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1. Introduction

Obtaining the solutions of Bethe–Salpeter (BS) equation in its original Minkowski space formulation [1] has raised an increasing interest
in the recent years [2,5,3,4,6]. On one hand, the Wick rotation itself is not directly applicable for computing electromagnetic form factors
[7,8] due to the existence of singularities in the complex momentum plane whose contributions are in general unknown. The Euclidean
solutions are still used in the context of BS–Schwinger–Dyson equations and it is claimed they provide reliable results for bound state
form factors at the price of a numerical tour de force [9–15]. On the other hand, the off-shell BS scattering amplitude – mandatory
for important physical applications – like computing the transition e.m. form factor γ ∗d → np, or solving the three-body BS–Faddeev
equations – requires a full Minkowski solution which has not yet been obtained.

A method based on the Nakanishi representation [16] of the BS amplitude was developed in [3,4] allowing to compute for the first
time the bound state Minkowski amplitude and latter on [7,8] the corresponding form factors. Although this approach could be naturally
extended to the scattering states, we have found that the problem could be solved in a simplest and more straightforward way. The aim
of this Letter is to presents a direct solution of the original BS equation in Minkowski space providing the scattering length, elastic and
inelastic phase shifts and the first results for the half-off-shell BS amplitude.

2. Method for solving the equation

The inhomogeneous BS equation is graphically represented in Fig. 1. In Minkowski space it reads:

F (p, ps; P ) = K (p, ps; P ) − i

∫
d4 p′

(2π)4

K (p, p′; P )F (p′, ps; P )[
( P

2 + p′)2 − m2 + iε
][

( P
2 − p′)2 − m2 + iε

] . (1)

We denote by p the relative (off-shell) four-momentum variable of the equation, ps the scattering momentum and P the total momentum
of the state with P 2 = M2, the squared total mass of the system. We will consider hereafter spinless particles (m = 1) interacting by the
one-boson exchange kernel K :

K
(

p, p′; P
) = − 16πm2α

(p − p′)2 − μ2 + iε
, (2)
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Fig. 1. Bethe–Salpeter equation for a scattering state.

where α is the dimensionless coupling constant of the Yukawa potential V (r) = −α exp(−μr)/r.
The difficulty in computing the off-shell amplitude F (p, ps; P ) in the entire domain of its arguments is due the singular character

of the amplitude itself as well as in the integrand of the BS equation in Minkowski space (1). These singularities are integrable in the
mathematical sense, due to iε in the denominators of propagators, but their integration is a quite delicate task and requires the use of
appropriate analytical as well as numerical methods.

To avoid these problems, Eq. (1) was first solved on-shell [17] by rotating the integration contour p0 → ip4 and taking into account the
contributions of the crossed singularities, which are absent in the bound state case. Few other methods were also developed in the same
line [18]. Until now, the off-shell amplitude has been computed only for a separable kernel [19]. A method similar to the one developed
in [3,4] has been proposed in [6] for solving the scattering states although the numerical solutions are not yet available.

The amplitude F (p, ps; P ) depends on the three four-momenta p, ps , P . For a given incident momentum �ps and written in the center
of mass frame �P = 0, P0 = M = 2εps = 2

√
m2 + p2

s , F depends on three scalar variables |�p|, | �ps| and z = cos(�p, �ps). It will be hereafter
denoted by F (p0, p, z; ps), setting abusively p = |�p|, ps = | �ps|.

In this Letter we will restrict to sketch our solution method and to present the first results for the S-wave on-mass and half-off-mass
shell amplitude F0(p0, p) obtained by the following partial wave decomposition of Eq. (1):

F0(p0, p) = 1

32π

1∫
−1

dz F (p0, p, z; ps) (3)

The amplitude we consider here is a particular case of the so-called full off-shell amplitude F0(p0, p, p0s, ps; M). The latter, in addition
to the variables p0, p depends also on the off-shell independent variables p0s , ps , now with p0s �= εps . The total mass M = √

s is neither
equal to 2εps nor related to p0s . By “off-shell amplitude” we will hereafter mean half-off-shell amplitude. The method we have developed
is also applicable to the full off-shell amplitude, though its dependence on two extra variables p0s , ps requires much more extensive
numerical calculations.

