The algebraic structure of the set of solutions to the Thue equation

Aleksander Grytczuk ${ }^{\text {a }}$, Marek Wójtowicz ${ }^{\text {b,* }}$
${ }^{a}$ Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, ul. Prof. Szafrana 4a, 65-516 Zielona Góra, Poland
${ }^{\mathrm{b}}$ Institute of Mathematics, Uniwersytet Kazimierza Wielkiego (Casimir the Great University), Pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland

A R T I C L E I N F O

Article history:

Received 18 September 2009
Revised 5 February 2010
Communicated by David Goss

MSC:

11D59
Keywords:
Thue equation

Abstract

Let F_{n} be a binary form with integral coefficients of degree $n \geqslant 2$, let d denote the greatest common divisor of all non-zero coefficients of F_{n}, and let $h \geqslant 2$ be an integer. We prove that if $d=1$ then the Thue equation (T) $F_{n}(x, y)=h$ has relatively few solutions: if \mathcal{A} is a subset of the set $\mathcal{T}\left(F_{n}, h\right)$ of all solutions to (T), with $r:=\operatorname{card}(\mathcal{A}) \geqslant n+1$, then (\#) h divides the number $\Delta(\mathcal{A}):=\prod_{1 \leqslant k<l \leqslant r} \delta\left(\xi_{k}, \xi_{l}\right)$, where $\xi_{k}=\left\langle x_{k}, y_{k}\right\rangle \in \mathcal{A}, 1 \leqslant k \leqslant r$, and $\delta\left(\xi_{k}, \xi_{l}\right)=x_{k} y_{l}-x_{l} y_{k}$. As a corollary we obtain that if h is a prime number then, under weak assumptions on F_{n}, there is a partition of $\mathcal{T}\left(F_{n}, h\right)$ into at most n subsets maximal with respect to condition (\#).

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let $F_{n}(x, y)=a_{0} x^{n}+a_{1} x^{n-1} y+\cdots+a_{n} y^{n}$ be a binary form of degree $n \geqslant 2$ with integral coefficients, and let $h \geqslant 2$ be an integer. This paper deals with the structure of the set $\mathcal{T}\left(F_{n}, h\right)$ of solutions $\langle x, y\rangle$ to the Diophantine Thue equation

$$
\begin{equation*}
F_{n}(x, y)=h \tag{T}
\end{equation*}
$$

[^0]0022-314X/\$ - see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jnt.2010.02.015
in integers x, y, where the greatest common divisor (GCD) of all non-zero coefficients a_{k} equals 1 . We thus consider the case which cannot be reduced to equation $F_{n}(x, y)=1$ addressed e.g. in [2,10]. We also assume that the set $\mathcal{T}\left(F_{n}, h\right)$ is not empty.

In 1909 Thue proved that if F_{n} is irreducible and $n \geqslant 3$ then Eq. (T) has a finite number of solutions. Since then this case of Eq. (T) has been called the Thue equation, and the Thue result has been strengthened by a number of authors. For the story of estimating the number $N_{c}\left(F_{n}, h\right)$ of all coprime solutions of (T) we refer the reader to two papers of Stewart $[8,9]$. (We recall that two integers a, b with $a b \neq 0$ are coprime if $(a, b)=1$, where the symbol (a, b) denotes GCD of a, b.)

Today the best unconditional result is due to Stewart [8, Theorem 1]:

$$
N_{c}\left(F_{n}, h\right) \leqslant C n^{1+t}
$$

where $C=2800$ and t is the number of all distinct prime factors of the constant term h. This is an improvement of conditional results obtained earlier by Evertse [3] (that $N_{c}\left(F_{n}, h\right) \leqslant 7^{15\left(\left({ }_{3}^{n}\right)+1\right)^{2}}+6 \times$ $7^{2\binom{n}{3}(t+1)}$), Bombieri and Schmidt [1] (that $C=215$ for h large enough and $F_{n}(x, 1)$ irreducible), and others [4-7].

Our theorems and their corollaries presented below deal with the algebraic structure of the set $\mathcal{T}\left(F_{n}, h\right)$ (without any restriction on $\left.F_{n}\right)$. However, the problem of estimating $N_{c}\left(F_{n}, h\right)$ by the use of Theorem 2, or its Corollary 2, of Section 4 seems to be interesting and is obviously open.

