-graded ring with coefficient
ring R1 = A. Assume that the action 6f permutes transitively the primitive cen-
tral idempotents ofA (in particular all components have the same characteristic,
sayp), and let

H ={g € G: [Ry] € Picz(c4)(A) and[eR,] = [¢A]},

wheree is a primitive central idempotent of. Then the following are equivalent

(1) R is semisimple.

(2) Ry is semisimple.

(3) Rmu, is semisimple, wheré{,, is a p-Sylow subgroup of{ if p is prime
and Ho = {1}.

Proof. With the notation of Theorem 3.3, the assumptions imply that the&'set
has only one element, which we denotedyThen,G, = {g € G: ex = xe for
everyx € Ry} and H = H,. By the equivalence of (1) and (6) in Theorem 3.3,
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the three conditions are equivalent to the semisimplicity of the twisted group ring
K = H, whereK = Z(eA). O

In the next corollaryp-deqg K) denotes thep-degree of a fieldk, that is,
the minimal number of elements needed to genekatas a K 7-algebra, and
rank(P) the rank of a grougP, that is, minimal number of elements necessary
to generateP.

Corollary 35. If R = @gec R, is a semisimple stronglg-graded ring with
coefficients inA, e is a primitive central idempotent of, K = Z(Ae),

H ={g € G: [Rq] € Picz(ea)(A) and[eR,] = [eAl]},

p is the characteristic oK and H, a p-Sylow subgroup off if p is prime and
Ho = {1} then

(1) Ais semisimple,
(2) H, is abelian, has a normal complement#h and
(3) rankH,) < p-degK).

Proof. See the first paragraph of the section to obtain (1). For the proof of (2)
and (3) we apply Theorem 3.3 and use its notation with= H. By condition
(7)(a) of Theorem 3.3|H’| is prime to p, so thatH,, is abelian and has a
normal complement inHd. Furthermore by condition (7)(b) of Theorem 3.3,
rank(H,) < p-degK). O

Remarks 3.6. With the notation of Corollaries 3.4 and 3.5.

(1) By Noether—Skolem Theorem, Afe is finite dimensional over its centre then
H ={g € G: [R,] € Picz(.4)(A)}, that isg € H if and only if ax = xa for
everyx € R, anda € Z(eA). Ingeneralg € H ifand only if there ist € eA*
such thatux = xa* for everyx € R, anda € eA.

(2) If p does not dividg H| then conditions (2) and (3) of Corollary 3.5 hold
automatically.

4. The Twisting Problem for cyclic groups

Our objective in this section is to construct crossed products (and more
generally strongly graded rings) with some prescribed data. The Twisting Problem
for strongly graded rings asks whether a given group homomorpisth —
Pic(A) can be realized by a semisimple stronglygraded ringR assuming the
necessary conditions (1)—(3) of Corollary 3.5 hold. This is a generalization of the
Twisting Problem for crossed products considered in [2—4].
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Of course to solve the Twisting Problem we first have to solve the problem of
whether the homomorphism can be realized by a strongly graded ring. This is
theRealization ProblemSee [7] for a complete account of this classical question
in caser is a crossed product and see [6] in c&es a general strongly graded
ring.

Let o : G — Pic(A) be a group homomorphism and sefg) = [R,], g € G.
Then for everygs, g2 € G there is a bimodule isomorphism

Mgi,g2-Rgy ®A Rgy = Rgyg,

and for everygs, g2, g3 € G there is a unique(gs, g2, g3) € Z(A)* such that
Mgiga.g3 © (Mg1.go ® 1Rg3) = c(81, 82, 83) gy, 8083 © (1Rg1 ® [gp.g3)-

(See [6] for the details.) The map = c: G2 — Z(A)* (called the Teichmiiller
obstruction) is a 3-cocycle. It depends on the selection oktheand theu's up
to a 3-coboundary, that is there is a well defined map

Homgroupd G, Pic(4)) — H3(G, Z(A)*),
o — [cs].

The isomorphismg.,, ., define a stronglys-graded ring structure ofp, . Re
if and only if ¢, is cohomologically trivial, so that can be realized by a strongly
graded ring if and only ik, is a 3-coboundary. In that case all the solutions of
the Realization Problem far are parameterized bif2(G, Z(A)*) up to graded
isomorphism. More concretely, &R = @gec R, be a stronglyG-graded ring
that realizesr for everyg € G. For everygy, go € G let fig; ¢r: Rgy @4 Rg, —
Ry, ¢, be the isomorphism induced by the producRinif g € Z%(G, Z(A)*) then
uw' = qu induces another structure of stronglirgraded ring overd (denoted
by R?) that realizesr. All the structures of stronglg-graded rings that realize
o can be obtained in this form. FurthermoReand R? are graded isomorphic if
and only ifg € B2(G, Z(A)*) (see [13, Section A.1.3]).

