Journal of Number Theory 130 (2010) 1480-1487

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

The algebraic structure of the set of solutions to the Thue equation

Aleksander Grytczuk^a, Marek Wójtowicz^{b,*}

^a Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, ul. Prof. Szafrana 4a, 65-516 Zielona Góra, Poland

^b Institute of Mathematics, Uniwersytet Kazimierza Wielkiego (Casimir the Great University), Pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland

ARTICLE INFO

Article history: Received 18 September 2009 Revised 5 February 2010 Communicated by David Goss

MSC: 11D59

Keywords: Thue equation

ABSTRACT

Let F_n be a binary form with integral coefficients of degree $n \ge 2$, let d denote the greatest common divisor of all non-zero coefficients of F_n , and let $h \ge 2$ be an integer. We prove that if d = 1 then the Thue equation (*T*) $F_n(x, y) = h$ has relatively few solutions: if \mathcal{A} is a subset of the set $\mathcal{T}(F_n, h)$ of all solutions to (*T*), with $r := \operatorname{card}(\mathcal{A}) \ge n + 1$, then

(#) h divides the number $\Delta(\mathcal{A}) := \prod_{1 \le k \le l \le r} \delta(\xi_k, \xi_l)$,

where $\xi_k = \langle x_k, y_k \rangle \in A$, $1 \leq k \leq r$, and $\delta(\xi_k, \xi_l) = x_k y_l - x_l y_k$. As a corollary we obtain that if *h* is a prime number then, under weak assumptions on F_n , there is a partition of $\mathcal{T}(F_n, h)$ into at most *n* subsets maximal with respect to condition (#).

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let $F_n(x, y) = a_0 x^n + a_1 x^{n-1} y + \cdots + a_n y^n$ be a binary form of degree $n \ge 2$ with integral coefficients, and let $h \ge 2$ be an integer. This paper deals with the structure of the set $\mathcal{T}(F_n, h)$ of solutions $\langle x, y \rangle$ to the Diophantine Thue equation

$$F_n(x, y) = h \tag{(T)}$$

* Corresponding author.

E-mail addresses: A.Grytczuk@wmie.uz.zgora.pl (A. Grytczuk), mwojt@ukw.edu.pl (M. Wójtowicz).

⁰⁰²²⁻³¹⁴X/\$ – see front matter @ 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jnt.2010.02.015

in integers *x*, *y*, where the greatest common divisor (GCD) of all non-zero coefficients a_k equals 1. We thus consider the case which cannot be reduced to equation $F_n(x, y) = 1$ addressed e.g. in [2,10]. We also assume that the set $\mathcal{T}(F_n, h)$ is not empty.

In 1909 Thue proved that if F_n is irreducible and $n \ge 3$ then Eq. (*T*) has a finite number of solutions. Since then this case of Eq. (*T*) has been called the *Thue equation*, and the Thue result has been strengthened by a number of authors. For the story of estimating the number $N_c(F_n, h)$ of all *coprime* solutions of (*T*) we refer the reader to two papers of Stewart [8,9]. (We recall that two integers *a*, *b* with $ab \ne 0$ are coprime if (a, b) = 1, where the symbol (a, b) denotes GCD of *a*, *b*.)

Today the best unconditional result is due to Stewart [8, Theorem 1]:

$$N_c(F_n,h) \leq Cn^{1+t}$$
,

where C = 2800 and t is the number of all distinct prime factors of the constant term h. This is an improvement of *conditional* results obtained earlier by Evertse [3] (that $N_c(F_n, h) \leq 7^{15(\binom{n}{3}+1)^2} + 6 \times 7^{2\binom{n}{3}(t+1)}$), Bombieri and Schmidt [1] (that C = 215 for h large enough and $F_n(x, 1)$ irreducible), and others [4–7].

Our theorems and their corollaries presented below deal with the algebraic structure of the set $\mathcal{T}(F_n, h)$ (without any restriction on F_n). However, the problem of estimating $N_c(F_n, h)$ by the use of Theorem 2, or its Corollary 2, of Section 4 seems to be interesting and is obviously open.

