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Heavy quark and gluino potentials to two loops
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are computed for all possible color configurations of a SU(Nc) gauge group.
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The potential energy between two heavy quarks is one of the 
fundamental quantities of the strong interaction and has been in 
the focus of the theoretical investigations already in the early days 
of QCD [1]. The potential arises in a natural way when considering 
the non-relativistic limit of a heavy quark and anti-quark system 
as an ingredient of the resulting Schrödinger-like equations (see 
Ref. [2] for a review). Thus, the potential constitutes a crucial in-
put whenever the production of heavy particles is considered at 
threshold or bound state properties are calculated. Examples of 
Standard Model processes are the production of top quark pairs 
in electron positron collisions for a center-of-mass energy in the 
vicinity of twice the mass or the invariant-mass distribution of tt̄
pairs at hadron colliders. Furthermore, one should also mention 
the evaluation of the energy levels and corrections to the wave 
function for heavy quark bounds states like the Υ or Ψ systems.

As far as processes beyond the Standard Model are concerned 
there have been recent publications where bound states of two 
gluinos, the massive super partners of the gluons, have been ex-
amined. Again, the corresponding potential, which has been used 
to two-loop order, plays a crucial role [3,4]. Similarly, in Ref. [5] the 
threshold production of a gluino–squark pair is considered. The re-
quired potential can be obtained from the quark–gluino potential 
which is discussed below.

In this Letter we systematically compute the potentials of 
all color configurations of a quark–anti-quark, gluino–gluino and 
quark–gluino bound state. To be precise, we consider the heavy-
particle systems given in Table 1 and compute the potentials for 
the corresponding color decomposition.

Note that in our framework both the heavy quark q and gluino
g̃ are treated as external static color sources added to the (mass-
less) dynamical degrees of freedom of QCD. Thus except for color
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Table 1
Heavy-particle systems and their color decomposition into irreducible representa-
tions. The subscripts “S” and “A” distinguish the symmetric and anti-symmetric 
octet representations.

Bound state Color representation Irreducible representations

qq̄ 3 ⊗ 3̄ 1 ⊕ 8
g̃ g̃ 8 ⊗ 8 1 ⊕ 8S ⊕ 8A ⊕ 10 ⊕ 10 ⊕ 27 ⊕ R7

qg̃ 3 ⊗ 8 3 ⊕ 6 ⊕ 15

there is no difference in the treatment of the gluino and the quark. 
As a consequence the potential of an anti-quark and a gluino is 
identical to the qg̃ potential.

One comment concerning the color decomposition of the g̃ g̃
potential is in order: As it is common practice we consider only 
the combination of 10 ⊕ 10. Furthermore, the color structure R7
is only non-vanishing for Nc �= 3 and thus it is not relevant for
QCD [6–10]. 

We define the various potentials introduced above as follows

V [c]
i j

(
μ2 = �q2) = −C [c] 4παs(�q2)

�q2

[
1 + αs(�q2)

4π
a1

+
(

αs(�q2)

4π

)2(
a2 + δa[c]

2,i j

)]
, (1)

where i j ∈ {qq̄, g̃ g̃,qg̃} and c defines the color state as given in
Table 1. The renormalization scale is set to μ2 = �q2 to suppress 
the trivial renormalization group terms on the r.h.s. of Eq. (1). For 
the potential V [10]

˜ g we have to modify Eq. (1) slightly since thereg ˜
is no tree and one-loop contribution. Thus we write

V [10]
˜ gg ˜

(
μ2 = �q2) = −4παs(�q2)

�q2

(
αs(�q2)

4π

)2 

δa[10]
2,g̃ g̃ . (2)

In Eq. (1) the coefficients a1 and a2 are the one- and two-loop 
corrections which are already present in the singlet contribution
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Fig. 1. Sample diagrams contributing to V [c]
i j at tree-level (a), one-loop (b)–(d) and two-loop order (e)–(h). The straight lines correspond to quarks or gluinos, respectively,

and the curly lines represent gluons.
of the qq̄ potential. They have been computed in Refs. [11–15] and
can be found in Ref. [16] including higher order terms in (d − 4)

(where d is the space–time dimension). The three-loop coefficient
a3 has been computed in Refs. [16–18]. In less than four dimen-
sions the static potential has recently been studied in Ref. [19],
see also [20], and the N = 4 supersymmetric Yang–Mill theory has
been considered in Ref. [21].

