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at lowest order in the pionless as well as in the pionful theory. We discuss issues of regularizations 
and predictions for the effective range expansion. In the pionless case, a simple Gaussian smearing 
allows to demonstrate lattice spacing independence over a wide range of lattice spacings. We show that 
regularization methods known from the continuum formulation are necessary as well as feasible for the 
pionful approach.
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1. Introduction

The Nuclear Lattice Effective Field Theory (EFT) method [1] has 
led to impressive progress in the last decade and it has been ap-
plied to few- and many-body-systems successfully, for reviews see 
e.g. Refs. [2,3]. The lattice spacing serves as a natural UV regulator 
for the theory, as for a given value of a the maximal momentum is 
pmax = π/a. Although these calculations give a quite good descrip-
tion for the phase shifts, energy levels, etc., almost all calculations 
have been done for a fixed lattice spacing a � 2 fm, correspond-
ing to a soft momentum cut-off of about 300 MeV. This allows 
one to treat all corrections beyond leading order (LO) in pertur-
bation theory. However, the cut-off dependence or lattice spacing 
dependence has not been analyzed systematically and there are 
still some problems in the two-nucleon system like the relatively 
poor description of the 3S1–3D1 mixing angle [4]. Further, such 
soft potentials seem to lead to some overbinding in medium-mass 
nuclei, as discussed in Ref. [5]. Also, it has been shown that the 
leading order four-nucleon contact interactions need to be smeared 
to avoid a cluster instability when four nucleons reside on one lat-
tice site [6]. One might argue that the extension of such smearing 
methods also to the pion exchange contributions leads to a natural 
regularization of the lattice EFT, allowing to vary the lattice spacing 
freely but using an explicit momentum cut-off in the spirit of the 
work of Ref. [7]. More precisely, this inherent physical cut-off was 
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implemented by formulating the lattice action in terms of blocked 
fields.

In this paper, we will focus on the neutron–proton two-body 
system at lowest order and discuss the lattice spacing dependence 
systematically. In addition, we discuss the necessity of regularizing 
the one-pion-exchange potential and provide a method that goes 
beyond smearing and is borrowed from continuum calculations, 
which leads to the lattice spacing independence of observables for 
a broad range in a, see Ref. [8].

While most of the calculations solve the transfer matrix using 
Monte Carlo methods or the Lanczos method for small eigenvalues 
of large sparse matrices, we use here the Hamiltonian formalism 
and solve it with the Lanczos method. Using this approach we can 
eliminate the discretization in the time direction and we have to 
consider only the variation in the position space discretization. In 
the following, all expressions are given in lattice units and one has 
to multiply the lattice results by the appropriate power of the lat-
tice spacing a to get the physical values. Note also that we show 
simulations for various large enough volumes so that Lüscher’s 
finite volume formulas are sufficient for the infinite volume ex-
traction and we can entirely focus on the remaining dependence 
on the lattice spacing.

In what follows, we will first display the necessary formalism 
to calculate the neutron–proton system to lowest order on the lat-
tice. It is important to already improve the free Hamiltonian so 
as to be as close as possible to the free non-relativistic disper-
sion relation. At very low energies, one can consider the theory 
with contact interactions only, the so-called pionless theory. As we 
will show, the smearing of the contact interactions can be used 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Table 1
Coefficients for the lattice discretization of the Laplacian, the dispersion relation and 
momentum components depending on the stretching factor N .

O(a4) O(a2)

ω0 N · 1
9 + 49

36 o0 0

ω1 N · 1
6 + 3

2 o1
4
3

ω2 N · 1
15 + 3

20 o2
1
6

ω3 N · 1
90 + 1

90 o3 0

as a regulator, leading to regulator-independent results for a broad 
range of values of the lattice spacing a. Matters are different in the 
pionful theory, which to LO consists of two four-nucleon contact 
interaction and the long-ranged static one-pion-exchange potential 
(OPEP). As will be shown, combining the smearing of the contact 
interactions with a position-space regularization of the OPEP will 
again lead to results largely independent of a for the physically 
sensible range of lattice spacing. Hence, one could use this modi-
fied leading-order approach to improve the current auxiliary field 
Monte Carlo simulations in Nuclear Lattice EFT. In principle, now it 
is possible to consider the continuum limit a → 0, however, we re-
frain from doing that here, as it is sufficient to demonstrate lattice 
spacing independence for a physically relevant range of a.