In order to present our main results we shall fix notation and introduce some terminology. An element $\langle x, y \rangle$ of $\mathcal{T}(F_n, h)$ will be also denoted by ξ or η , and $-\xi$ means $\langle -x, -y \rangle$. For a nonempty subset $\mathcal{A} = \{\xi_1, \xi_2, \dots, \xi_r\}$ of $\mathcal{T}(F_n, h)$ with $r = \operatorname{card}(\mathcal{A}) \ge 2$ we let

$$\Delta(\mathcal{A}) := \prod_{1 \leq k < l \leq r} \delta(\xi_k, \xi_l),$$

where $\delta(\xi_k, \xi_l) = x_k y_l - y_k x_l$ and $\xi_k = \langle x_k, y_k \rangle$, k = 1, 2, ..., r. Obviously $\delta(\xi, \xi) = 0$ for all $\xi \in \mathcal{T}(F_n, h)$, and $\delta(\eta, -\eta) = 0$ for all $\eta \in \mathcal{T}(F_n, h)$ for n is even.

Our fundamental theorem reads as follows.

Theorem 1. Let \mathcal{A} be a subset of $\mathcal{T}(F_n, h)$. If $card(\mathcal{A}) \ge n + 1$ then h is a divisor of $\Delta(\mathcal{A})$.

This theorem yields an information about the number of solutions to the Thue equation (T) that fulfil the extra condition (1) below, and complements partially the above-mentioned conditional results of Silverman, Mueller and Schmidt, and Lorenzini and Tucker.

An immediate consequence of Theorem 1 is

Corollary 1. Let \mathcal{A} be a subset of $\mathcal{T}(F_n, h)$ with $card(\mathcal{A}) \ge 2$. If

$$(h, \Delta(\mathcal{A})) < h \tag{1}$$

(in particular, if h and $\delta(\xi, \eta)$ are coprime for all distinct $\xi, \eta \in A$), then card $(A) \leq n$.

Corollary 1 allows us to define a number $\omega(F_n, h)$ which is useful for further purposes as follows. We put $\omega(F_n, h) = 1$ if

$$\delta(\xi,\eta) \equiv 0 \pmod{h} \tag{2}$$

for all $\xi, \eta \in \mathcal{T}(F_n, h)$, and $\omega(F_n, h)$ = the maximal cardinality of the subsets \mathcal{A} of $\mathcal{T}(F_n, h)$ with card(\mathcal{A}) ≥ 2 that fulfil inequality (1) otherwise.

The results given in Theorem 1 and Corollary 1 can be now presented in a concise form.

Theorem 1'. For every Thue equation (*T*) we have $\omega(F_n, h) \leq n$.

As an application of this result we show in Theorem 2 below that if h is a prime number then, under weak assumptions on F_n , there is a partition of the set $\mathcal{T}(F_n, h)$ into at most n subsets maximal with respect to the condition

h divides $\Delta(\mathcal{A})$.

2. The proof of Theorem 1

Let $\xi_k = \langle x_k, y_k \rangle$, k = 1, ..., n + 1 be (pairwise distinct) elements of $\mathcal{A} \subset \mathcal{T}(F_n, h)$. We thus have n + 1 equations

and we treat a_0, a_1, \ldots, a_n as unknown quantities. Hence the determinant *W* of the system (3) is of the form

$$W = \det \begin{pmatrix} x_1^n & x_1^{n-1}y_1 & \cdots & y_1^n \\ x_2^n & x_2^{n-1}y_2 & \cdots & y_2^n \\ \vdots \\ \vdots \\ x_{n+1}^n & x_{n+1}^{n-1}y_{n+1} & \cdots & y_{n+1}^n \end{pmatrix}.$$

Claim. W equals $\Delta(A)$. For a proof, let us assume first that all x_k 's are non-zero, and put $X = (x_1 \cdot x_2 \cdot \dots \cdot x_{n+1})^n$, and $u_k = y_k/x_k$, $k = 1, 2, \dots, n+1$. It is now obvious that $W = X \cdot V(u_1, u_2, \dots, u_{n+1})$, where V is the Vandermonde's determinant for the u_k 's. Hence, $W = X \cdot \prod_{1 \le k < l \le n+1} (u_k - u_l) = \Delta(A)$. This particular case suggests our claim is true in general (also when X = 0), what can be checked by the same method (i.e., by mathematical induction) as for the proof of the form of V.

