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1. Introduction

Let Fn(x,y) = aox" +a1x"~ 'y 4+ --- +a,y" be a binary form of degree n > 2 with integral coeffi-
cients, and let h > 2 be an integer. This paper deals with the structure of the set 7 (F,, h) of solutions
(x, ¥) to the Diophantine Thue equation

Fa(x,y)=h (T)
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in integers x, y, where the greatest common divisor (GCD) of all non-zero coefficients a; equals 1. We
thus consider the case which cannot be reduced to equation F,(x, y) =1 addressed e.g. in [2,10]. We
also assume that the set 7 (Fp,, h) is not empty.

In 1909 Thue proved that if F, is irreducible and n > 3 then Eq. (T) has a finite number of
solutions. Since then this case of Eq. (T) has been called the Thue equation, and the Thue result has
been strengthened by a number of authors. For the story of estimating the number N.(Fy, h) of all
coprime solutions of (T) we refer the reader to two papers of Stewart [8,9]. (We recall that two
integers a, b with ab # 0 are coprime if (a, b) =1, where the symbol (a, b) denotes GCD of a, b.)

Today the best unconditional result is due to Stewart [8, Theorem 1]:

N¢(Fn, h) < Cn't,

where C = 2800 and t is the number of all distinct prime factors of the constant term h. This is an
improvement of conditional results obtained earlier by Evertse [3] (that Ne(Fn, h) < 715(G+D* 4 6 x
72(3)(”1)), Bombieri and Schmidt [1] (that C =215 for h large enough and Fj(x, 1) irreducible), and
others [4-7].

Our theorems and their corollaries presented below deal with the algebraic structure of the set
T (Fp, h) (without any restriction on F,). However, the problem of estimating N.(Fy, h) by the use of
Theorem 2, or its Corollary 2, of Section 4 seems to be interesting and is obviously open.

In order to present our main results we shall fix notation and introduce some terminology. An el-
ement (x, y) of 7 (Fyp, h) will be also denoted by & or 1, and —& means (—x, —y). For a nonempty
subset A = {&1,&2,...,&} of T(F,, h) with r =card(A) > 2 we let

A= [] s &,

1<k<I<r
where 8 (&, &) = X y1 — VX and & = (X, Vi), k=1,2,...,r. Obviously §(&¢, &) =0 for all £ € 7 (Fy, h),

and §(n, —n) =0 for all n € T (Fy, h) for n is even.
Our fundamental theorem reads as follows.

Theorem 1. Let A be a subset of 7 (Fy,, h). If card(A) > n + 1 then h is a divisor of A(A).

This theorem yields an information about the number of solutions to the Thue equation (T) that
fulfil the extra condition (1) below, and complements partially the above-mentioned conditional re-
sults of Silverman, Mueller and Schmidt, and Lorenzini and Tucker.

An immediate consequence of Theorem 1 is
Corollary 1. Let A be a subset of T (Fy,, h) with card(A) > 2. If
(h, A(A) <h (1)
(in particular, if h and § (&, n) are coprime for all distinct &, n € A), then card(A) < n.

Corollary 1 allows us to define a number w(F;,, h) which is useful for further purposes as follows.
We put w(Fn, h) =1 if

8(¢,m) =0 (modh) (2)

for all &, € 7(Fp,h), and w(Fy, h) = the maximal cardinality of the subsets A of 7 (F,,h) with
card(A) > 2 that fulfil inequality (1) otherwise.
The results given in Theorem 1 and Corollary 1 can be now presented in a concise form.
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Theorem 1'. For every Thue equation (T) we have w(Fy, h) < n.

As an application of this result we show in Theorem 2 below that if h is a prime number then,
under weak assumptions on F,, there is a partition of the set 7 (Fy, h) into at most n subsets maximal
with respect to the condition

h divides A(A).

2. The proof of Theorem 1

Let & = (x¢, yx), k=1,...,n+1 be (pairwise distinct) elements of A C 7 (F,, h). We thus have
n+ 1 equations
aoX] +arx; 'y + - +anyt =h,

aoXy + a1y ys + -+ anys =h,

n n—1 n
aoXp1 + 01X, 1 Ynt1+ -+ anypq =h (3)
and we treat ag, a, ..., a; as unknown quantities. Hence the determinant W of the system (3) is of
the form
P Xn—l . n
1 1 13’1 i
n n— n
W=det| 2 X Y2 Y2
e FEISRRLLEEE R -
Xny1 XnprYn+r o Yo

Claim. W equals A(A). For a proof, let us assume first that all x;’s are non-zero, and put X = (x1 - Xy - -+ - -
Xn+1)", and ug = Yy /X, k=1,2,...,n+ 1. It is now obvious that W = X - V (u1, ua, ..., Uny1), where V is
the Vandermonde’s determinant for the uy’s. Hence, W = X - H1<k<l<n+1 (ux — uy) = A(A). This particular
case suggests our claim is true in general (also when X = 0), what can be checked by the same method (i.e., by
mathematical induction) as for the proof of the form of V.