In order to present our main results we shall fix notation and introduce some terminology. An element $\langle x, y\rangle$ of $\mathcal{T}\left(F_{n}, h\right)$ will be also denoted by ξ or η, and $-\xi$ means $\langle-x,-y\rangle$. For a nonempty subset $\mathcal{A}=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{r}\right\}$ of $\mathcal{T}\left(F_{n}, h\right)$ with $r=\operatorname{card}(\mathcal{A}) \geqslant 2$ we let

$$
\Delta(\mathcal{A}):=\prod_{1 \leqslant k<l \leqslant r} \delta\left(\xi_{k}, \xi_{l}\right)
$$

where $\delta\left(\xi_{k}, \xi_{l}\right)=x_{k} y_{l}-y_{k} x_{l}$ and $\xi_{k}=\left\langle x_{k}, y_{k}\right\rangle, k=1,2, \ldots, r$. Obviously $\delta(\xi, \xi)=0$ for all $\xi \in \mathcal{T}\left(F_{n}, h\right)$, and $\delta(\eta,-\eta)=0$ for all $\eta \in \mathcal{T}\left(F_{n}, h\right)$ for n is even.

Our fundamental theorem reads as follows.

Theorem 1. Let \mathcal{A} be a subset of $\mathcal{T}\left(F_{n}, h\right)$. If $\operatorname{card}(\mathcal{A}) \geqslant n+1$ then h is a divisor of $\Delta(\mathcal{A})$.

This theorem yields an information about the number of solutions to the Thue equation (T) that fulfil the extra condition (1) below, and complements partially the above-mentioned conditional results of Silverman, Mueller and Schmidt, and Lorenzini and Tucker.

An immediate consequence of Theorem 1 is

Corollary 1. Let \mathcal{A} be a subset of $\mathcal{T}\left(F_{n}, h\right)$ with $\operatorname{card}(\mathcal{A}) \geqslant 2$. If

$$
\begin{equation*}
(h, \Delta(\mathcal{A}))<h \tag{1}
\end{equation*}
$$

(in particular, if h and $\delta(\xi, \eta)$ are coprime for all distinct $\xi, \eta \in \mathcal{A})$, then $\operatorname{card}(\mathcal{A}) \leqslant n$.
Corollary 1 allows us to define a number $\omega\left(F_{n}, h\right)$ which is useful for further purposes as follows. We put $\omega\left(F_{n}, h\right)=1$ if

$$
\begin{equation*}
\delta(\xi, \eta) \equiv 0 \quad(\bmod h) \tag{2}
\end{equation*}
$$

for all $\xi, \eta \in \mathcal{T}\left(F_{n}, h\right)$, and $\omega\left(F_{n}, h\right)=$ the maximal cardinality of the subsets \mathcal{A} of $\mathcal{T}\left(F_{n}, h\right)$ with $\operatorname{card}(\mathcal{A}) \geqslant 2$ that fulfil inequality (1) otherwise.

The results given in Theorem 1 and Corollary 1 can be now presented in a concise form.

Theorem 1'. For every Thue equation (T) we have $\omega\left(F_{n}, h\right) \leqslant n$.

As an application of this result we show in Theorem 2 below that if h is a prime number then, under weak assumptions on F_{n}, there is a partition of the set $\mathcal{T}\left(F_{n}, h\right)$ into at most n subsets maximal with respect to the condition

$$
h \text { divides } \Delta(\mathcal{A}) \text {. }
$$

2. The proof of Theorem 1

Let $\xi_{k}=\left\langle x_{k}, y_{k}\right\rangle, k=1, \ldots, n+1$ be (pairwise distinct) elements of $\mathcal{A} \subset \mathcal{T}\left(F_{n}, h\right)$. We thus have $n+1$ equations

$$
\begin{gather*}
a_{0} x_{1}^{n}+a_{1} x_{1}^{n-1} y_{1}+\cdots+a_{n} y_{1}^{n}=h, \\
a_{0} x_{2}^{n}+a_{1} x_{2}^{n-1} y_{2}+\cdots+a_{n} y_{2}^{n}=h, \\
\cdots \tag{3}\\
a_{0} x_{n+1}^{n}+a_{1} x_{n+1}^{n-1} y_{n+1}+\cdots+a_{n} y_{n+1}^{n}=h
\end{gather*}
$$

and we treat $a_{0}, a_{1}, \ldots, a_{n}$ as unknown quantities. Hence the determinant W of the system (3) is of the form

$$
W=\operatorname{det}\left(\begin{array}{cccc}
x_{1}^{n} & x_{1}^{n-1} y_{1} & \cdots & y_{1}^{n} \\
x_{2}^{n} & x_{2}^{n-1} y_{2} & \cdots & y_{2}^{n} \\
\cdots \\
x_{n+1}^{n} & x_{n+1}^{n-1} y_{n+1} & \cdots & y_{n+1}^{n}
\end{array}\right) .
$$