Since *h* divides 0, in our proof we may now assume that $\Delta(A) \neq 0$, whence, by the Cramer theorem,

$$a_k = \frac{h \cdot W_k}{\Delta(\mathcal{A})}, \quad k = 1, 2, \dots, n+1,$$
(4)

where W_k is a determinant with kth column consisting of 1's only, and the remaining columns the same as in W.

Assume, by way of contradiction, that *h* does not divide $\Delta(A)$, i.e., the number $h_0 := (h, \Delta(A))$ is strictly less than *h*. Hence $h = h_0 \cdot h_1$, where $2 \le h_1 \le h$, and, by (4), there exist integers $r_1, r_2, \ldots, r_{n+1}$ such that $a_k = h_1 \cdot r_k$ for all *k*'s. It follows that h_1 divides the greatest common divisor of the coefficients of F_n ; but by assumption the latter is equal to 1. This contradicts that $h_1 \ge 2$.

3. The set $\mathcal{T}_+(F_n, h)$

In this section we define a subset $T_+(F_n, h)$ of $T(F_n, h)$ which permits us to eliminate in Theorem 1 the case $\Delta(A) = 0$.

Since $F_n(-\xi) = (-1)^n F_n(\xi)$, it is more convenient to work (for *n* even) not on the whole set $\mathcal{T}(F_n, h)$ but on its subset $\mathcal{T}_+(F_n, h)$ defined as follows: for *n* odd we simply put $\mathcal{T}_+(F_n, h) := \mathcal{T}(F_n, h)$, and for *n* even we define $\mathcal{T}_+(F_n, h)$ by the rules:

$$\mathcal{T}_+(F_n,h) := \left\{ \xi \in \mathcal{T}(F_n,h) \colon x_{\xi} \ge 1 \right\} \quad \text{when } x_{\xi} \neq 0 \text{ for all } \xi \in \mathcal{T}(F_n,h),$$

and

$$\mathcal{T}_{+}(F_{n},h) := \left\{ \xi \in \mathcal{T}(F_{n},h) \colon x_{\xi} \ge 1 \right\} \cup \left\{ \left\langle 0, |u| \right\rangle \right\} \text{ when } \left\langle 0, u \right\rangle \in \mathcal{T}(F_{n},h),$$

where x_{ξ} denotes the element *x* of the first coordinate of ξ .

Put $\mathcal{T}_{-}(F_n, h) := \{\xi \in \mathcal{T}(F_n, h): -\xi \in \mathcal{T}_{+}(F_n, h)\}$. Then, obviously, $\mathcal{T}_{-}(F_n, h) = \emptyset$ for *n* odd, and

$$\mathcal{T}_+(F_n,h) \cap \mathcal{T}_-(F_n,h) = \emptyset$$
 for all *n*'s.

Hence we obtain a decomposition of $T(F_n, h)$:

$$\mathcal{T}(F_n,h) = \mathcal{T}_+(F_n,h) \cup \mathcal{T}_-(F_n,h)$$
(5)

(with $\mathcal{T}(F_n, h) = \mathcal{T}_+(F_n, h)$ for *n* odd).

From the definition of $\Delta(A)$ it follows that if $card(A) \ge 2$ then $\Delta(A) = 0$ if (and only if) $\delta(\xi, \eta) = 0$ for some distinct elements ξ , η of A. In the lemma below we give a characterization of the latter case.

Lemma 1. Let $\xi, \eta \in \mathcal{T}(F_n, h)$. Then $\delta(\xi, \eta) = 0$ if and only if $\eta = \xi$ or $\eta = -\xi$. Thus, the elements ξ, η of $\mathcal{T}_+(F_n, h)$ (and hence, of $\mathcal{T}(F_n, h)$ for n odd) are distinct if and only if $\delta(\xi, \eta) \neq 0$.