The on-shell amplitude F on
0 ≡ F0(p0 = 0, p = ps) determines the phase shift according to:

δ0 = 1

2i
log

(
1 + 2ips

εps

F on
0

)
. (4)

Several steps must be accomplished before obtaining a soluble equation for F0 which takes into account the four sources of singularities
of the BS equation:

(i) The propagators in the r.h. side of (1) have two poles, each of them represented as sum of principal value and δ-function. Their
product gives rise to terms having respectively 0, 1 and 2 δ’s. After partial wave decomposition, the 4D equation (1) is reduced into a
2D one. Integrating analytically over p′

0 the δ contributions and eliminating the principal values singularities by subtractions, one is
left with an S-wave equation in the form:

F0(p0, p) = F B
0 (p0, p) + iπ2 ps

8εps

W S
0 (p0, p,0, ps)F0(0, ps)

+ π

2M

∞∫
0

dp′

εp′(2εp′ − M)

[
p′2W S

0

(
p0, p,a−, p′)F0

(|a−|, p′) − 2ps
2εp′

εp′ + εps

W S
0 (p0, p,0, ps)F0(0, ps)

]

− π

2M

∞∫
0

p′2dp′

εp′(2εp′ + M)
W S

0

(
p0, p,a+, p′)F0

(
a+, p′)

+ i

2M

∞∫
0

p′2dp′

εp′

∞∫
0

dp′
0

[
W S

0 (p0, p, p′
0, p′)F0(p′

0, p′) − W S
0 (p0, p,a−, p′)F0(|a−|, p′)

p′2
0 − a2−

]

− i

2M

∞∫
0

p′2dp′

εp′

∞∫
0

dp′
0

[
W S

0 (p0, p, p′
0, p′)F0(p′

0, p′) − W S
0 (p0, p,a+, p′)F0(a+, p′)

p′2
0 − a2+

]
(5)

where a∓ = εp′ ∓ εps and W S
0 is the S-wave kernel – suitably symmetrized on p′

0 variable to restrict its integration domain to [0,∞]
– given by

W S
0

(
p0, p, p′

0, p′) = W0
(

p0, p, p′
0, p′) + W0

(
p0, p,−p′

0, p′)
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with:

W0
(

p0, p, p′
0, p′) = − αm2

π pp′

{
1

π
log

∣∣∣∣ (η + 1)

(η − 1)

∣∣∣∣ − i I(η)

}
, I(η) =

{
1 if |η| � 1,

0 if |η| > 1,
(6)

and

η = 1

2pp′
[(

p0 − p′
0

)2 − p2 − p′2 − μ2].
The inhomogeneous (Born) term F B

0 reads:

F B
0 (p0, p) = π2

4
W0(p0, p,0, ps)

The details of the derivation of Eq. (5) as well as its generalization to the full off-shell amplitude are quite lengthy and will be given
in a forthcoming publication. The origin of the different terms appearing in (5) is however quite clear. The non-integral term in the
first line, follows from the integrated (2D) product of the two δ-function mentioned above. The one-dimensional integrals – second
and third lines – results from one δ-function terms, after integration over p′

0. The last two lines come from the principal values (PV)
alone. The differences appearing in the squared brackets correspond to removing the pole singularities at 2εp′ = M (second line) and
p′

0 = a± (third and forth lines) according to the well-known subtraction technique eliminating singularity:

PV

∞∫
0

f (x′)dx′

x′2 − a2
=

∞∫
0

dx′
[

f (x′) − f (a)

x′2 − a2

]
.

In l.h. side the integrand at x′ = a is singular that complicates the numerical calculation of integral, whereas r.h. side does not contain
this singularity.

(ii) The propagator of the exchanged particle (2) has two poles which, after partial wave decomposition, turn into logarithmic singular-
ities in kernel (6). Their positions are found analytically and the numerical integration over p′

0 is split into intervals between two
consecutive singularities. Inside each of these intervals an appropriate change of variable is made to make regular the integrand of
Eq. (5). We proceed in a similar way for the p′ integration.