2. The lattice Hamiltonian

To set the stage and to introduce our notations, we first discuss 
the free Hamiltonian. Its discretized form reads

Hfree = 1

2mN

∑
n,i, j

∑
l̂

{
2ω0a†

i, j (n)ai, j (n) +
3∑

k=1

(−1)k

× ωk

[
a†

i, j (n)ai, j

(
n + kl̂

)
+ a†

i, j (n)ai, j

(
n − kl̂

)]}
. (1)

Here, ai, j , a
†
i, j are the fermionic annihilation and creation operators 

with spin and isospin indices i, j, respectively, mN = (mp + mn)/2

denotes the nucleon mass and l̂ is a unit vector in spatial direc-
tion. The summation is over all lattice points n on the L3 lattice. 
We use a stretched O(am)-improved action and its coefficients 
ωk are summarized in Table 1, see e.g. Refs. [9,10]. m indicates 
the number of hopping points beyond next-neighbor interaction 
used in the Laplacian discretization in each spatial direction and 
we use m = 4 throughout this paper. The stretching factor N is 
introduced to minimize the errors arising from the discretized dis-
persion relations on the lattice especially for large momenta where 
the discretization does not approximate the continuum relation 
E = p2/(2mN ) anymore. While there is some arbitrariness on the 
exact choice of N depending on the values of the respective mo-
mentum, N = 3.5 is a sensible choice.

The interaction potential consists of two/three terms in the 
pionless/pionful theory at lowest order. The contact interaction 
consists of two terms which can be chosen as

Hcont = 1

2

∑
n

[
Cρa†,a (n)ρa†,a (n)

+ C I

∑
I

ρa†,a
I (n)ρa†,a

I (n)

]
, (2)

where the terms are summed over all lattice sites n and the 
isospin index I = 1, 2, 3. These terms appear in both versions of 
the EFT considered here. In the pionful theory, one has in addition 
the one-pion-exchange potential

HOPE = − g2
A

8F 2
π

∑
S1,S2,I

∑
n1,n2

G S1 S2 (n1 − n2)

× ρa†,a
S1,I (n1)ρ

a†,a
S2,I (n2) , (3)

with g A the axial-vector coupling constant and Fπ the pion decay 
constant. S1, S2 are the respective spin indices which run from 1 
to 3. The corresponding lattice density operators read

ρa†,a (n) = a†
i, j (n)ai, j (n) , (4)

ρa†,a
I (n) = a†

i, j (n) τI, j j′ai, j (n) , (5)

ρa†,a
S,I (n) = a†

i, j (n)σS,ii′τI, j j′ai, j (n) , (6)

and G S1 S2 (n) represents the pion propagator times the pion–
nucleon vertex and is defined as

G S1 S2 (n) = 1

L3

∑
p

exp (−i p · n) ν
(

pS1

)
ν

(
pS2

)
1 + 2

qπ

3∑
k=1

∑
l

(−1)k cos (kpl)

(7)

with qπ = M2
π + 6ω0. ν(pS1 ), ν(pS2 ) are the discretized momen-

tum components of the first and second pion field which yields 
ν(pl) = o1 sin(pl) − o2 sin(2pl) = pl(1 + O(p4

l )) with the coeffi-
cients summarized in Table 1. We only use an O(a2) discretiza-
tion, because we do not want to expand the respective interac-
tion too much. A further improved momentum approximation is 
linked to a further expanded derivative in position space includ-
ing more interactions at distinct lattice points and the locality of 
the pion–nucleon interaction is lost. These momenta arise from 
the pion field derivative in the pion nucleon Lagrangian Lπ N =
−g A/(2Fπ )N†τ · (σ · ∇)π N . To arrive at Eq. (7), we note that the 
pion propagator is derived from the discrete action for instanta-
neous pions which takes the form [6]