We summarize the discussion above in the following proposition.

Proposition 4.1. Given a group homomorphisen: G — Pic(A).

(1) [6] There exists a strongly graded ring inducing if and only if the
3-cocyclec = ¢, is a coboundary. This is independently of the choices of
the A-bimodulesR, € o (g) and the isomorphismB, ®4 R; >~ Rg.

(2) [13, Section A.1.3]Assume such a strongly graded ring does exist. Bet
be the set of graded isomorphism classes of strokgjlgraded rings that
induceo . Then the groug2(G, Z(A)*) acts transitively and freely oB.

If an outer action has a lifting to an action then the Realization Problem
for crossed products always has a positive solution (the skew group ring). In
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particular this is the case for commutative rings. The following example shows
that the Realization Problem may have a negative answer if the base ring is hon-
commutative.

Example4.2. Let D = (C‘IZ(X, Y) be the skew field of fractions of the complex
algebra generated by and Y defined by the relatiorXY = ¢2Y X, where

g € C is not a root of 1. Define an action af, = (o) on D as follows:
X°® = —X, Y° = qY. This action is outer since? acts as conjugation by.
Now, suppose this outer action admits a twistifigWe can assume that is
normalized, i.e.,f(1,1) = f(1,0) = f(o,1) = 1. From (2.1) we conclude that
conjugation byf (o, o) is the same as conjugation B (action of o). This
implies f (0, o) = zX wherez € Z(D). Now, by (2.1), puttingg1 = g2 =g3 =0
we havef (o,0)° = f(0,0), but(zX)? = —zX # zX, a contradiction. It is easy
to see that ify is a root of 1, then there exists a twisting that realizes this outer
action.

Since the trivial mag; — Out(A) can always be realized by a crossed product
we obtain:

Lemma 4.3. For everyo € Hom(G, Pic(A) the obstructionc, belongs to the
kernel of the restriction map

refers - H3(G, Z(A)*) — H3(Kero, Z(A)").

We now restrict our attention to a group homomorphisné: — Pic(A) where
G is cyclic and A is semisimple and finitely generated aZzéA4) module. In
order to show that the Realization Problem has a positive solution under these
conditions, we address the following strengthening of Hilbert's 90th theorem for
abelian groups.

Lemma 4.4. Let K be a field andG an abelian group acting faithfully by
automorphisms o8 = K". If the restriction of the action of; on the primitive
idempotents of is transitive thenH (G, §*) = 1.

Proof. Let e1,...,¢, be the primitive idempotents of. Let g1,...,g, be
elements inG such thatg;(e1) = ¢; for anyi =1,...,n, and letN be the
stabilizer ofe; (it does not depend onsince G is abelian). ThenV acts on
the fieldsSe; for everyi andgs, ..., g, is a transversal set fay in G. We claim
that the action ofV on Se; (and hence on ever§e;) is faithful. Indeed, assume
thatt € N acts trivially onSes, then forevery- € S and 1< j <n

7:(re‘j) =gjtg;l(rej)=gjt(rgj el) :gj(rgj el) =re;j.

Thus,t acts trivially onS and sor = 1.
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Now, let f = (f1,..., fn) € ZX(G, §*) be a 1-cocycle. The elements Mfare
linearly independent ovese; and therefore there exists an element € Se;
satisfying

ber= Y f(h)h(aey) € (Se1)*.

heN
Hence

s =Y f(gaen) =Y > f(gih)gih(aer)

geG i=1 heN

= f(ggi Y f(Wh(aer) = f(gi)gi(be1)

i=1 heN i=1

=Y f(gngi(bee;

i=1
= (f1(g1)g1(be1), f2(g2)g2(be), ..., fu(gn)gn(ber)) € S*.

Now it is easily seen that for every € G, f(0) = so(s) ! (see, e.g., the proof
of [19, Theorem 1-5-4]) which says that the cocy¢lee Z1(G, §*) is actually
a coboundary. O

Proposition 4.5. Let G be a cyclic group ando:G — Pic(A) a group
homomorphism whered is semisimple and finitely generated as a module
overZ(A). Theno can be realized by a strongly-graded ring.

