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Let Fn be a binary form with integral coefficients of degree
n � 2, let d denote the greatest common divisor of all non-zero
coefficients of Fn , and let h � 2 be an integer. We prove that if
d = 1 then the Thue equation (T ) Fn(x, y) = h has relatively few
solutions: if A is a subset of the set T (Fn,h) of all solutions to (T ),
with r := card(A) � n + 1, then

(#) h divides the number �(A) := ∏
1�k<l�r δ(ξk, ξl),

where ξk = 〈xk, yk〉 ∈ A, 1 � k � r, and δ(ξk, ξl) = xk yl − xl yk . As
a corollary we obtain that if h is a prime number then, under weak
assumptions on Fn , there is a partition of T (Fn,h) into at most n
subsets maximal with respect to condition (#).

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let Fn(x, y) = a0xn + a1xn−1 y + · · · + an yn be a binary form of degree n � 2 with integral coeffi-
cients, and let h � 2 be an integer. This paper deals with the structure of the set T (Fn,h) of solutions
〈x, y〉 to the Diophantine Thue equation

Fn(x, y) = h (T )
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in integers x, y, where the greatest common divisor (GCD) of all non-zero coefficients ak equals 1. We
thus consider the case which cannot be reduced to equation Fn(x, y) = 1 addressed e.g. in [2,10]. We
also assume that the set T (Fn,h) is not empty.

In 1909 Thue proved that if Fn is irreducible and n � 3 then Eq. (T ) has a finite number of
solutions. Since then this case of Eq. (T ) has been called the Thue equation, and the Thue result has
been strengthened by a number of authors. For the story of estimating the number Nc(Fn,h) of all
coprime solutions of (T ) we refer the reader to two papers of Stewart [8,9]. (We recall that two
integers a, b with ab �= 0 are coprime if (a,b) = 1, where the symbol (a,b) denotes GCD of a, b.)

Today the best unconditional result is due to Stewart [8, Theorem 1]:

Nc(Fn,h) � Cn1+t,

where C = 2800 and t is the number of all distinct prime factors of the constant term h. This is an
improvement of conditional results obtained earlier by Evertse [3] (that Nc(Fn,h) � 715((n

3)+1)2 + 6 ×
72(n

3)(t+1)), Bombieri and Schmidt [1] (that C = 215 for h large enough and Fn(x,1) irreducible), and
others [4–7].

Our theorems and their corollaries presented below deal with the algebraic structure of the set
T (Fn,h) (without any restriction on Fn). However, the problem of estimating Nc(Fn,h) by the use of
Theorem 2, or its Corollary 2, of Section 4 seems to be interesting and is obviously open.

In order to present our main results we shall fix notation and introduce some terminology. An el-
ement 〈x, y〉 of T (Fn,h) will be also denoted by ξ or η, and −ξ means 〈−x,−y〉. For a nonempty
subset A = {ξ1, ξ2, . . . , ξr} of T (Fn,h) with r = card(A) � 2 we let

�(A) :=
∏

1�k<l�r

δ(ξk, ξl),

where δ(ξk, ξl) = xk yl − ykxl and ξk = 〈xk, yk〉, k = 1,2, . . . , r. Obviously δ(ξ, ξ) = 0 for all ξ ∈ T (Fn,h),
and δ(η,−η) = 0 for all η ∈ T (Fn,h) for n is even.

Our fundamental theorem reads as follows.

Theorem 1. Let A be a subset of T (Fn,h). If card(A) � n + 1 then h is a divisor of �(A).

This theorem yields an information about the number of solutions to the Thue equation (T ) that
fulfil the extra condition (1) below, and complements partially the above-mentioned conditional re-
sults of Silverman, Mueller and Schmidt, and Lorenzini and Tucker.

An immediate consequence of Theorem 1 is

Corollary 1. Let A be a subset of T (Fn,h) with card(A) � 2. If

(
h,�(A)

)
< h (1)

(in particular, if h and δ(ξ,η) are coprime for all distinct ξ,η ∈ A), then card(A) � n.