(iii) The inhomogeneous (Born) term F B
0 has also logarithmic singularities in both variables p0, p which are analytically known.

(iv) The amplitude F0 itself has many singularities, among which those originated by the Born term F B
0 are the strongest ones. This makes

difficult representing F0 on a basis of regular functions. To circumvent this problem we made the replacement F0 = F B
0 f0, where f0

is a smoother function. After that, the singularities of the inhomogeneous Born term are casted into the kernel and integrated using
the same procedure as in (ii).

We obtain in this way a non-singular equation for f0 which we solve by standard methods. The off-mass shell BS amplitude F0 in
Minkowski space is thus safely computed.

3. Numerical results

Our first check was to solve the bound state problem by dropping the inhomogeneous term in (1) and setting M = 2m − B . The binding
energy B thus obtained, coincides within four-digit accuracy, with the one calculated in our previous work [3].

The S-wave off-shell scattering amplitude F0 was then calculated and the phase shifts extracted according to (4). An independent
equation, similar to the one obtained in [17], has also been derived, which provides the phase shifts and the Minkowski off-shell amplitude
for the particular value p0 = εps − εp restricted to the interval 0 � p � ps . The values found by these two independent methods are
consistent to each other.

The BS relativistic formalism accounts naturally for the meson creation in the scattering process, when the available kinetic energy
allows it. The inelasticity threshold corresponding to n-particle creation is given by

p(n)
s = m

√(
μ

m

)
n + 1

4

(
μ

m

)2

n2. (7)

Below the first inelastic threshold, p(1)
s = √

mμ + μ2/4, the phase shifts are real. This unitarity condition is not automatically fulfilled in
our approach, but appears as a consequence of handling the correct solution and provides a stringent test of the numerical method. Above
p(1)

s , the phase shift obtains an imaginary part which behaves like

Im(δ0) ∼ (
ps − p(1)

s
)2

(8)

in the threshold vicinity. Higher inelasticity thresholds, corresponding to creation of 2, 3, etc. intermediate mesons at p(n)
s , are also taken

into account in our calculations.
The low energy parameters were computed and found to be consistent with a quadratic fit to the effective range function p cot δ(p) =

− 1
a0

+ 1
2 r0 p2. The BS scattering length a0 as a function of the coupling constant α is given in Fig. 2 for μ = 0.50. It is compared to

the non-relativistic (NR) values provided by the Schrödinger equation with the Yukawa potential. The singularities correspond to the
appearance of the first bound state at α0 = 1.02 for BS and α0 = 0.840 for NR. As one can see, the differences between a relativistic and
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Fig. 2. BS scattering length a0 versus the coupling constant α (solid), compared to the non-relativistic results (dashed) for μ = 0.5.

Table 1
Scattering length values obtained with Bethe–Salpeter equation as a function of the coupling
constant α for m = 1 and different values of the exchanged mass μ = 0.15, μ = 0.50 and
μ = 1.00.

α μ = 0.15 μ = 0.50 μ = 1.00

0.01 −0.460D+00 −0.403D−01 −0.100D−01
0.05 −0.270D+01 −0.209D+00 −0.510D−01
0.10 −0.692D+01 −0.438D+00 −0.104D+00
0.20 −0.346D+02 −0.971D+00 −0.217D+00
0.30 0.795D+02 −0.164D+01 −0.339D+00
0.40 0.272D+02 −0.250D+01 −0.474D+00
0.50 0.214D+02 −0.366D+01 −0.621D+00
0.60 0.128D+02 −0.534D+01 −0.784D+00
0.70 0.866D+01 −0.798D+01 −0.965D+00
0.80 0.373D+01 −0.128D+02 −0.117D+01
0.90 −0.457D+01 −0.247D+02 −0.140D+01
1.00 −0.281D+02 −0.103D+03 −0.166D+01
1.10 0.900D+03 0.620D+02 −0.195D+01
1.50 0.247D+02 0.110D+02 −0.379D+01
2.0 0.174D+02 0.634D+01 −0.111D+02
2.5 0.144D+02 0.454D+01 0.568D+02