Claim. W equals $\Delta(\mathcal{A})$. For a proof, let us assume first that all x_{k} 's are non-zero, and put $X=\left(x_{1} \cdot x_{2} \cdot \ldots\right.$. $\left.x_{n+1}\right)^{n}$, and $u_{k}=y_{k} / x_{k}, k=1,2, \ldots, n+1$. It is now obvious that $W=X \cdot V\left(u_{1}, u_{2}, \ldots, u_{n+1}\right)$, where V is the Vandermonde's determinant for the u_{k} 's. Hence, $W=X \cdot \prod_{1 \leqslant k<l \leqslant n+1}\left(u_{k}-u_{l}\right)=\Delta(\mathcal{A})$. This particular case suggests our claim is true in general (also when $X=0$), what can be checked by the same method (i.e., by mathematical induction) as for the proof of the form of V.

Since h divides 0 , in our proof we may now assume that $\Delta(\mathcal{A}) \neq 0$, whence, by the Cramer theorem,

$$
\begin{equation*}
a_{k}=\frac{h \cdot W_{k}}{\Delta(\mathcal{A})}, \quad k=1,2, \ldots, n+1 \tag{4}
\end{equation*}
$$

where W_{k} is a determinant with k th column consisting of 1 's only, and the remaining columns the same as in W.

Assume, by way of contradiction, that h does not divide $\Delta(\mathcal{A})$, i.e., the number $h_{0}:=(h, \Delta(\mathcal{A}))$ is strictly less than h. Hence $h=h_{0} \cdot h_{1}$, where $2 \leqslant h_{1} \leqslant h$, and, by (4), there exist integers $r_{1}, r_{2}, \ldots, r_{n+1}$ such that $a_{k}=h_{1} \cdot r_{k}$ for all k 's. It follows that h_{1} divides the greatest common divisor of the coefficients of F_{n}; but by assumption the latter is equal to 1 . This contradicts that $h_{1} \geqslant 2$.

3. The set $\mathcal{T}_{+}\left(F_{n}, h\right)$

In this section we define a subset $\mathcal{T}_{+}\left(F_{n}, h\right)$ of $\mathcal{T}\left(F_{n}, h\right)$ which permits us to eliminate in Theorem 1 the case $\Delta(\mathcal{A})=0$.

Since $F_{n}(-\xi)=(-1)^{n} F_{n}(\xi)$, it is more convenient to work (for n even) not on the whole set $\mathcal{T}\left(F_{n}, h\right)$ but on its subset $\mathcal{T}_{+}\left(F_{n}, h\right)$ defined as follows: for n odd we simply put $\mathcal{T}_{+}\left(F_{n}, h\right):=\mathcal{T}\left(F_{n}, h\right)$, and for n even we define $\mathcal{T}_{+}\left(F_{n}, h\right)$ by the rules:

$$
\mathcal{T}_{+}\left(F_{n}, h\right):=\left\{\xi \in \mathcal{T}\left(F_{n}, h\right): x_{\xi} \geqslant 1\right\} \quad \text { when } x_{\xi} \neq 0 \text { for all } \xi \in \mathcal{T}\left(F_{n}, h\right)
$$

and

$$
\mathcal{T}_{+}\left(F_{n}, h\right):=\left\{\xi \in \mathcal{T}\left(F_{n}, h\right): x_{\xi} \geqslant 1\right\} \cup\{\langle 0,| u| \rangle\} \quad \text { when }\langle 0, u\rangle \in \mathcal{T}\left(F_{n}, h\right)
$$

where x_{ξ} denotes the element x of the first coordinate of ξ.
Put $\mathcal{T}_{-}\left(F_{n}, h\right):=\left\{\xi \in \mathcal{T}\left(F_{n}, h\right):-\xi \in \mathcal{T}_{+}\left(F_{n}, h\right)\right\}$. Then, obviously, $\mathcal{T}_{-}\left(F_{n}, h\right)=\emptyset$ for n odd, and

$$
\mathcal{T}_{+}\left(F_{n}, h\right) \cap \mathcal{T}_{-}\left(F_{n}, h\right)=\emptyset \quad \text { for all } n \text { 's. }
$$

Hence we obtain a decomposition of $\mathcal{T}\left(F_{n}, h\right)$:

$$
\begin{equation*}
\mathcal{T}\left(F_{n}, h\right)=\mathcal{T}_{+}\left(F_{n}, h\right) \cup \mathcal{T}_{-}\left(F_{n}, h\right) \tag{5}
\end{equation*}
$$

(with $\mathcal{T}\left(F_{n}, h\right)=\mathcal{T}_{+}\left(F_{n}, h\right)$ for n odd).
From the definition of $\Delta(\mathcal{A})$ it follows that if $\operatorname{card}(\mathcal{A}) \geqslant 2$ then $\Delta(\mathcal{A})=0$ if (and only if) $\delta(\xi, \eta)=0$ for some distinct elements ξ, η of \mathcal{A}. In the lemma below we give a characterization of the latter case.