Sππ (πI ) =
(

m2
π

2
+ 3ω0

)∑
n

πI (n)πI (n)

+
∑
n,l̂,k

(−1)k ωkπI (n)πI

(
n + kl̂

)
. (8)

This is reparametrized by π ′
I (n) = √

qππI (n). Finally, the new pion 
action reads

Sππ

(
π ′

I

) = 1

2

∑
n

π ′
I (n)π ′

I (n)

+ 1

qπ

∑
n,l̂,k

(−1)k ωkπ
′ (n)π ′

I

(
n + kl̂

)
(9)

and the respective pion propagator reads

Dπ (p) =
[

1 + 2

qπ

3∑
k=1

∑
l

(−1)k cos (kpl)

]−1

. (10)

Furthermore, we introduce a Gaussian smearing

f (p) = 1
exp

[
−b

ν̃ (p)
]

(11)

f0 2
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with a stretched O(a4) improved discretization

ν̃(p) = 2
3∑

k=0

3∑
l=1

(−1)kωk cos(kpl) = p2
[

1 +O
(

p6
)]

, (12)

where the error estimation is valid for N = 0 and the coefficients 
given in Table 1. f0 is necessary for normalization reasons and is 
given by f0 = (1/L3) 

∑
p exp[−bν̃(p)/2]. This smearing modifies 

the contact interaction in momentum space according to

Hcont = 1

2

∑
p

f (p)

[
Cρa†,a (p)ρa†,a (p)

+ C I

∑
I

ρa†,a
I (p)ρa†,a

I (p)

]
. (13)

Such a smearing was introduced in Ref. [6] to reduce the effect 
of high momentum contributions and remove the clustering insta-
bility of the contact interaction. As the leading order (LO) contri-
bution is iterated to all orders, such a smearing sums up some of 
the higher order corrections. All other higher order corrections are 
then treated in perturbation theory (as long as the lattice spacing 
is sufficiently large). Here, we concentrate on the lowest order and 
leave the discussion of the treatment of the higher order effects 
to a later publication. In any case, the smearing of the LO contact 
terms is a useful tool to improve the description of the S-waves 
in a very efficient way without including all higher-order terms in 
a chiral counting scheme. In general, it is not necessary that the 
smeared contact interactions for the 1 S0- and 3 S1-channel have 
the same smearing function, f (p). However, this is important for 
auxiliary-field Monte Carlo lattice simulations. Without the same 
smearing function for the two channels, the Monte Carlo simula-
tion would have a far bigger problem with sign oscillations. For 
this reason we consider only one smearing function for both chan-
nels. The fact that we can approximately describe the effective 
ranges for both channels using only one smearing function can be 
viewed as a feature of the approximate SU(4) Wigner symmetry of 
the two-nucleon interaction.

In continuum chiral EFT it is necessary to regularize the one-
pion-exchange potential due to its singularity at very small dis-
tances. We will show that such a singularity also appears for small 
lattice spacings and we will regularize it in position space as sug-
gested in Ref. [8]

f̃ (r) =
[

1 − exp

(
− r 2

2b

)]n

, (14)

where the denominator is motivated by Fq{exp[−r2/(2b)]} ∝
exp(−bq2/2) and n is a free parameter.

In the following we study the two-nucleon system for differ-
ent lattice spacings. Therefore we use the finite-volume formulas 
for the binding energy and the effective range expansion given by 
Lüscher [11,12]

E B(L) − E∞
B = −24|A|2 exp

(−√−2μE∞
B L

)
2μL

, (15)

p cot δ0(p) = 1

π L
S(η), η =

(
Lp

2π

)2

, (16)

with A the normalization constant of the wave function for large 
distances and μ = mpmn/(mp + mn) the reduced mass. The energy 
eigenvalues of the system are linked to the momentum squared by 
E = p2/(2μ) and S(η) is the zeta function. Its expansion for small 
η is given by
S (η) = − 1