Proof. Since the "if" part is obvious, let us assume that $\delta(\xi, \eta) = 0$. Hence the elements ξ and η are linearly dependent:

$$\xi = a \cdot \eta \tag{6}$$

for some real number *a*. Now from (*T*) and (6) we obtain $h = F_n(\xi) = F_n(a\eta) = a^n F_n(\eta) = a^n h$, whence $a^n = 1$. \Box

Let, for a subset \mathcal{B} of $\mathcal{T}(F_n, h)$, the symbol $-\mathcal{B}$ denote the set $\{-\xi \colon \xi \in \mathcal{B}\}$. The above lemma motivates us to consider the auxiliary subset \mathcal{A}_+ of $\mathcal{T}(F_n, h)$ of the form

$$\mathcal{A}_{+} := \left(\mathcal{A} \cap \mathcal{T}_{+}(F_{n}, h)\right) \cup \left(-\left(\mathcal{A} \cap \mathcal{T}_{-}(F_{n}, h)\right)\right)$$

(which coincides with A for n odd, and consists of the elements ξ with $x_{\xi} \ge 0$ for n even). Then from Lemma 1 we obtain that

if
$$\operatorname{card}(\mathcal{A}_+) \ge 2$$
 then $\Delta(\mathcal{A}_+) \ne 0$, (7)

and it is also obvious that

$$\mathcal{A}_{+} = \mathcal{A} \quad \text{for } \mathcal{A} \subset \mathcal{T}_{+}(F_{n}, h) \text{ or } n \text{ odd.}$$
(8)

For example, if *n* is even and ξ , η are two distinct elements of $\mathcal{T}(F_n, h)$ with $x_{\xi} \ge 1$ and $x_{\eta} \ge 1$, then for the set $\mathcal{A} := \{\xi, \eta, -\eta\}$ we have $\delta(\eta, -\eta) = 0$, and hence $\Delta(\mathcal{A}) = 0$. On the other hand, $\mathcal{A}_+ = \{\xi, \eta\}$, whence $\operatorname{card}(\mathcal{A}) = 3 > 2 = \operatorname{card}(\mathcal{A}_+)$ and $\Delta(\mathcal{A}_+) = \delta(\xi, \eta) \neq 0$.

From the definitions of $\Delta(A)$ and A_+ , and from Lemma 1 it also immediately follows that

if
$$\Delta(\mathcal{A}) \neq 0$$
 then $\operatorname{card}(\mathcal{A}) = \operatorname{card}(\mathcal{A}_+)$

and

$$\Delta(\mathcal{A}) = \Delta(\mathcal{A}_+). \tag{9}$$

Remark 1. The properties (7), (8) and (9) allow us to calculate the number $\omega(F_n, h)$ with the help of subsets \mathcal{A} of $\mathcal{T}_+(F_n, h)$ instead of $\mathcal{T}(F_n, h)$: we put $\omega(F_n, h) = 1$ as in the initial definition, and the maximal cardinality of the subsets \mathcal{A} of $\mathcal{T}_+(F_n, h)$ with $\operatorname{card}(\mathcal{A}) \ge 2$ that fulfil inequality (1) otherwise.

Remark 2. The properties (7), (8), (9) imply also that both in Theorem 1 and Corollary 1 we need to consider only the case $\mathcal{A} \subset \mathcal{T}_+(F_n, h)$ (for which $\Delta(\mathcal{A}) \neq 0$); then, by Remark 1, the conclusion of Theorem 1' remains unchanged.

4. *h*-Homogeneous subsets of $\mathcal{T}(F_n, h)$

We say that a subset \mathcal{A} of $\mathcal{T}(F_n, h)$ is *h*-homogeneous provided that every pair $\xi, \eta \in \mathcal{A}$ fulfils condition (2). (Notice that all 1-element subsets of $\mathcal{T}(F_n, h)$ are *h*-homogeneous.) One of the tools describing the partition of $\mathcal{T}(F_n, h)$ into *h*-homogeneous subsets will be the number $\overline{\omega}(F_n, h)$ defined (in a similar way as $\omega(F_n, h)$) by means of condition (2) and the somewhat strengthened condition (1): for a subset \mathcal{A} of $\mathcal{T}(F_n, h)$ one has

$$\delta(\xi,\eta) \not\equiv 0 \pmod{h} \quad \text{for all distinct } \xi,\eta \in \mathcal{A}. \tag{1'}$$

We put $\overline{\omega}(F_n, h) = 1$ if condition (2) holds on the set $\mathcal{T}_+(F_n, h)$, and $\overline{\omega}(F_n, h) =$ the maximal cardinality of the subsets \mathcal{A} of $\mathcal{T}_+(F_n, h)$ with $card(\mathcal{A}) \ge 2$ that fulfil the above condition (1') otherwise. It is easily seen that

$$\overline{\omega}(F_n,h) \ge \omega(F_n,h),$$

and

$$\overline{\omega}(F_n, h) = \omega(F_n, h) \quad \text{for } h \text{ prime}, \tag{10}$$

and the first inequality in (10) can be strict (see Example 2 in Section 5). However, in contrast to Theorem 1', we do not know if $\overline{\omega}(F_n, h) \leq n$ in general (i.e., if *h* is not a prime number, see (10)).