Proof. By the first paragraph of Section 3 we may assume that [[/_; D;
where eaclD; is a division algebra finite dimensional over its centre and; —
Out(A) is an outer action o&F on A. The outer actiom permutes the;’s. Let

A1, ..., Ag be the direct products of the orbits of this action giving rise to outer
actionss; on eachd;. We need to show that the obstruction of eackianishes in
H3(G, Z(A;)) (Proposition 4.1), so, without loss of generality, we may assume
that A = A1, that is the action is transitive on the primitive idempotentsiof
Observe that for the cohomology groups of degree 3 we have an exact sequence

H3(G/H, Z(A)*) " 13(G, Z(A)*) 1S H3(H, Z(A)*)
where H = Kero. Indeed, sinceG is cyclic, the sequence above is naturally
isomorphic to the sequence

HYG/H, z(A)*) " HY(G, Z(A)*) 28 HY(H, Z(A)*)

which is exact (see [17, Chapter VII, Section 6, Proposition 4]).
By Skolem—Noether Theoren¥/H acts faithfully on Z(A), and hence
HY(G/H, Z(A)*) = 1 by Lemma 4.4. Thus, the restriction map res is injective
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and by Lemma 4.3, is cohomologically trivial. It follows by Proposition 4.1
that the Realization Problem has a positive solutiorsfor O

Note that the condition ofi being finitely generated as A(A) module in
Proposition 4.5 cannot be omitted as Example 4.2 shows.

We now show that the Twisting Problem has a positive solutio6 iind
A satisfy the conditions of Proposition 4.5.

Theorem 4.6. The Twisting Problem has a positive solution for finite cyclic groups
and rings finitely generated as modules over their centre. Thatis=C,, = (g)
is a cyclic group and : G — Pic(A) is a group homomorphism with finitely
generated as module ovgrA), then the following conditions are equivalent

(1) There is a semisimple strongly-graded ring that realizes .
(2) (a) A is semisimple and
(b) for every primitive central idempotentof A such thatk, = Z(Ae) has
characteristicp # 0, either no element of order of G fixes the elements
of K, or K, is not perfect.

Proof. Assume that (1) holds. Letbe an idempotent o4 such thatk = K, has
characteristicy > 0, and letP be the p-Sylow subgroup of the stabilizer ef

By Corollary 3.5, rankP) < p-degK). It follows that eitherP = 1, that is no
element of ordep of G fixes the elements ok, or elsep-deg K) > 1, which
means thak, is not perfect.

Conversely, assume that (2) holds. As in the proof of Proposition 4.5 we may
assume thad is a direct product of division rings. Furthermore, we may assume
that the action on the primitive central idempotents is transitive héneeD”,
where D is a division ring finite dimensional over its centre. LEt= Z(D)
(hencez(A) = K"), and letp be the characteristic k. By Proposition 4.5,

o can be realized by a strongly graded ring, and under the assumptio®”,
there is even a crossed prodti= A Y G that realizesr. Assume thatR is

not semisimple (otherwise we are done). By Maschke’s thegremO. Fix a
primitive central idempotent of A and identifyK with Z(Ae). Let H = H, be

the subgroup of elements 6f that fix K element-wise and® = P, a p-Sylow
subgroup ofH . By Theorem 3.2P £ 1 and the cocycle of the subcrossed product
K x P is represented by an element K*?. By our assumptioiX is not perfect.
Letk = K be the fixed subfield ok under the action o;. SinceKk is a finite
extension ok, k is not perfect as well and hence there existsk \ k”. Now, if

we define the cocyclg¢ € Z%(G, K*) by

P b, i+j>=>m,
f(gl’gj):{l, i+ j<m,
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then the crossed produst= A *f‘f G realizeso and is semisimple as it is
semisimple when restricted #®. O

5. An application to division algebras

For an action of a finite grou@ on aringR, lettrg : R — R¢ denote the trace
map, i.e., t(x) = dec x8. In this section we prove the following theorem.

Theorem 5.1. Let G be a finite group andD a division ring with centrek
of characteristicp > 0. Supposes acts onD via a homomorphisng : G —
Aut(D). Let H = g~ 1(Inn(D)) and letG, and H, be Sylowp-subgroups oz
and H, respectively. Then the following are equivalent

(1) trg(D) #0.

(2) The skew group rin@ *# G is semisimple.

(3) try (D) #0.

(4) The skew group rind «# H is semisimple.