Since h divides 0, in our proof we may now assume that A(A) # 0, whence, by the Cramer theo-
rem,

_h-Wy

ak——A(A),

k=1,2,....,n+1, (4)

where Wy, is a determinant with kth column consisting of 1’s only, and the remaining columns the
same as in W.

Assume, by way of contradiction, that h does not divide A(A), i.e., the number hg := (h, A(A)) is
strictly less than h. Hence h = hg - hy, where 2 < hy < h, and, by (4), there exist integers 1,72, ..., n+1
such that ap = hq - for all k’s. It follows that hy divides the greatest common divisor of the coeffi-
cients of F; but by assumption the latter is equal to 1. This contradicts that hy > 2.
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3. The set 7T (Fp, h)

In this section we define a subset 7 (Fy, h) of 7 (Fn, h) which permits us to eliminate in Theo-
rem 1 the case A(A) =0.

Since Fp(=§&) = (—=1)"F,(&), it is more convenient to work (for n even) not on the whole set

T (Fp, h) but on its subset 7, (F,, h) defined as follows: for n odd we simply put 7, (Fy,, h) := 7 (Fy, h),
and for n even we define 7 (Fy, h) by the rules:

T, (Fp,h):={€ € T(Fp,h): x: >1} whenxg #0forall§ € 7(Fy, h),

and

T, (Fn,h) :={§ e T(Fq,h): x: >1}U{(0, [u])} when (0,u) € T(Fy, h),

where x; denotes the element x of the first coordinate of &.
Put 7_(Fp, h) :={& € T (Fp, h): —& € T (Fy, h)}. Then, obviously, 7_(F,, h) =@ for n odd, and

T (Fa,h)NT_(Fy,h)=¢ foralln’s.

Hence we obtain a decomposition of 7 (Fp, h):

T(Fn,h)=T+(Fn»h)UT—(Fn,h) (5)
(with 7 (Fp, h) = 74 (Fy, h) for n odd).
From the definition of A(A) it follows that if card(A) > 2 then A(A) = 0 if (and only if)

8(¢,m) =0 for some distinct elements &, n of A. In the lemma below we give a characterization
of the latter case.

Lemma 1. Let £, 1 € 7 (Fp, h). Then §(§,n) =0ifand only if n =& or n = —&.
Thus, the elements &, n of T, (Fp, h) (and hence, of T (Fy, h) for n odd) are distinct ifand only if (¢, ) # 0.

Proof. Since the “if” part is obvious, let us assume that §(&¢, n) = 0. Hence the elements & and n are
linearly dependent:

§=a-n (6)

for some real number a. Now from (T) and (6) we obtain h = F,(§) = Fy(an) = a"Fy(n) = a"h,
whence a"=1. O

Let, for a subset B of 7 (Fp,h), the symbol — denote the set {—&: & € B}. The above lemma
motivates us to consider the auxiliary subset A, of 7 (Fp, h) of the form

Ay = (AN T (Fa, ) U (—=(ANT=(Fn, )))

(which coincides with A for n odd, and consists of the elements £ with xz > 0 for n even). Then from
Lemma 1 we obtain that

if card(Ay) >2 then A(Ay) #0, (7)
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and it is also obvious that

Ay =A for AcC 7, (Fp, h) ornodd. (8)

For example, if n is even and &, n are two distinct elements of 7 (Fp, h) with x: > 1 and x; > 1,
then for the set A :={&,n,—n} we have §(n,—n) =0, and hence A(A) = 0. On the other hand,
Ay ={&,n}, whence card(A) =3 > 2 =card(A4) and A(A4) =68(&,n) #0.

From the definitions of A(A) and A, and from Lemma 1 it also immediately follows that

if A(A) 20 then card(A) = card(A;)

and

A(A) =AAY). 9)

Remark 1. The properties (7), (8) and (9) allow us to calculate the number w(F;, h) with the help
of subsets A of 7, (Fp,h) instead of 7 (F,, h): we put w(Fn,h) =1 as in the initial definition, and
the maximal cardinality of the subsets A of 7, (Fp, h) with card(A) > 2 that fulfil inequality (1)
otherwise.