η
+ S0 + S1η

1 + S2η
2 + S3η

3 + . . . (17)

and the coefficients Si can be found in [6]. We do calculations at 
volumes large enough that Lüscher’s finite volume formulas are 
sufficient for infinite volume extraction with negligible residual fi-
nite volume dependence so we can entirely focus on the remaining 
dependence on the lattice spacing. For the scattering state calcula-
tions, the finite volume corrections are of size exp(−L/R), where 
L is the box length and R is the range of the interactions [11]. For 
the bound state calculations, the finite-volume formula in Eq. (15)
captures the leading exp(−√−2μE∞

B L), but there are also smaller 
corrections of size exp(−√

2
√−2μE∞

B L) [12]. For S-waves, the ef-
fective range expansion is p cot δ0(p) ≈ −1/as + (re/2)p2 with as

the scattering length and re the effective range. Hence, we match 
our finite volume results to the infinite volume effective range pa-
rameters and the deuteron binding energy, a1 S0

= −23.76(1) fm, 
r1 S0

= 2.75(5) fm, and Eb = −2.224575(9) MeV.
In the fits, different lattice volumes are used to produce enough 

data points to make the respective fit using Eqs. (15), (16) and 
predict r3 S1

as well as a3 S1
. Finally, one can compare the predic-

tion to the experimental values given by a3 S1
= 5.424(4) fm and 

r3 S1
= 1.759(5) fm. In the following we will repeat this procedure 

for lattice spacings between a−1 = 100 MeV and a−1 = 400 MeV, 
respectively, that is approximately between 2 fm and 0.5 fm in the 
pionless theory and for a between 0.3 and 2.0 fm the EFT with pi-
ons.

3. The pionless theory

Initially, we consider the pionless case which works well for 
very low energies and is described by the effective Hamiltonian

H = Hfree + Hcont. (18)

It was shown in Ref. [13] that for any lattice spacing the non-
smeared contact interaction cannot reproduce the effective range 
correctly. Hence, we introduce a smearing according to Eq. (11). 
The calculation is performed for N = 0 and N = 3.5 to estimate 
the influence of the stretching factor in the improved action. As 
we only have to consider the S-wave projection, we use the appro-
priate linear combinations

C = 1

4

(
3C1 S0

+ C3 S1

)
C I = 1

4

(
C1 S0

+ C3 S1

)
. (19)

The results for two stretching factors N = 0 and N = 3.5 are shown 
in Fig. 1. For N = 3.5, the explicit values of the fitted parame-
ters and the predictions are listed in Table 2. The lattice size of 
L = 34, 36, 38 is motivated by the corresponding physical lattice 
length of Lphys = 16.66, 17.64, 18.62 fm for a minimal lattice spac-
ing of a = 0.49 fm. This should be still large enough so that higher 
order terms to Eqs. (15), (16) and in the effective range expansion 
are negligible. The LECs in the respective table and plot are ob-
tained after rescaling C3 S1/1 S0

→ C3 S1/1 S0
/a3 so as to account for 

the different volumes.
First, we see the parameters belonging to N = 0 and N = 3.5

have similar values and they approach a constant value when the 
lattice spacing is minimized. But there is a preference for N = 3.5
case because for this case, the variation of the LECs is significantly 
decreased for various lattice spacings than in the N = 0 case re-
flecting the improved dispersion relation approximation which is 
necessary as we receive data points in different regimes for differ-
ent lattice spacings. Therefore, we use N = 3.5 for the following 
calculations.
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Fig. 1. Low-energy coupling constants and the smearing parameter b in the pionless 
EFT for a lattice size of L = 34, 36, 38 and two different stretching factors.

Comparing the theoretical predictions with the experimental 
values gives the impression of a large deviation particularly for 
r3 S1

. As we only work at lowest order, we cannot expect to get the 
physical value already. But we can perform a consistency check for 
our predictions as there exists a relation between the binding en-
ergy, the scattering length and the effective range, see e.g. Ref. [14]

E B ≈ − 1

2μa2
s

(
1 + re

as
+ 5r2

e

4a2
s

+ . . .