At tree-level and at one-loop order the only difference among
the various potentials is due to the overall color factor. At two-loop
order we have introduced the quantity δa[c]

2,i j which parametrizes
the difference to the singlet result. It is currently only known for
V [8]

qq̄ [22]. Furthermore, also for V [1]
g̃ g̃ the two-loop corrections have

been computed [4,23] with the result δa[c]
2,g̃ g̃ = 0. (In Ref. [23] also

the three-loop term of V [1]
g̃ g̃ has been evaluated.) In this Letter we

present the two-loop results for all remaining potentials listed in
Table 1.

For the calculation we have employed standard techniques
which include the automatic generation of the diagrams (see
Fig. 1), the classification into different families of integrals, the
application of projectors [6–10] and the reduction to master in-
tegrals using the Laporta algorithm [24–26]. The latter have been
taken over from Ref. [27]. The color factors have been computed
with the help of the program color [28]. We have performed the
calculation for general gauge parameter and have checked that it
drops out in the final result.

The standard techniques for the evaluation of the loop inte-
grals appearing at one and two loops (see, e.g., Refs. [20,27]) can
only be applied in a straightforward way to the singlet case since
there, apart from light-fermion contributions, only the maximally
non-Abelian parts contribute. In particular, no diagrams involv-
ing pinches occur, i.e. the integrals do not contain propagators of
the form 1/(k0 + i0) × 1/(k0 − i0) where k is a loop momentum.
Sample diagrams are shown in Figs. 1(c) and (d) at one-loop and
Figs. 1(g) and (h) at two-loop order. However, for the non-trivial
color configurations also contributions involving pinches (see, e.g.,
Figs. 1(b), (e) and (f)) have to be taken into account. The re-
sults of the corresponding diagrams are contained in the quantity
δa[c]

2,i j . We evaluate the integrals by either exploiting the expo-
nentiation of the color singlet potential or by carefully evaluating
the potential in coordinate space starting from the Wilson loop
definition. Both methods are described in detail in Refs. [20,22].
In this Letter we have checked that they lead to the same re-
sult.
Table 2
Results for the C [c] and δa[c]

2,i j for the various color configurations. In the right col-

umn we set Nc = 3 and evaluate δa[c]
2,i j numerically. Note that c = 10 refers to the

combination 10 ⊕ 10. Furthermore, R7 has dimension zero for Nc = 3.

i j c C [c] δa[c]
2,i j δa[c]

2,i j(Nc = 3)

qq̄ 1 (N2
c −1)

2Nc
0 0

8 − 1
2Nc

N2
c (π4 − 12π2) −189.2

g̃ g̃ 1 Nc 0 0
8S

Nc
2 0 0

8A
Nc
2 −6(π4 − 12π2) 126.2

10 – − 3Nc
2 (π4 − 12π2) 94.62

27 −1 1
2 (Nc + 2)(Nc + 1)(π4 − 12π2) −210.3

R7 1 1
2 (Nc − 2)(Nc − 1)(π4 − 12π2) –

qg̃ 3 Nc
2 −(π4 − 12π2) 21.03

6 1
2

1
2 Nc(Nc − 3)(π4 − 12π2) 0

15 − 1
2

1
2 Nc(Nc + 3)(π4 − 12π2) −189.2

In Table 2 we present our results for C [c] and δa[c]
2,i j for SU(Nc).

Note that δa2 is zero for the singlet contributions but also for
gluino bound states in the symmetric octet configuration. One fur-
thermore obtains a vanishing result for the representation 6 (qg̃)
when specifying to QCD, i.e., setting Nc = 3. It is remarkable that
all non-vanishing contributions are proportional to the same com-
bination (π4 − 12π2) with a prefactor depending on the color
state although the individual diagrams contributing to δa[c]

2,i j do
not show this proportionality and furthermore also contain terms
without π2 or π4.

As far as the numerical importance of δa2 is concerned one can
compare the results in the last column of Table 2 with a2 for the
bottom and top system given by

a2(nl = 4) ≈ 211.1,

a2(nl = 5) ≈ 155.8. (3)

(The corresponding numbers for a1 are 5.889 and 4.778, respec-
tively.) In some cases one observes a significant reduction of the
two-loop coefficient (see, e.g., the 27 configuration for nl = 4
where a2 + δa[10]

2,g̃ g̃ ≈ 0.8) whereas in other cases the large value
of a2 is even further increased.

To conclude, in this Letter the quark–anti-quark, gluino–gluino
and quark–gluino potentials have been computed for all possible



T. Collet, M. Steinhauser / Physics Letters B 704 (2011) 163–165 165
color configurations up to two loops. In all cases it is possible to
identify the two-loop coefficient a2 originating from the quark–
anti-quark singlet potential. The additional contributions are given
by a color factor times (π4 − 12π2).
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