Lemma 1. Let $\xi, \eta \in \mathcal{T}\left(F_{n}, h\right)$. Then $\delta(\xi, \eta)=0$ if and only if $\eta=\xi$ or $\eta=-\xi$.
Thus, the elements ξ, η of $\mathcal{T}_{+}\left(F_{n}, h\right)$ (and hence, of $\mathcal{T}\left(F_{n}, h\right)$ for n odd) are distinct if and only if $\delta(\xi, \eta) \neq 0$.
Proof. Since the "if" part is obvious, let us assume that $\delta(\xi, \eta)=0$. Hence the elements ξ and η are linearly dependent:

$$
\begin{equation*}
\xi=a \cdot \eta \tag{6}
\end{equation*}
$$

for some real number a. Now from (T) and (6) we obtain $h=F_{n}(\xi)=F_{n}(a \eta)=a^{n} F_{n}(\eta)=a^{n} h$, whence $a^{n}=1$.

Let, for a subset \mathcal{B} of $\mathcal{T}\left(F_{n}, h\right)$, the symbol $-\mathcal{B}$ denote the set $\{-\xi: \xi \in \mathcal{B}\}$. The above lemma motivates us to consider the auxiliary subset \mathcal{A}_{+}of $\mathcal{T}\left(F_{n}, h\right)$ of the form

$$
\mathcal{A}_{+}:=\left(\mathcal{A} \cap \mathcal{T}_{+}\left(F_{n}, h\right)\right) \cup\left(-\left(\mathcal{A} \cap \mathcal{T}_{-}\left(F_{n}, h\right)\right)\right)
$$

(which coincides with \mathcal{A} for n odd, and consists of the elements ξ with $x_{\xi} \geqslant 0$ for n even). Then from Lemma 1 we obtain that

$$
\begin{equation*}
\text { if } \operatorname{card}\left(\mathcal{A}_{+}\right) \geqslant 2 \text { then } \Delta\left(\mathcal{A}_{+}\right) \neq 0 \tag{7}
\end{equation*}
$$

and it is also obvious that

$$
\begin{equation*}
\mathcal{A}_{+}=\mathcal{A} \text { for } \mathcal{A} \subset \mathcal{T}_{+}\left(F_{n}, h\right) \text { or } n \text { odd. } \tag{8}
\end{equation*}
$$

For example, if n is even and ξ, η are two distinct elements of $\mathcal{T}\left(F_{n}, h\right)$ with $x_{\xi} \geqslant 1$ and $x_{\eta} \geqslant 1$, then for the set $\mathcal{A}:=\{\xi, \eta,-\eta\}$ we have $\delta(\eta,-\eta)=0$, and hence $\Delta(\mathcal{A})=0$. On the other hand, $\mathcal{A}_{+}=\{\xi, \eta\}$, whence $\operatorname{card}(\mathcal{A})=3>2=\operatorname{card}\left(\mathcal{A}_{+}\right)$and $\Delta\left(\mathcal{A}_{+}\right)=\delta(\xi, \eta) \neq 0$.

From the definitions of $\Delta(\mathcal{A})$ and \mathcal{A}_{+}, and from Lemma 1 it also immediately follows that

$$
\text { if } \Delta(\mathcal{A}) \neq 0 \quad \text { then } \operatorname{card}(\mathcal{A})=\operatorname{card}\left(\mathcal{A}_{+}\right)
$$

and

$$
\begin{equation*}
\Delta(\mathcal{A})=\Delta\left(\mathcal{A}_{+}\right) . \tag{9}
\end{equation*}
$$

Remark 1. The properties (7), (8) and (9) allow us to calculate the number $\omega\left(F_{n}, h\right)$ with the help of subsets \mathcal{A} of $\mathcal{T}_{+}\left(F_{n}, h\right)$ instead of $\mathcal{T}\left(F_{n}, h\right)$: we put $\omega\left(F_{n}, h\right)=1$ as in the initial definition, and the maximal cardinality of the subsets \mathcal{A} of $\mathcal{T}_{+}\left(F_{n}, h\right)$ with $\operatorname{card}(\mathcal{A}) \geqslant 2$ that fulfil inequality (1) otherwise.