)
. (20)

This equation is valid for positive scattering length as and the ex-
pansion in re/as , with re the effective range, is useful provided 
|re| 
 as . As we do not include any partial wave mixing, we can 
use the expansion up to O(r2

e /a2
s ) and compare the physical bind-

ing energy in this scheme with our lattice predictions. Then the 
binding energy is E B = −2.052(1) MeV for the physical values of 
the scattering length and the effective range and our lattice predic-
tions give a binding energy of E B = −2.009(1) . . . − 1.999(1) MeV
showing that the relation in Eq. (20) is approximately fulfilled.

The constant value of b can be explained by the smearing func-
tion itself and the Fourier transformation of the contact interaction 
given in Eq. (13) in dependence of the cutoff/ lattice spacing. While 
we work on the lattice, the Fourier transformation is limited by 
the maximum momentum π/a. As we consider the continuum 
limit, new contributions to the summation are added in Eq. (13)
as π/a → ∞ and the value of the normalization constant changes. 
The normalization constant f0 approaches a finite limit and the 
new contributions are exponentially suppressed. Hence, the lattice 
spacing dependence of the smearing constant should approach a 
constant value as long as other discretization errors are negligible. 
This is also a good check for other regularizations procedures. We 
will use this condition to find the best regularization scheme in the 
upcoming section. It is quite remarkable that the pionless theory 
can be regularized by such a constant Gaussian smearing leading 
to a-independent results for 0.5 � a � 2.0 fm. Given that the typ-
ical extension of a nucleon is given by a scale of r � 0.85 fm, this 
means that the EFT can be used for all momenta that do not lead 
to a resolution of the internal nucleon structure, at least in the 
pionless theory. A direct comparison with the results of a contin-
uum calculation is difficult because the occurring divergences are 
usually treated in a different way. As done in Ref. [15], one can 
calculate the scattering matrix using the bubble chain summation 
with a regularization f̃ (p) = exp(−bp2/2) similar to the smeared 
contact interaction on the lattice instead of dimensional regular-
ization or a finite cut-off. Then the T-matrix is expanded up to 
and including O(p2) and matched to the effective range expan-
sion parameters. The values one obtains are of the same order as 
the lattice values but do not match them exactly. Note further that 
the extension to the three-particle system is not straightforward 
because of the Efimov effect that requires the inclusion of a three-
body contact interaction already at leading order [16].

4. The pionful theory

Including pions is necessary for an effective field theory at 
higher energies. Therefore pions are included according to Eq. (3)
and the full Hamiltonian is

H = Hfree + Hcont + HOPE. (21)
Table 2
Fit results in the Gaussian-smeared pionless EFT case for L = 34, 36, 38 and N = 3.5. The values for a3 S1

and r3 S1
are predictions (modulo the consistency condition Eq. (20)).

a−1 [MeV] a [fm] C3 S1
[MeV] C1 S0

[MeV] b [MeV−2] a3 S1
[fm] r3 S1

[fm]

100 1.97 −46.66 −28.18 3.83 · 10−5 5.611(1) 2.029(1)

130 1.52 −50.71 −30.16 3.93 · 10−5 5.630(1) 2.047(1)

160 1.23 −50.26 −29.84 4.04 · 10−5 5.624(1) 2.034(1)

200 0.99 −49.89 −29.70 4.13 · 10−5 5.614(1) 2.017(1)

240 0.82 −50.17 −29.92 4.19 · 10−5 5.607(1) 2.008(1)

300 0.66 −50.63 −30.24 4.23 · 10−5 5.602(1) 2.005(1)

350 0.56 −50.85 −30.38 4.25 · 10−5 5.601(1) 2.008(1)

400 0.49 −50.91 −30.43 4.27 · 10−5 5.605(1) 2.015(1)
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A problem is caused by the singularities which arise in the short-
range region of the OPE contribution. On the one hand, this sin-
gularity exists for any lattice spacing as the relative distance r = 0
is possible and gives a very large but still finite contribution. On 
the other hand, minimizing the lattice spacing leads to additional 
lattice points with non-zero but very small distances to the origin 
and which give an additional large short-range contribution.