(5) tru, (D) # 0 (in particular H, N ker(8) = {1} and hencef, < Aut(D)).
(6) The skew group ring % H), is semisimple.

(7) The elements aff, (viewed inEnd(D)) are linearly independent oveb.
(8) The elements af, (in End(D)) are linearly independent oveb.

Remark 5.2. By Corollary 3.5, the conditions above yield thd}, is abelian with
normal complement ind or equivalentlyH’ is a p’-group. By [18]B8(H)’ is
a cyclic p’-group.

Proof. For the equivalence of (1)—(6) recall that the trace mgpgrnon-trivial
if and only if D is projective over the skew group ring = G and these are
equivalent to the semisimplicity dd «# G (see [8, Theorem 7.6]). In our case we
have already shown that semisimplicity of one of the skew group ring& G,
D x? H, D +# H), is equivalent to the semisimplicity of each one of the others.
Clearly (8) = (7) = (5). Furthermore (7) implies (8) follows from Lemma 5.4
below.

Let us prove that (5) implies (7). Assume that (5) holds. SiHigeacts by inner
automorphisms o we haveH, < D*/K*. The group extension

l1-K*"—- D*— D'/K*—> 1
gives an extension
1— K*—)ﬁl,—>Hp—>l.

For everyh € H, choose a representativg e H,, thatisx" = u,jlxuh for every
x € D. Since thep-group H,, is abelian (see Corollary 3.5) ar* has no non-
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trivial pth roots of 1, it follows from the universal coefficients theorem tHatis
also an abelian group. Now. if

l1=Ap<A1<---<A,=H

is a sequence of subgroups 8§, such thatd; 1/A; ~ C, is cyclic of orderp,
then the corresponding extensiohsform a sequence of subgroupsle)); where

,+1/A ~ C,. Foreveryi =0,...,t let K; be the subalgebra dd generated
by A;. Each exten5|orKl+1/Kl is either purely inseparable of degreeor
trivial. We claim thatk; is p’-dimensional oveK and consequently the elements
{un}nen, are linearly independent ovéf. Indeed, if dink K, < p' =|H,| then
Ki+1 = K; for somei and thenCp(4;) = Cp(K;) = Cp(Ki+1) = Cp(Ai41)
whereCp (T) denotes the centralizer @fin D. This implies that the generator of
A;+1 moduloA; commutes with the image ofdrin D. It follows that try,,, = 0
and so ti, = 0, a contradiction.

Now, consider thek -algebra maps

n:D— EndDpnu,)  (left multiplication and
n2:K; — End(Dpn,)  (right multiplication.
Clearly, the images af1 andn2 commute and so we obtain a map
n=m®n2:D®x K; — EndDpn,)
which is injective sinceD ®k K; is simple. In order to show that the elements
of H, are linearly independent oved let 3,y dnh = 0. Then for every
x €D, Yyen, dpupxu;, t = 0. This says that) (Y cpy, dnitn ® u,t) =0 and

by the injectivity of n, one has thaEher dhup, ® u;1 = 0. Finally, by the

linear independence dfi}ren, (and hence O{u;l}heyp) overK, d, =0 for
all h e H, as desired. O

Remark 5.3. By the proof of [12, Lemma 2.18],D: D¥»] = dimg K, and by
the preceding paragraph they are equal ta gig. It follows thatD @k K; and
End,x, (D) have the same dimension ov@f’» and hencey is an isomorphism.

We still owe the reader

Lemma 5.4. Let D be a division ring,G a group of automorphisms db and
H = G NnInn(D). Then the automorphisms 6f (viewed inEnd( D)) are linearly
independent oveD if and only if the elements off are linearly independent
overD.
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Proof. Assume that the elements Hf are linearly independent. If the theorem is
false there is a non-empty subset, ..., 0}, n > 2, of G and element$o; }7_;
in D (not all zeroes) such that

¢ =101+ o202+ - -+ a0, =0.
Without loss of generality we can assumé minimal,a1 =1€ D,01=1€ G
andoy ¢ H. It follows that there is € D such thaba(s) # aglsocz. Then
0= s71¢s —¢
=1+ s_lazaz(s)az + s_lagag(s)a3 4+ 4 s_lot,,an (8)oy,
— (14 az02 + 303+ - + 2, 04)
(sflotzaz(s) — az)az + (sflagag(s) — Ol3)03 +---

+ (sfloznan(s) — ot,,)on.

This linear combination is non-trivial sinee lax02(s) — a2 # 0 and its length is
<n —1, acontradiction. O
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