The remaining part of this section deals with the structure of the subset $\mathcal{T}_c(F_n, h)$ of all *coprime* elements $\langle x, y \rangle$ of $\mathcal{T}_+(F_n, h)$, with an application to $\mathcal{T}(F_n, h)$. The (non-zero) integers a_0 and a_n in the hypotheses of the next results are taken from the form of F_n .

1484

One can easily check that if *h* is *n*th power-free and $(a_0, h) = 1$ or $(a_n, h) = 1$ then

$$\mathcal{T}_c(F_n, h) = \mathcal{T}_+(F_n, h). \tag{11}$$

The lemma below describes the basic properties of an equivalence relation on $T_c(F_n, h)$; its second part follows from property (11).

Lemma 2. Let the set $T_c(F_n, h)$ be not empty. Then the relation \sim on $T_c(F_n, h)$ of the form

 $\xi \sim \eta$ if and only if $\delta(\xi, \eta) \equiv 0 \pmod{h}$

is an equivalence relation, and the number $\omega_c(F_n, h)$ defined as the cardinality of $\mathcal{T}_c(F_n, h)/\sim$ fulfils inequality $\omega_c(F_n, h) \leq \overline{\omega}(F_n, h)$.

If, additionally, h is nth power-free then the relation \sim holds on $\mathcal{T}_+(F_n, h)$, and

$$\operatorname{card}(\mathcal{T}_+(F_n,h)/\sim) = \overline{\omega}(F_n,h).$$

Proof. Since only the transitivity of \sim is nontrivial, let $\xi_k = \langle x_k, y_k \rangle$, k = 1, 2, 3, and $\xi_1 \sim \xi_2 \& \xi_2 \sim \xi_3$; equivalently,

$$h|x_1y_2 - x_2y_1$$
 and $h|x_2y_3 - x_3y_2$. (12)

Choose integers *a*, *b* with $by_2 - ax_2 = 1$, and define the matrix $A = \begin{pmatrix} a & y_2 \\ -b & -x_2 \end{pmatrix}$. Then *A* has determinant 1. Let [u, v] denote a vector in \mathbf{R}^2 , and set

$$\left[x_{k}^{\prime}, y_{k}^{\prime}\right] = \left[x_{k}, y_{k}\right]A$$

for k = 1, 2, 3. Then the number $x'_1y'_2 - x'_2y'_1 = (x_1y_2 - x_2y_1) \det A$ is divisible by h, and similarly $x'_2y'_3 - x'_3y'_2$ is divisible by h. Since $x'_2 = -1$ and $y'_2 = 0$, the two latter relations imply that both y'_1, y'_3 are divisible by h. This further implies $x'_1y'_3 - x'_3y'_1$ is divisible by h, and hence $x_1y_3 - x_3y_1 = (x'_1y'_3 - x'_3y'_1) \det A^{-1}$ is divisible by h, i.e., $\xi_1 \sim \xi_3$. We thus have proved that the relation \sim is transitive. \Box

In the next theorem we show that every nonempty set $\mathcal{T}_c(F_n, h)$ can be partitioned into maximal *h*-homogeneous subsets; its proof follows immediately from Lemma 2 applied to the cases $\omega_c(F_n, h) = 1$ and $\omega_c(F_n, h) \ge 2$.

Theorem 2. Let the set $T_c(F_n, h)$ be not empty. Then the following alternative holds:

(i) the set $\mathcal{T}_{c}(F_{n}, h)$ is h-homogeneous;

(ii) there is a partition of $\mathcal{T}_{c}(F_{n}, h)$ into $\omega_{c}(F_{n}, h) \ge 2$ nonempty and h-homogeneous subsets \mathcal{A}_{k}

$$\mathcal{T}_{c}(F_{n},h) = \bigcup_{k=1}^{\omega_{c}(F_{n},h)} \mathcal{A}_{k}$$

such that, for all distinct k_1, k_2 and arbitrary $\xi_i \in A_{k_i}$, i = 1, 2, we have $\delta(\xi_1, \xi_2) \neq 0 \pmod{h}$.