Firstly, we switch off the smearing of the contact interaction 
and include the pion–nucleon interaction according to Eq. (3). In 
this case, the predictions for the effective range parameter are not 
close to the physical value and it is still necessary to include the 
smearing of the contact interaction [6].

In the case of smeared contact interaction and non-smeared 
pion–nucleon interaction the LECs do not give a reasonably close 
value for the effective range in the 3 S1-channel. The prediction is 
reasonable and constant for a lattice spacing larger than 1 fm, but 
it does decrease towards zero for smaller lattice spacings. As we 
do not include a regularization, the divergent πN-contribution for 
small lattice spacings is more and more resolved for smaller lattice 
spacings resulting in a very sharp potential. The contact interaction 
in combination with the smearing factor b can compensate this ef-
fect but as the 1 S0- and 3 S1-channel do not have exactly the same 
dependence, while it is still possible to fit to one of the effective 
ranges, the agreement for the other one gets worse.

Now we turn on the smearing of the pion–nucleon interaction. 
While a smearing in momentum space according to Eq. (11) could 
be possible, we follow the arguments given in Ref. [8] and intro-
duce the regularization in position space as proposed in Eq. (14). 
Then, the new OPE potential reads

HOPE = − g2
A

8F 2
π

∑
S1,S2,I

∑
n1,n2

f̃ (n1 − n2)

× G S1 S2 (n1 − n2)ρ
a†,a
S1,I (n1)ρ

a†,a
S2,I (n2) . (22)

Throughout this paper, we use n = 4 in Eq. (14), but we also 
checked for different n and the results are similar. Higher values 
of n are only necessary for strongly divergent contributions like 
two-pion-exchange potentials which we neglect in this exploratory 
study.

In Fig. 2, the finite volume binding energy of the deuteron 
and the respective effective range expansion for the S-waves for 
a subset of the lattice spacings used are shown. Finite volume ef-
fects modify the binding energy so that a correction according to 
Eq. (15) is necessary but higher order terms are still negligible. 
Also the data points we obtain for the effective range expansion 
still have small enough momenta squared so that the expansion 
up to O(p2) is feasible. The resulting LECs, the smearing con-
stant as well as the predictions for L = 34, 36, 38 are displayed 
in Table 3. While the value of the LECs are different to the pi-
onless case, their general shape depending on the lattice spac-
ing does not change and the LECs remain negative as well. Also 
the smearing factor b remains in a certain range between 2.40
to 2.92 × 10−5 MeV−2, indicating that this regularization scheme 
works quite well. We do not show the results for the smaller set 
of lattice sizes, but we have shown that finite volume effects be-
tween these two sets become negligible for lattice spacings larger 
than 0.7 fm. Assuming a large enough lattice there is a rise in the 
smearing constant between 1.8 fm and 0.7 fm, and it is constant 
again for lattice spaces smaller than 0.7 fm. While in the range 
from 0.7 fm and 1.8 fm the pion–nucleon contribution changes, 
the lattice sites closest to the origin contribute more and more 
to the potential due to the divergent structure of the potential. 
This effect is compensated by the regularization at a certain range 
as we further decrease the lattice spacing, and then the regular-
ized potential does not change its shape anymore. Note that in the 
Fig. 2. Lattice space dependence of various parameters. Upper panel: The finite-
volume deuteron bound state energy. Central panel: The effective range expan-
sion for the 1 S0-channel. Lower panel: The effective range expansion for the 
3 S1-channel.

intermediate range there are lattice artifacts in the OPEP which 
cause the oscillatory behavior of the LECs as they appear at dif-
ferent physical lengths and multiplied by a different regularization 
factor. As a result, we cannot see a plateau for the LECs C3 S1

and 
C1 S0

at a lattice spacing of a = 0.5 fm, but we have to further de-
crease the lattice spacing. Simultaneously, we increase the number 
of lattice points to keep the physical lattice size. The respective 
values are shown in Table 3 as well and there is a plateau starting 
from a = 0.39 fm. The predictions for the effective range expansion 
parameters are also quite good as a3 S1