Corollary 1 allows us to define a number ω(Fn,h) which is useful for further purposes as follows.
We put ω(Fn,h) = 1 if

δ(ξ,η) ≡ 0 (mod h) (2)

for all ξ,η ∈ T (Fn,h), and ω(Fn,h) = the maximal cardinality of the subsets A of T (Fn,h) with
card(A) � 2 that fulfil inequality (1) otherwise.

The results given in Theorem 1 and Corollary 1 can be now presented in a concise form.
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Theorem 1′ . For every Thue equation (T ) we have ω(Fn,h) � n.

As an application of this result we show in Theorem 2 below that if h is a prime number then,
under weak assumptions on Fn , there is a partition of the set T (Fn,h) into at most n subsets maximal
with respect to the condition

h divides �(A).

2. The proof of Theorem 1

Let ξk = 〈xk, yk〉, k = 1, . . . ,n + 1 be (pairwise distinct) elements of A ⊂ T (Fn,h). We thus have
n + 1 equations

a0xn
1 + a1xn−1

1 y1 + · · · + an yn
1 = h,

a0xn
2 + a1xn−1

2 y2 + · · · + an yn
2 = h,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
a0xn

n+1 + a1xn−1
n+1 yn+1 + · · · + an yn

n+1 = h (3)

and we treat a0,a1, . . . ,an as unknown quantities. Hence the determinant W of the system (3) is of
the form

W = det

⎛
⎜⎝

xn
1 xn−1

1 y1 · · · yn
1

xn
2 xn−1

2 y2 · · · yn
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xn

n+1 xn−1
n+1 yn+1 · · · yn

n+1

⎞
⎟⎠ .

Claim. W equals �(A). For a proof, let us assume first that all xk’s are non-zero, and put X = (x1 · x2 · · · · ·
xn+1)

n, and uk = yk/xk, k = 1,2, . . . ,n + 1. It is now obvious that W = X · V (u1, u2, . . . , un+1), where V is
the Vandermonde’s determinant for the uk’s. Hence, W = X · ∏1�k<l�n+1(uk − ul) = �(A). This particular
case suggests our claim is true in general (also when X = 0), what can be checked by the same method (i.e., by
mathematical induction) as for the proof of the form of V .

Since h divides 0, in our proof we may now assume that �(A) �= 0, whence, by the Cramer theo-
rem,

ak = h · Wk

�(A)
, k = 1,2, . . . ,n + 1, (4)

where Wk is a determinant with kth column consisting of 1’s only, and the remaining columns the
same as in W .

Assume, by way of contradiction, that h does not divide �(A), i.e., the number h0 := (h,�(A)) is
strictly less than h. Hence h = h0 ·h1, where 2 � h1 � h, and, by (4), there exist integers r1, r2, . . . , rn+1
such that ak = h1 · rk for all k’s. It follows that h1 divides the greatest common divisor of the coeffi-
cients of Fn; but by assumption the latter is equal to 1. This contradicts that h1 � 2.
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3. The set T+(Fn,h)

In this section we define a subset T+(Fn,h) of T (Fn,h) which permits us to eliminate in Theo-
rem 1 the case �(A) = 0.

Since Fn(−ξ) = (−1)n Fn(ξ), it is more convenient to work (for n even) not on the whole set
T (Fn,h) but on its subset T+(Fn,h) defined as follows: for n odd we simply put T+(Fn,h) := T (Fn,h),
and for n even we define T+(Fn,h) by the rules:

T+(Fn,h) := {
ξ ∈ T (Fn,h): xξ � 1

}
when xξ �= 0 for all ξ ∈ T (Fn,h),

and

T+(Fn,h) := {
ξ ∈ T (Fn,h): xξ � 1

} ∪ {〈
0, |u|〉} when 〈0, u〉 ∈ T (Fn,h),

where xξ denotes the element x of the first coordinate of ξ .
Put T−(Fn,h) := {ξ ∈ T (Fn,h): −ξ ∈ T+(Fn,h)}. Then, obviously, T−(Fn,h) = ∅ for n odd, and

T+(Fn,h) ∩ T−(Fn,h) = ∅ for all n’s.