If, additionally, h is nth power-free then the above alternative holds for $\mathcal{T}_+(F_n, h)$ and $\overline{\omega}(F_n, h)$, respectively, instead of $\mathcal{T}_c(F_n, h)$ and $\omega_c(F_n, h)$, respectively.

From Theorem 1', and from the second part of Theorem 2, and properties (10) and (11) we obtain the following corollary.

Corollary 2. Let h be a prime number. If the set $\mathcal{T}(F_n, h)$ is not h-homogeneous, then it has the form:

(a) for n odd,

$$\mathcal{T}(F_n,h) = \bigcup_{k=1}^{\omega(F_n,h)} \mathcal{A}_k,$$

where 2 ≤ ω(F_n, h) ≤ n, all the sets A_k are h-homogeneous, nonempty and pairwise disjoint, and for all distinct k₁, k₂ and arbitrary ξ_i ∈ A_{k_i}, i = 1, 2, we have δ(ξ₁, ξ₂) ≠ 0 (mod h);
(b) for n even,

$$\mathcal{T}(F_n,h) = \bigcup_{k=1}^{\omega(F_n,h)} (\mathcal{A}_k \cup \mathcal{B}_k)$$

where $A_k \subset T_+(F_n, h)$, $B_k := -A_k$, for all k's, with the same properties of $\omega(F_n, h)$ and A_k 's as in item (a).

Remark 3. It is not claimed in the above corollary that the sets \mathcal{A}_k consist of at least two elements. However, if all \mathcal{A}_k 's were singletons then, by Theorem 1', we would have the very strong bound for the cardinality $N(F_n, h)$ of $\mathcal{T}(F_n, h)$: $N(F_n, h) = \omega(F_n, h) \leq n$ for n odd, and $N(F_n, h) = 2 \cdot \omega(F_n, h) \leq$ 2n for n even (see (1)).

5. Examples

In this section we illustrate the notions introduced in Sections 1 and 3 and some relations between them. By Remarks 1 and 2, we can consider only subsets of $T_+(F_n, h)$. The testing equation will have the form

$$F_n^{(s,t)}(x, y) = p^t(=h), \qquad (T^{(s,t)})$$

where $F_n^{(s,t)}(x, y) = \prod_{k=1}^n (x - kp^s y) + p^t y^n$, *p* is a prime number, and *n*, *s*, *t* are integers with $n \ge 3$, $s \in \{0, 1\}, t \in \{1, 2\}$.

Example 1. The number $\omega(F_n, h)$ can attain the values both 1 and *n*, as well as every prime number between them (we do not know if all the integers between 1 and *n* are admissible). For a proof of the case $\omega(F_n, h) = 1$ we shall use the equation $(T^{(1,1)})$ and its solutions ξ_k , k = 1, 2, ..., n, of the form $\xi_k = \langle pk, 1 \rangle$. For all k, l we then have $\delta(\xi_k, \xi_l) = p \cdot (k - l)$ and hence, for $\eta = \langle x, y \rangle$ another (possible) solution, the number p divides $x - kpy = \delta(\eta, \xi_k)$ for some k. From Lemma 1 it now follows that h(=p) divides all the numbers $\delta(\xi, \eta)$ with $\xi, \eta \in \mathcal{T}(F_n^{(1,1)}, h)$, and so $\omega(F_n^{(1,1)}, h) = 1$ (by definition).

In the remaining cases we consider the equation $(T^{(0,1)})$. Since h = p is prime, we can use the definition of $\overline{\omega}$ instead of ω (see (10)). Let ξ_k denote the solution of the form $\langle k, 1 \rangle$, k = 1, 2, ..., n. Then we have

$$p|\delta(\xi_k,\xi_l)$$
 if and only if $p|(k-l)$, (13)

whence, for $p \ge n$ and $k \ne l$, the numbers p and $\delta(\xi_k, \xi_l)$ are coprime. By Theorem 1' and (10), we have $\omega(F_n^{(0,1)}, h) = n$.