Remark 2. The properties (7), (8), (9) imply also that both in Theorem 1 and Corollary 1 we need
to consider only the case A C 7 (Fy, h) (for which A(A) # 0); then, by Remark 1, the conclusion of
Theorem 1’ remains unchanged.

4. h-Homogeneous subsets of 7 (F,, h)

We say that a subset A of 7 (Fpn, h) is h-homogeneous provided that every pair &, 71 € A fulfils
condition (2). (Notice that all 1-element subsets of 7 (F,, h) are h-homogeneous.) One of the tools
describing the partition of 7 (Fy, h) into h-homogeneous subsets will be the number w(F;, h) defined
(in a similar way as w(Fy, h)) by means of condition (2) and the somewhat strengthened condi-
tion (1): for a subset A of 7 (Fy, h) one has

8(5,m)#%0 (modh) foralldistincté,ne A. (1)

We put @w(Fy, h) =1 if condition (2) holds on the set 7, (Fy, h), and @(Fy, h) = the maximal cardi-
nality of the subsets A of 7 (Fy, h) with card(A) > 2 that fulfil the above condition (1’) otherwise.
It is easily seen that

@(Fn, h) = w(Fy, h),

and

(Fp, h) = w(Fy, h) for h prime, (10)

and the first inequality in (10) can be strict (see Example 2 in Section 5). However, in contrast
to Theorem 1/, we do not know if @(Fp,h) < n in general (ie., if h is not a prime number,
see (10)).

The remaining part of this section deals with the structure of the subset 7¢(Fy, h) of all coprime
elements (x, y) of 7. (Fp, h), with an application to 7 (Fy, h). The (non-zero) integers ap and a, in the
hypotheses of the next results are taken from the form of Fj,.
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One can easily check that if h is nth power-free and (ag, h) =1 or (ap, h) =1 then

Tc(Fn, h) = Ty (Fn, h). (11)

The lemma below describes the basic properties of an equivalence relation on 7¢(Fy, h); its second
part follows from property (11).

Lemma 2. Let the set 7:(Fy, h) be not empty. Then the relation ~ on 7¢(Fp, h) of the form

&~n ifandonlyif §(&,n)=0 (modh)
is an equivalence relation, and the number w.(Fy, h) defined as the cardinality of 7¢(Fy, h)/ ~ fulfils inequal-

ity wc(Fn, h) < @(Fp, h).
If, additionally, h is nth power-free then the relation ~ holds on 7, (Fy, h), and

card(7¢(Fn, h)/ ~) = @(Fy, h).

Proof. Since only the transitivity of ~ is nontrivial, let & = (xk, yx), k=1,2,3, and & ~ & & & ~ &3;
equivalently,

hix1y2 —x2y1 and hlxay3 —x3y>. (12)

Choose integers a,b with by, —ax, =1, and define the matrix A = (_ab _J’Xzz) Then A has determi-
nant 1. Let [u, v] denote a vector in R2, and set

[X],(’ YI/(] =[xk, yk]A

for k =1,2,3. Then the number x|y, — Xy} = (x1y2 — x2y1)det A is divisible by h, and similarly
X,ys — X3y is divisible by h. Since x, = —1 and y} =0, the two latter relations imply that both
¥7. ¥4 are divisible by h. This further implies x; y; — X3y} is divisible by h, and hence x;y3 —x3y; =
(X y5 — x5y det A~1 is divisible by h, i.e., &1 ~ £. We thus have proved that the relation ~ is tran-
sitive. O

In the next theorem we show that every nonempty set 7.(Fn, h) can be partitioned into max-
imal h-homogeneous subsets; its proof follows immediately from Lemma 2 applied to the cases
wc(Fp,h) =1 and w¢(Fp, h) > 2.

Theorem 2. Let the set 7. (Fy, h) be not empty. Then the following alternative holds:

(i) the set T.(Fy, h) is h-homogeneous;
(ii) there is a partition of 7¢(Fy, h) into w¢(Fy, h) > 2 nonempty and h-homogeneous subsets Ay,

wc(Fn,h)
T(Fa= | A
k=1
such that, for all distinct k1, k, and arbitrary & € Ay;, i =1, 2, we have §(£1, &) # 0 (mod h).