Hence we obtain a decomposition of T (Fn,h):

T (Fn,h) = T+(Fn,h) ∪ T−(Fn,h) (5)

(with T (Fn,h) = T+(Fn,h) for n odd).
From the definition of �(A) it follows that if card(A) � 2 then �(A) = 0 if (and only if)

δ(ξ,η) = 0 for some distinct elements ξ , η of A. In the lemma below we give a characterization
of the latter case.

Lemma 1. Let ξ,η ∈ T (Fn,h). Then δ(ξ,η) = 0 if and only if η = ξ or η = −ξ .
Thus, the elements ξ , η of T+(Fn,h) (and hence, of T (Fn,h) for n odd) are distinct if and only if δ(ξ,η) �= 0.

Proof. Since the “if” part is obvious, let us assume that δ(ξ,η) = 0. Hence the elements ξ and η are
linearly dependent:

ξ = a · η (6)

for some real number a. Now from (T ) and (6) we obtain h = Fn(ξ) = Fn(aη) = an Fn(η) = anh,
whence an = 1. �

Let, for a subset B of T (Fn,h), the symbol −B denote the set {−ξ : ξ ∈ B}. The above lemma
motivates us to consider the auxiliary subset A+ of T (Fn,h) of the form

A+ := (
A ∩ T+(Fn,h)

) ∪ (−(
A ∩ T−(Fn,h)

))

(which coincides with A for n odd, and consists of the elements ξ with xξ � 0 for n even). Then from
Lemma 1 we obtain that

if card(A+) � 2 then �(A+) �= 0, (7)
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and it is also obvious that

A+ = A for A ⊂ T+(Fn,h) or n odd. (8)

For example, if n is even and ξ , η are two distinct elements of T (Fn,h) with xξ � 1 and xη � 1,
then for the set A := {ξ,η,−η} we have δ(η,−η) = 0, and hence �(A) = 0. On the other hand,
A+ = {ξ,η}, whence card(A) = 3 > 2 = card(A+) and �(A+) = δ(ξ,η) �= 0.

From the definitions of �(A) and A+ , and from Lemma 1 it also immediately follows that

if �(A) �= 0 then card(A) = card(A+)

and

�(A) = �(A+). (9)

Remark 1. The properties (7), (8) and (9) allow us to calculate the number ω(Fn,h) with the help
of subsets A of T+(Fn,h) instead of T (Fn,h): we put ω(Fn,h) = 1 as in the initial definition, and
the maximal cardinality of the subsets A of T+(Fn,h) with card(A) � 2 that fulfil inequality (1)

otherwise.

Remark 2. The properties (7), (8), (9) imply also that both in Theorem 1 and Corollary 1 we need
to consider only the case A ⊂ T+(Fn,h) (for which �(A) �= 0); then, by Remark 1, the conclusion of
Theorem 1′ remains unchanged.

4. h-Homogeneous subsets of T (Fn,h)

We say that a subset A of T (Fn,h) is h-homogeneous provided that every pair ξ,η ∈ A fulfils
condition (2). (Notice that all 1-element subsets of T (Fn,h) are h-homogeneous.) One of the tools
describing the partition of T (Fn,h) into h-homogeneous subsets will be the number ω(Fn,h) defined
(in a similar way as ω(Fn,h)) by means of condition (2) and the somewhat strengthened condi-
tion (1): for a subset A of T (Fn,h) one has

δ(ξ,η) �≡ 0 (mod h) for all distinct ξ,η ∈ A. (1′)

We put ω(Fn,h) = 1 if condition (2) holds on the set T+(Fn,h), and ω(Fn,h) = the maximal cardi-
nality of the subsets A of T+(Fn,h) with card(A) � 2 that fulfil the above condition (1′) otherwise.
It is easily seen that

ω(Fn,h) � ω(Fn,h),

and

ω(Fn,h) = ω(Fn,h) for h prime, (10)

and the first inequality in (10) can be strict (see Example 2 in Section 5). However, in contrast
to Theorem 1′ , we do not know if ω(Fn,h) � n in general (i.e., if h is not a prime number,
see (10)).