Remark 2. The properties (7), (8), (9) imply also that both in Theorem 1 and Corollary 1 we need to consider only the case $\mathcal{A} \subset \mathcal{T}_{+}\left(F_{n}, h\right)$ (for which $\Delta(\mathcal{A}) \neq 0$); then, by Remark 1 , the conclusion of Theorem 1^{\prime} remains unchanged.

4. \boldsymbol{h}-Homogeneous subsets of $\mathcal{T}\left(\boldsymbol{F}_{\boldsymbol{n}}, \boldsymbol{h}\right)$

We say that a subset \mathcal{A} of $\mathcal{T}\left(F_{n}, h\right)$ is h-homogeneous provided that every pair $\xi, \eta \in \mathcal{A}$ fulfils condition (2). (Notice that all 1-element subsets of $\mathcal{T}\left(F_{n}, h\right)$ are h-homogeneous.) One of the tools describing the partition of $\mathcal{T}\left(F_{n}, h\right)$ into h-homogeneous subsets will be the number $\bar{\omega}\left(F_{n}, h\right)$ defined (in a similar way as $\omega\left(F_{n}, h\right)$) by means of condition (2) and the somewhat strengthened condition (1): for a subset \mathcal{A} of $\mathcal{T}\left(F_{n}, h\right)$ one has

$$
\delta(\xi, \eta) \not \equiv 0 \quad(\bmod h) \quad \text { for all distinct } \xi, \eta \in \mathcal{A} .
$$

We put $\bar{\omega}\left(F_{n}, h\right)=1$ if condition (2) holds on the set $\mathcal{T}_{+}\left(F_{n}, h\right)$, and $\bar{\omega}\left(F_{n}, h\right)=$ the maximal cardinality of the subsets \mathcal{A} of $\mathcal{T}_{+}\left(F_{n}, h\right)$ with $\operatorname{card}(\mathcal{A}) \geqslant 2$ that fulfil the above condition (1^{\prime}) otherwise. It is easily seen that

$$
\bar{\omega}\left(F_{n}, h\right) \geqslant \omega\left(F_{n}, h\right)
$$

and

$$
\begin{equation*}
\bar{\omega}\left(F_{n}, h\right)=\omega\left(F_{n}, h\right) \quad \text { for } h \text { prime }, \tag{10}
\end{equation*}
$$

and the first inequality in (10) can be strict (see Example 2 in Section 5). However, in contrast to Theorem 1^{\prime}, we do not know if $\bar{\omega}\left(F_{n}, h\right) \leqslant n$ in general (i.e., if h is not a prime number, see (10)).

The remaining part of this section deals with the structure of the subset $\mathcal{T}_{c}\left(F_{n}, h\right)$ of all coprime elements $\langle x, y\rangle$ of $\mathcal{T}_{+}\left(F_{n}, h\right)$, with an application to $\mathcal{T}\left(F_{n}, h\right)$. The (non-zero) integers a_{0} and a_{n} in the hypotheses of the next results are taken from the form of F_{n}.

One can easily check that if h is nth power-free and $\left(a_{0}, h\right)=1$ or $\left(a_{n}, h\right)=1$ then

$$
\begin{equation*}
\mathcal{T}_{c}\left(F_{n}, h\right)=\mathcal{T}_{+}\left(F_{n}, h\right) \tag{11}
\end{equation*}
$$

The lemma below describes the basic properties of an equivalence relation on $\mathcal{T}_{c}\left(F_{n}, h\right)$; its second part follows from property (11).

Lemma 2. Let the set $\mathcal{T}_{c}\left(F_{n}, h\right)$ be not empty. Then the relation \sim on $\mathcal{T}_{c}\left(F_{n}, h\right)$ of the form

$$
\xi \sim \eta \quad \text { if and only if } \delta(\xi, \eta) \equiv 0 \quad(\bmod h)
$$

is an equivalence relation, and the number $\omega_{c}\left(F_{n}, h\right)$ defined as the cardinality of $\mathcal{T}_{c}\left(F_{n}, h\right) / \sim$ fulfils inequality $\omega_{c}\left(F_{n}, h\right) \leqslant \bar{\omega}\left(F_{n}, h\right)$.