≈ 5.470(1) . . . 5.649(1) fm
and r3 S1

≈ 1.818(1) . . . 1.899(1) fm depending on the lattice spac-
ing. Repeating the calculation for the binding energy according 
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Table 3
Fit results in EFT with Gaussian-smeared contact interaction and position space regularization for the pion–nucleon interaction with N = 3.5. The lattice size is L = 34, 36, 38
for a = 0.49 . . .1.97 fm and L = 38, 40, 42 for a = 0.39 . . .0.28 fm. The values for a3 S1

and r3 S1
are predictions (modulo the consistency condition Eq. (20)).

a−1 [MeV] a [fm] C3 S1
[MeV] C1 S0

[MeV] b [MeV−2] a3 S1
[fm] r3 S1

[fm]

100 1.97 −54.07 −36.11 2.59 · 10−5 5.470(1) 1.818(1)

130 1.52 −67.11 −45.47 2.40 · 10−5 5.513(1) 1.878(1)

160 1.23 −69.31 −46.52 2.41 · 10−5 5.527(1) 1.899(1)

200 0.99 −63.83 −41.39 2.65 · 10−5 5.523(1) 1.893(1)

240 0.82 −61.55 −39.23 2.83 · 10−5 5.511(1) 1.876(1)

300 0.66 −62.20 −39.44 2.92 · 10−5 5.498(1) 1.858(1)

350 0.56 −63.30 −40.19 2.92 · 10−5 5.491(1) 1.842(1)

400 0.49 −64.31 −40.97 2.91 · 10−5 5.491(1) 1.842(1)

500 0.39 −65.47 −41.90 2.89 · 10−5 5.500(1) 1.836(1)

600 0.33 −66.14 −42.71 2.82 · 10−5 5.553(1) 1.835(1)

700 0.28 −65.61 −42.64 2.86 · 10−5 5.649(1) 1.845(1)
to Eq. (20) up-to-and-including terms of O(r2
e /a2

s ) yields for the 
binding energy E B ≈ 2.026(1) . . . 2.033(1) MeV for the various lat-
tice spacings in the range between 0.5 fm and 2.0 fm. This 
is again close to the physical binding energy and the respec-
tive relation is fulfilled. For the remaining ones, it yields E B ≈
2.034(1) . . . 1.899(1) MeV indicating that larger volumes become 
necessary particularly for the smallest lattice spacing. Finally, the 
theory is well regularized and the differences between the lattice 
predictions and the experimental values of a3 S1

and r3 S1
, respec-

tively, can be compensated by higher order terms.

5. Conclusion and outlook

In this paper, we have studied the lattice spacing a dependence 
of the neutron–proton system at leading order in the pionless and 
the pionful theory. We have used the scattering length and the ef-
fective range in the 1 S0 partial wave together with the deuteron 
binding energy to fix the two LECs related to the LO four-nucleon 
contact interaction and the smearing parameter b. To focus on the 
lattice spacing dependence, we have worked at sufficiently large 
lattice volumes so that finite volume effects do not play any role 
here. In the pionless case, it is sufficient to smear the contact in-
teractions with a Gaussian-type function, cf. Eq. (11), to achieve 
a-independence in the range 0.5 � a � 2.0 fm. We have explic-
itly shown this for the scattering length and the effective range 
in the 3 S1-channel, being aware of the strong correlation between 
E B and a3 S1

. In the pionful theory, the contribution from the 
one-pion-exchange is best to be regularized in position space, as 
discussed in detail in Ref. [8]. Again, we can demonstrate lattice 
spacing independence for the same range of a. Therefore, it should 
be possible to calculate the phase shifts with the transfer matrix 
method and the spherical wall method. Smaller lattice spacings 
should minimize the lattice errors such as the broken rotational 
invariance and make it possible to increase the accuracy especially 
for higher momenta in the partial wave decomposition. Clearly, 
when decreasing the lattice spacing, one has to be aware that the 
perturbative treatment of the NLO and higher order corrections be-
comes doubtful and requires a separate investigation but it does 
not invalidate the results found here. Furthermore, one should im-
plement this regularization in Monte Carlo simulations in order to 
minimize the lattice spacing and artifacts in the simulation. This, 
however, is a separate issue.
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