The remaining part of this section deals with the structure of the subset Tc(Fn,h) of all coprime
elements 〈x, y〉 of T+(Fn,h), with an application to T (Fn,h). The (non-zero) integers a0 and an in the
hypotheses of the next results are taken from the form of Fn .
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One can easily check that if h is nth power-free and (a0,h) = 1 or (an,h) = 1 then

Tc(Fn,h) = T+(Fn,h). (11)

The lemma below describes the basic properties of an equivalence relation on Tc(Fn,h); its second
part follows from property (11).

Lemma 2. Let the set Tc(Fn,h) be not empty. Then the relation ∼ on Tc(Fn,h) of the form

ξ ∼ η if and only if δ(ξ,η) ≡ 0 (mod h)

is an equivalence relation, and the number ωc(Fn,h) defined as the cardinality of Tc(Fn,h)/ ∼ fulfils inequal-
ity ωc(Fn,h) � ω(Fn,h).

If, additionally, h is nth power-free then the relation ∼ holds on T+(Fn,h), and

card
(

T+(Fn,h)/ ∼) = ω(Fn,h).

Proof. Since only the transitivity of ∼ is nontrivial, let ξk = 〈xk, yk〉, k = 1,2,3, and ξ1 ∼ ξ2 & ξ2 ∼ ξ3;
equivalently,

h|x1 y2 − x2 y1 and h|x2 y3 − x3 y2. (12)

Choose integers a,b with by2 − ax2 = 1, and define the matrix A = ( a y2
−b −x2

)
. Then A has determi-

nant 1. Let [u, v] denote a vector in R2, and set

[
x′

k, y′
k

] = [xk, yk]A

for k = 1,2,3. Then the number x′
1 y′

2 − x′
2 y′

1 = (x1 y2 − x2 y1)det A is divisible by h, and similarly
x′

2 y′
3 − x′

3 y′
2 is divisible by h. Since x′

2 = −1 and y′
2 = 0, the two latter relations imply that both

y′
1, y′

3 are divisible by h. This further implies x′
1 y′

3 − x′
3 y′

1 is divisible by h, and hence x1 y3 − x3 y1 =
(x′

1 y′
3 − x′

3 y′
1)det A−1 is divisible by h, i.e., ξ1 ∼ ξ3. We thus have proved that the relation ∼ is tran-

sitive. �
In the next theorem we show that every nonempty set Tc(Fn,h) can be partitioned into max-

imal h-homogeneous subsets; its proof follows immediately from Lemma 2 applied to the cases
ωc(Fn,h) = 1 and ωc(Fn,h) � 2.

Theorem 2. Let the set Tc(Fn,h) be not empty. Then the following alternative holds:

(i) the set Tc(Fn,h) is h-homogeneous;
(ii) there is a partition of Tc(Fn,h) into ωc(Fn,h) � 2 nonempty and h-homogeneous subsets Ak

Tc(Fn,h) =
ωc(Fn,h)⋃

k=1

Ak

such that, for all distinct k1,k2 and arbitrary ξi ∈ Aki , i = 1,2, we have δ(ξ1, ξ2) �≡ 0 (mod h).

If, additionally, h is nth power-free then the above alternative holds for T+(Fn,h) and ω(Fn,h), respectively,
instead of Tc(Fn,h) and ωc(Fn,h), respectively.
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From Theorem 1′ , and from the second part of Theorem 2, and properties (10) and (11) we obtain
the following corollary.

Corollary 2. Let h be a prime number. If the set T (Fn,h) is not h-homogeneous, then it has the form:

(a) for n odd,

T (Fn,h) =
ω(Fn,h)⋃

k=1

Ak,

where 2 � ω(Fn,h) � n, all the sets Ak are h-homogeneous, nonempty and pairwise disjoint, and for all
distinct k1,k2 and arbitrary ξi ∈ Aki , i = 1,2, we have δ(ξ1, ξ2) �≡ 0 (mod h);

(b) for n even,

T (Fn,h) =
ω(Fn,h)⋃

k=1

(Ak ∪ Bk)

where Ak ⊂ T+(Fn,h), Bk := −Ak, for all k’s, with the same properties of ω(Fn,h) and Ak’s as in
item (a).