If, additionally, h is nth power-free then the relation \sim holds on $\mathcal{T}_{+}\left(F_{n}, h\right)$, and

$$
\operatorname{card}\left(\mathcal{T}_{+}\left(F_{n}, h\right) / \sim\right)=\bar{\omega}\left(F_{n}, h\right)
$$

Proof. Since only the transitivity of \sim is nontrivial, let $\xi_{k}=\left\langle x_{k}, y_{k}\right\rangle, k=1,2,3$, and $\xi_{1} \sim \xi_{2} \& \xi_{2} \sim \xi_{3}$; equivalently,

$$
\begin{equation*}
h \mid x_{1} y_{2}-x_{2} y_{1} \quad \text { and } \quad h \mid x_{2} y_{3}-x_{3} y_{2} \tag{12}
\end{equation*}
$$

Choose integers a, b with $b y_{2}-a x_{2}=1$, and define the matrix $A=\left(\begin{array}{cc}a & y_{2} \\ -b & -x_{2}\end{array}\right)$. Then A has determinant 1. Let $[u, v]$ denote a vector in \mathbf{R}^{2}, and set

$$
\left[x_{k}^{\prime}, y_{k}^{\prime}\right]=\left[x_{k}, y_{k}\right] A
$$

for $k=1,2,3$. Then the number $x_{1}^{\prime} y_{2}^{\prime}-x_{2}^{\prime} y_{1}^{\prime}=\left(x_{1} y_{2}-x_{2} y_{1}\right) \operatorname{det} A$ is divisible by h, and similarly $x_{2}^{\prime} y_{3}^{\prime}-x_{3}^{\prime} y_{2}^{\prime}$ is divisible by h. Since $x_{2}^{\prime}=-1$ and $y_{2}^{\prime}=0$, the two latter relations imply that both $y_{1}^{\prime}, y_{3}^{\prime}$ are divisible by h. This further implies $x_{1}^{\prime} y_{3}^{\prime}-x_{3}^{\prime} y_{1}^{\prime}$ is divisible by h, and hence $x_{1} y_{3}-x_{3} y_{1}=$ $\left(x_{1}^{\prime} y_{3}^{\prime}-x_{3}^{\prime} y_{1}^{\prime}\right) \operatorname{det} A^{-1}$ is divisible by h, i.e., $\xi_{1} \sim \xi_{3}$. We thus have proved that the relation \sim is transitive.

In the next theorem we show that every nonempty set $\mathcal{T}_{c}\left(F_{n}, h\right)$ can be partitioned into maximal h-homogeneous subsets; its proof follows immediately from Lemma 2 applied to the cases $\omega_{c}\left(F_{n}, h\right)=1$ and $\omega_{c}\left(F_{n}, h\right) \geqslant 2$.

Theorem 2. Let the set $\mathcal{T}_{c}\left(F_{n}, h\right)$ be not empty. Then the following alternative holds:
(i) the set $\mathcal{T}_{c}\left(F_{n}, h\right)$ is h-homogeneous;
(ii) there is a partition of $\mathcal{T}_{c}\left(F_{n}, h\right)$ into $\omega_{c}\left(F_{n}, h\right) \geqslant 2$ nonempty and h-homogeneous subsets \mathcal{A}_{k}

$$
\mathcal{T}_{c}\left(F_{n}, h\right)=\bigcup_{k=1}^{\omega_{c}\left(F_{n}, h\right)} \mathcal{A}_{k}
$$

such that, for all distinct k_{1}, k_{2} and arbitrary $\xi_{i} \in \mathcal{A}_{k_{i}}, i=1,2$, we have $\delta\left(\xi_{1}, \xi_{2}\right) \not \equiv 0(\bmod h)$.
If, additionally, h is $n t h$ power-free then the above alternative holds for $\mathcal{T}_{+}\left(F_{n}, h\right)$ and $\bar{\omega}\left(F_{n}, h\right)$, respectively, instead of $\mathcal{T}_{c}\left(F_{n}, h\right)$ and $\omega_{c}\left(F_{n}, h\right)$, respectively.

From Theorem 1^{\prime}, and from the second part of Theorem 2, and properties (10) and (11) we obtain the following corollary.