If, additionally, h is nth power-free then the above alternative holds for 7. (Fy, h) and w(Fy, h), respectively,
instead of ¢ (Fy, h) and w¢(Fy, h), respectively.
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From Theorem 1/, and from the second part of Theorem 2, and properties (10) and (11) we obtain
the following corollary.

Corollary 2. Let h be a prime number. If the set T (Fy, h) is not h-homogeneous, then it has the form:

(a) forn odd,

@(Fy,h)

T(Fahy = | A
k=1

where 2 < w(Fp, h) < n, all the sets Ay are h-homogeneous, nonempty and pairwise disjoint, and for all
distinct kq, kp and arbitrary & € Ay,, i =1, 2, we have §(&1, &) # 0 (mod h);
(b) forn even,

@(Fn.h)

T(Fa,h = | (AUBY
k=1

where A C T, (Fp, h), By := —Ay, for all k’s, with the same properties of w(Fy, h) and Ay’s as in
item (a).

Remark 3. It is not claimed in the above corollary that the sets 4 consist of at least two elements.
However, if all Ay's were singletons then, by Theorem 1/, we would have the very strong bound for
the cardinality N(Fy, h) of 7 (Fy, h): N(Fp, h) = w(Fp, h) <n for n odd, and N(F,h) =2 - w(Fy, h) <
2n for n even (see (1)).

5. Examples

In this section we illustrate the notions introduced in Sections 1 and 3 and some relations between
them. By Remarks 1 and 2, we can consider only subsets of 7, (Fp, h). The testing equation will have
the form

FT(IS,f) (X, y) — pf(: h), (T(S,t))

where F,(f‘[) x,y) = ]_[E:] (x — kp®y) 4+ pty", p is a prime number, and n, s, t are integers with n > 3,
se{0,1}, te{1,2}.

Example 1. The number w(Fy, h) can attain the values both 1 and n, as well as every prime number between
them (we do not know if all the integers between 1 and n are admissible). For a proof of the case
®(Fn,h) =1 we shall use the equation (T™V) and its solutions &, k=1,2,...,n, of the form & =
(pk,1). For all k,I we then have §(&,&) =p - (k —1) and hence, for n = (x, y) another (possible)
solution, the number p divides x — kpy = §(n, &) for some k. From Lemma 1 it now follows that

h(= p) divides all the numbers §(&¢, n) with &,n € T(F,gm), h), and so a)(F,gl’l),h) =1 (by definition).

In the remaining cases we consider the equation (T®1). Since h = p is prime, we can use the
definition of @ instead of w (see (10)). Let & denote the solution of the form (k,1), k=1,2,...,n.
Then we have

plé (&, &) ifand onlyif p|(k —1), (13)
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whence, for p > n and k # 1, the numbers p and §(&, &) are coprime. By Theorem 1’ and (10), we
have a)(Fr(lo’l), h) =n.

Now let p <n, and let [&] denote the abstract class, k=1,..., p, of the relation ~ in T+(F,§O’1), h)
(see Lemma 2). By (13), every &; with j > p falls into [£] for some k < p. Moreover, if n = (x, y)
is another (possible) solution to (T'D) with x > 0, then p divides x — ky = 8(, &), and hence
n € [&] for some k < p. We thus have shown that the set T+(F,§0‘1),h) is partitioned into p sets:
[£11U---U[&p], and each of them is h-homogeneous (with h = p). From the second part of Theorem 2

it now follows that w(F,(,O’l), h) =p.

Example 2. Inequality in (10) is strict, in general. We consider the equation (T(2) with 2 < p <n.
Then h = p? is nth power-free, but evidently not a prime number. It is obvious that our equation and
equation (T(D) of Example 1 possess the same solutions &, k=1, ...,n, with the property (in our
case)

pI8(&, &), but p*8(&.&) for1<k<I<p. (14)

Hence (h, A(A)) =p < h for A= {&1, &} (with card(A) = 2), and so a)(F,SLZ), h) > 2. Moreover, for
every solution n = (x, y) not of the form & (if any) we have p|x, thus p divides §(11, 1), for all
distinct 11,12, and p divides 8(n, &), for all k’s. It immediately follows that if card(A4) > 3 then
p3|A(A), and hence w(F1+? h) =2 by definition.

On the other hand, for the set B={&1,...,&p} property (14) holds. Thus, from the definition of @
it follows that cT)(F,f,l'Z), h) > p, and (by our hypothesis) this value is larger than 2 = a)(F,f,l'Z), h).
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