Remark 3. It is not claimed in the above corollary that the sets Ak consist of at least two elements.
However, if all Ak ’s were singletons then, by Theorem 1′ , we would have the very strong bound for
the cardinality N(Fn,h) of T (Fn,h): N(Fn,h) = ω(Fn,h) � n for n odd, and N(Fn,h) = 2 · ω(Fn,h) �
2n for n even (see (1)).

5. Examples

In this section we illustrate the notions introduced in Sections 1 and 3 and some relations between
them. By Remarks 1 and 2, we can consider only subsets of T+(Fn,h). The testing equation will have
the form

F (s,t)
n (x, y) = pt(= h), (T (s,t))

where F (s,t)
n (x, y) = ∏n

k=1(x − kps y) + pt yn , p is a prime number, and n, s, t are integers with n � 3,
s ∈ {0,1}, t ∈ {1,2}.

Example 1. The number ω(Fn,h) can attain the values both 1 and n, as well as every prime number between
them (we do not know if all the integers between 1 and n are admissible). For a proof of the case
ω(Fn,h) = 1 we shall use the equation (T (1,1)) and its solutions ξk , k = 1,2, . . . ,n, of the form ξk =
〈pk,1〉. For all k, l we then have δ(ξk, ξl) = p · (k − l) and hence, for η = 〈x, y〉 another (possible)
solution, the number p divides x − kpy = δ(η, ξk) for some k. From Lemma 1 it now follows that
h(= p) divides all the numbers δ(ξ,η) with ξ,η ∈ T (F (1,1)

n ,h), and so ω(F (1,1)
n ,h) = 1 (by definition).

In the remaining cases we consider the equation (T (0,1)). Since h = p is prime, we can use the
definition of ω instead of ω (see (10)). Let ξk denote the solution of the form 〈k,1〉, k = 1,2, . . . ,n.
Then we have

p|δ(ξk, ξl) if and only if p|(k − l), (13)
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whence, for p � n and k �= l, the numbers p and δ(ξk, ξl) are coprime. By Theorem 1′ and (10), we
have ω(F (0,1)

n ,h) = n.
Now let p < n, and let [ξk] denote the abstract class, k = 1, . . . , p, of the relation ∼ in T+(F (0,1)

n ,h)

(see Lemma 2). By (13), every ξ j with j > p falls into [ξk] for some k � p. Moreover, if η = 〈x, y〉
is another (possible) solution to (T (1,1)) with x > 0, then p divides x − ky = δ(η, ξk), and hence
η ∈ [ξk] for some k � p. We thus have shown that the set T+(F (0,1)

n ,h) is partitioned into p sets:
[ξ1]∪ · · ·∪ [ξp], and each of them is h-homogeneous (with h = p). From the second part of Theorem 2

it now follows that ω(F (0,1)
n ,h) = p.

Example 2. Inequality in (10) is strict, in general. We consider the equation (T (1,2)) with 2 < p � n.
Then h = p2 is nth power-free, but evidently not a prime number. It is obvious that our equation and
equation (T (1,1)) of Example 1 possess the same solutions ξk , k = 1, . . . ,n, with the property (in our
case)

p|δ(ξk, ξl), but p2�δ(ξk, ξl) for 1 � k < l � p. (14)

Hence (h,�(A)) = p < h for A = {ξ1, ξ2} (with card(A) = 2), and so ω(F (1,2)
n ,h) � 2. Moreover, for

every solution η = 〈x, y〉 not of the form ξk (if any) we have p|x, thus p divides δ(η1, η2), for all
distinct η1, η2, and p divides δ(η, ξk), for all k’s. It immediately follows that if card(A) � 3 then
p3|�(A), and hence ω(F (1,2),h) = 2 by definition.

On the other hand, for the set B = {ξ1, . . . , ξp} property (14) holds. Thus, from the definition of ω

it follows that ω(F (1,2)
n ,h) � p, and (by our hypothesis) this value is larger than 2 = ω(F (1,2)

n ,h).
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