Now let p < n, and let $[\xi_k]$ denote the abstract class, k = 1, ..., p, of the relation \sim in $\mathcal{T}_+(F_n^{(0,1)}, h)$ (see Lemma 2). By (13), every ξ_j with j > p falls into $[\xi_k]$ for some $k \leq p$. Moreover, if $\eta = \langle x, y \rangle$ is another (possible) solution to $(T^{(1,1)})$ with x > 0, then p divides $x - ky = \delta(\eta, \xi_k)$, and hence $\eta \in [\xi_k]$ for some $k \leq p$. We thus have shown that the set $\mathcal{T}_+(F_n^{(0,1)}, h)$ is partitioned into p sets: $[\xi_1] \cup \cdots \cup [\xi_p]$, and each of them is h-homogeneous (with h = p). From the second part of Theorem 2 it now follows that $\omega(F_n^{(0,1)}, h) = p$.

Example 2. *Inequality in* (10) *is strict, in general.* We consider the equation $(T^{(1,2)})$ with 2 . $Then <math>h = p^2$ is nth power-free, but evidently not a prime number. It is obvious that our equation and equation $(T^{(1,1)})$ of Example 1 possess the same solutions ξ_k , k = 1, ..., n, with the property (in our case)

$$p|\delta(\xi_k,\xi_l), \text{ but } p^2|\delta(\xi_k,\xi_l) \text{ for } 1 \leq k < l \leq p.$$
 (14)

Hence $(h, \Delta(\mathcal{A})) = p < h$ for $\mathcal{A} = \{\xi_1, \xi_2\}$ (with $\operatorname{card}(\mathcal{A}) = 2$), and so $\omega(F_n^{(1,2)}, h) \ge 2$. Moreover, for every solution $\eta = \langle x, y \rangle$ not of the form ξ_k (if any) we have p|x, thus p divides $\delta(\eta_1, \eta_2)$, for all distinct η_1, η_2 , and p divides $\delta(\eta, \xi_k)$, for all k's. It immediately follows that if $\operatorname{card}(\mathcal{A}) \ge 3$ then $p^3|\Delta(\mathcal{A})$, and hence $\omega(F^{(1,2)}, h) = 2$ by definition.

On the other hand, for the set $\mathcal{B} = \{\xi_1, \dots, \xi_p\}$ property (14) holds. Thus, from the definition of $\overline{\omega}$ it follows that $\overline{\omega}(F_n^{(1,2)}, h) \ge p$, and (by our hypothesis) this value is larger than $2 = \omega(F_n^{(1,2)}, h)$.

References

- [1] E. Bombieri, W.M. Schmidt, On Thue's equations, Invent. Math. 88 (1987) 69-81.
- [2] B. Brindza, On the number of solutions of Thue's equation, A birthday salute to Vera T. Sós and András Hajnal, in: Sets, Graphs and Numbers, in: Colloq. Math. Soc. János Bolyai, vol. 60, North-Holland Publishing Company, Amsterdam, 1992, pp. 127–133.
- [3] J.H. Evertse, Upper Bounds for the Numbers of Solutions of Diophantine Equations, Math. Centrum Tract, vol. 168, Amsterdam, 1983.
- [4] D. Lorenzini, T.J. Tucker, Thue equations and the method of Chabauty-Coleman, Invent. Math. 148 (2002) 47-77.
- [5] J. Mueller, Counting solutions of $|ax^r by^r| \le h$, Quart. J. Math. Oxford, Ser. (2) 38 (1987) 503–513.
- [6] J. Mueller, W.M. Schmidt, Trinomial Thue equations and inequalities, J. Reine Angew. Math. 379 (1987) 76-99.
- [7] J. Silverman, Representations of integers by binary forms and the rank of the Mordell-Weil group, Invent. Math. 74 (1983) 281-292.
- [8] C.L. Stewart, On the number of solutions of polynomial congruences and Thue equations, J. Amer. Math. Soc. 4 (1991) 793-835.
- [9] C.L. Stewart, Thue equations and elliptic curves, in: Karl Dilcher (Ed.), Number Theory, Fourth Conference of the Canadian Number Theory Association, July 2–8, 1994, Dalhousie University, Halifax, Nova Scotia, Canada, in: CMS Conf. Proc., vol. 15, American Mathematical Society, Providence, RI, 1995, pp. 375–386.
- [10] E. Thomas, Counting solutions to trinomial Thue equations: a different approach, Trans. Amer. Math. Soc. 352 (2000) 3595– 3622.