a non-relativistic treatments of the same problem are not of kinematical origin since even for processes involving zero energy they can be
substantially large, especially in presence of bound state. It is worth noticing that only in the limit α → 0 the two curves are tangent to
each other and in this region the results are given by the Born approximation

aB
0 = − 1

μ

m

μ
α (9)

which is the same for the NR and the BS equation. Beyond this region both dynamics are not compatible. Some selected numerical values
of the scattering length are listed in Table 1 for different values of the exchanged mass μ. As one can see by direct inspection, the scaling
properties of the non-relativistic equation [20], in particular the relation between the scattering length corresponding to different values
of μ and coupling constants

a0

(
μ

m
,α

)
= 1

μ
a0

(
1,

α
μ
m

)
(10)

are no longer valid except in the Born approximation region.
Fig. 3 (left panel) shows the real phase shifts calculated with BS (solid line) and NR (dashed line) equations and the same parameters as

in Fig. 2. For this value of α there exists a bound state and, according to the Levinson theorem, the phase shift starts at 180◦ . One can see
that the difference between relativistic and non-relativistic results is considerable even for relatively small incident momentum. The right
panel shows the imaginary part of the phase shift. It appears starting from the first inelastic meson-production threshold p(1)

s = 0.75 and
displays the expected quadratic behavior. Simultaneously the modulus squared of the S-matrix (displayed in dashed line) starts differing
from unity. The results of this figure contain the contributions of the second p(2)

s = 1.118 and third p(3)
s = 1.435 meson creation thresholds

as well. Corresponding numerical values are given in Table 2.
Finally, we display in Fig. 4 the real (left panel) and imaginary (right panel) parts of the off-shell scattering amplitude F0(p0, p)

as a function of p0 and p calculated for α = 0.5, ps = μ = 0.5. Its real part shows a non-trivial structure with a ridge and a gap
resulting from the singularities of the inhomogeneous term. Its on-shell value F on = F0(0, ps) = 0.753 + i0.292, determining the phase
0
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Fig. 3. Real (left panel) and imaginary (right panel) phase shift (degrees) for α = 1.2 and μ = 0.50 calculated via BS equation (solid) compared to the non-relativistic results
(dashed).

Table 2
Real and imaginary parts of the phase shift (degrees) calculated by BS Eq. (1) vs. incident momentum ps for α = 1.2 and μ = 0.5. Corresponding first inelastic threshold is
p(1)

s = 0.75.

ps 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.3 1.5

Re[δ] 124 99.9 77.8 65.1 56.2 49.3 43.9 39.4 35.7 32.5 29.7 22.8 19.3
Im[δ] 0 0 0 0 0 0 0 0 0.033 0.221 0.453 0.848 0.852

Fig. 4. Real (left panel) and imaginary (right panel) parts of the off-shell amplitude F (p0, p; ps) for α = 0.5, ps = μ = 0.5.

shift δ = 21.2◦ , corresponds to a single point on theses two surfaces. Our calculation, shown in Fig. 4, provides the full amplitude F0(p0, p)

in a two-dimensional domain.
Computing this quantity, and related on-shell observables, is the main result of this work. Together with the bound state solution in

Minkowski space [3], they pave the way for a consistent relativistic description of composite systems in the framework of BS equation.

4. Conclusion

We have presented the first results of the BS off-shell scattering amplitude in Minkowski space. The different kinds of singularities
of the original BS equation are properly treated. A regular equation is obtained and solved by standard methods. The results presented
here were limited to S-wave in the spinless case and the ladder kernel but they can be extended to any partial wave. Coming on mass
shell, the elastic phase shifts where accurately computed. They considerably differ, even at zero energy, from the non-relativistic ones.
Above the meson creation threshold, an imaginary part of the phase shift appears and has also been calculated. The off-shell BS scattering
amplitude thus obtained can be further used to calculate the transition form factor. In its full off-shell form, it can be used as input in the
three-body BS–Faddeev equations.
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