Corollary 2. Let h be a prime number. If the set $\mathcal{T}\left(F_{n}, h\right)$ is not h-homogeneous, then it has the form:
(a) for n odd,

$$
\mathcal{T}\left(F_{n}, h\right)=\bigcup_{k=1}^{\omega\left(F_{n}, h\right)} \mathcal{A}_{k},
$$

where $2 \leqslant \omega\left(F_{n}, h\right) \leqslant n$, all the sets \mathcal{A}_{k} are h-homogeneous, nonempty and pairwise disjoint, and for all distinct k_{1}, k_{2} and arbitrary $\xi_{i} \in \mathcal{A}_{k_{i}}, i=1,2$, we have $\delta\left(\xi_{1}, \xi_{2}\right) \not \equiv 0(\bmod h)$;
(b) for n even,

$$
\mathcal{T}\left(F_{n}, h\right)=\bigcup_{k=1}^{\omega\left(F_{n}, h\right)}\left(\mathcal{A}_{k} \cup \mathcal{B}_{k}\right)
$$

where $\mathcal{A}_{k} \subset \mathcal{T}_{+}\left(F_{n}, h\right), \mathcal{B}_{k}:=-\mathcal{A}_{k}$, for all k 's, with the same properties of $\omega\left(F_{n}, h\right)$ and \mathcal{A}_{k} 's as in item (a).

Remark 3. It is not claimed in the above corollary that the sets \mathcal{A}_{k} consist of at least two elements. However, if all \mathcal{A}_{k} 's were singletons then, by Theorem 1^{1}, we would have the very strong bound for the cardinality $N\left(F_{n}, h\right)$ of $\mathcal{T}\left(F_{n}, h\right): N\left(F_{n}, h\right)=\omega\left(F_{n}, h\right) \leqslant n$ for n odd, and $N\left(F_{n}, h\right)=2 \cdot \omega\left(F_{n}, h\right) \leqslant$ $2 n$ for n even (see (1)).

5. Examples

In this section we illustrate the notions introduced in Sections 1 and 3 and some relations between them. By Remarks 1 and 2 , we can consider only subsets of $\mathcal{T}_{+}\left(F_{n}, h\right)$. The testing equation will have the form

$$
\begin{equation*}
F_{n}^{(s, t)}(x, y)=p^{t}(=h) \tag{s,t}
\end{equation*}
$$

where $F_{n}^{(s, t)}(x, y)=\prod_{k=1}^{n}\left(x-k p^{s} y\right)+p^{t} y^{n}, p$ is a prime number, and n, s, t are integers with $n \geqslant 3$, $s \in\{0,1\}, t \in\{1,2\}$.

Example 1. The number $\omega\left(F_{n}, h\right)$ can attain the values both 1 and n, as well as every prime number between them (we do not know if all the integers between 1 and n are admissible). For a proof of the case $\omega\left(F_{n}, h\right)=1$ we shall use the equation $\left(T^{(1,1)}\right)$ and its solutions $\xi_{k}, k=1,2, \ldots, n$, of the form $\xi_{k}=$ $\langle p k, 1\rangle$. For all k, l we then have $\delta\left(\xi_{k}, \xi_{l}\right)=p \cdot(k-l)$ and hence, for $\eta=\langle x, y\rangle$ another (possible) solution, the number p divides $x-k p y=\delta\left(\eta, \xi_{k}\right)$ for some k. From Lemma 1 it now follows that $h(=p)$ divides all the numbers $\delta(\xi, \eta)$ with $\xi, \eta \in \mathcal{T}\left(F_{n}^{(1,1)}, h\right)$, and so $\omega\left(F_{n}^{(1,1)}, h\right)=1$ (by definition).

In the remaining cases we consider the equation $\left(T^{(0,1)}\right)$. Since $h=p$ is prime, we can use the definition of $\bar{\omega}$ instead of ω (see (10)). Let ξ_{k} denote the solution of the form $\langle k, 1\rangle, k=1,2, \ldots, n$. Then we have

$$
\begin{equation*}
p \mid \delta\left(\xi_{k}, \xi_{l}\right) \text { if and only if } p \mid(k-l) \tag{13}
\end{equation*}
$$

whence, for $p \geqslant n$ and $k \neq l$, the numbers p and $\delta\left(\xi_{k}, \xi_{l}\right)$ are coprime. By Theorem 1^{\prime} and (10), we have $\omega\left(F_{n}^{(0,1)}, h\right)=n$.

Now let $p<n$, and let $\left[\xi_{k}\right]$ denote the abstract class, $k=1, \ldots, p$, of the relation \sim in $\mathcal{T}_{+}\left(F_{n}^{(0,1)}, h\right)$ (see Lemma 2). By (13), every ξ_{j} with $j>p$ falls into $\left[\xi_{k}\right]$ for some $k \leqslant p$. Moreover, if $\eta=\langle x, y\rangle$ is another (possible) solution to ($T^{(1,1)}$) with $x>0$, then p divides $x-k y=\delta\left(\eta, \xi_{k}\right)$, and hence $\eta \in\left[\xi_{k}\right]$ for some $k \leqslant p$. We thus have shown that the set $\mathcal{T}_{+}\left(F_{n}^{(0,1)}, h\right)$ is partitioned into p sets: $\left[\xi_{1}\right] \cup \cdots \cup\left[\xi_{p}\right]$, and each of them is h-homogeneous (with $h=p$). From the second part of Theorem 2 it now follows that $\omega\left(F_{n}^{(0,1)}, h\right)=p$.

Example 2. Inequality in (10) is strict, in general. We consider the equation $\left(T^{(1,2)}\right)$ with $2<p \leqslant n$. Then $h=p^{2}$ is nth power-free, but evidently not a prime number. It is obvious that our equation and equation ($T^{(1,1)}$) of Example 1 possess the same solutions $\xi_{k}, k=1, \ldots, n$, with the property (in our case)

$$
\begin{equation*}
p \mid \delta\left(\xi_{k}, \xi_{l}\right), \quad \text { but } \quad p^{2} \nmid \delta\left(\xi_{k}, \xi_{l}\right) \quad \text { for } 1 \leqslant k<l \leqslant p \tag{14}
\end{equation*}
$$

Hence $(h, \Delta(\mathcal{A}))=p<h$ for $\mathcal{A}=\left\{\xi_{1}, \xi_{2}\right\}$ (with $\left.\operatorname{card}(\mathcal{A})=2\right)$, and so $\omega\left(F_{n}^{(1,2)}, h\right) \geqslant 2$. Moreover, for every solution $\eta=\langle x, y\rangle$ not of the form ξ_{k} (if any) we have $p \mid x$, thus p divides $\delta\left(\eta_{1}, \eta_{2}\right)$, for all distinct η_{1}, η_{2}, and p divides $\delta\left(\eta, \xi_{k}\right)$, for all k 's. It immediately follows that if $\operatorname{card}(\mathcal{A}) \geqslant 3$ then $p^{3} \mid \Delta(\mathcal{A})$, and hence $\omega\left(F^{(1,2)}, h\right)=2$ by definition.

On the other hand, for the set $\mathcal{B}=\left\{\xi_{1}, \ldots, \xi_{p}\right\}$ property (14) holds. Thus, from the definition of $\bar{\omega}$ it follows that $\bar{\omega}\left(F_{n}^{(1,2)}, h\right) \geqslant p$, and (by our hypothesis) this value is larger than $2=\omega\left(F_{n}^{(1,2)}, h\right)$.

References

[1] E. Bombieri, W.M. Schmidt, On Thue's equations, Invent. Math. 88 (1987) 69-81.
[2] B. Brindza, On the number of solutions of Thue's equation, A birthday salute to Vera T. Sós and András Hajnal, in: Sets, Graphs and Numbers, in: Colloq. Math. Soc. János Bolyai, vol. 60, North-Holland Publishing Company, Amsterdam, 1992, pp. 127-133.
[3] J.H. Evertse, Upper Bounds for the Numbers of Solutions of Diophantine Equations, Math. Centrum Tract, vol. 168, Amsterdam, 1983.
[4] D. Lorenzini, T.J. Tucker, Thue equations and the method of Chabauty-Coleman, Invent. Math. 148 (2002) 47-77.
[5] J. Mueller, Counting solutions of $\left|a x^{r}-b y^{r}\right| \leqslant h$, Quart. J. Math. Oxford, Ser. (2) 38 (1987) 503-513.
[6] J. Mueller, W.M. Schmidt, Trinomial Thue equations and inequalities, J. Reine Angew. Math. 379 (1987) 76-99.
[7] J. Silverman, Representations of integers by binary forms and the rank of the Mordell-Weil group, Invent. Math. 74 (1983) 281-292.
[8] C.L. Stewart, On the number of solutions of polynomial congruences and Thue equations, J. Amer. Math. Soc. 4 (1991) 793-835.
[9] C.L. Stewart, Thue equations and elliptic curves, in: Karl Dilcher (Ed.), Number Theory, Fourth Conference of the Canadian Number Theory Association, July 2-8, 1994, Dalhousie University, Halifax, Nova Scotia, Canada, in: CMS Conf. Proc., vol. 15, American Mathematical Society, Providence, RI, 1995, pp. 375-386.
[10] E. Thomas, Counting solutions to trinomial Thue equations: a different approach, Trans. Amer. Math. Soc. 352 (2000) 35953622.

[^0]: * Corresponding author.

 E-mail addresses: A.Grytczuk@wmie.uz.zgora.pl (A. Grytczuk), mwojt@ukw.edu.pl (M. Wójtowicz).

