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The ideas of a dynamic approach to the analysis of multivariate life length distributions, 

introduced in Arjas (1981a) and Arjas and Norros (1984), are developed further. Basic definitions 

are given in terms of prediction processes. Properties of martingales jumping downwards at failure 

times are studied. Finally, the special case of a general multivariate exponential distribution is 
considered. 
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0. Introduction 

Consider a system consisting of k components and starting its operation at time 

0. Suppose that the components have finite positive life lengths S, > 0, i = 1, . . . , k, 
and failed components are not replaced by new ones. We allow two or more Si’s 

to be equal with positive probability. For example, several components might be 

destroyed simultaneously by an external shock. 

Analysing systems of this kind is equivalent to studying probability distributions 

on the interior of the positive orthant Rt. Traditionally, conditions for mutual 

dependence of the life lengths Si have been formulated in terms of the distribution 

function F(s,, . . . , sk) = P( S, s sl, . . . , Skssk). Arjas [2] suggested a different, 

‘dynamical’ approach, where the failure times Si were considered as events in a 

stochastic process, the failure process. This makes it possible to apply notions and 

results from the theory of stochastic processes. Especially, it becomes possible to 

study causal effects the destruction of one or more components has on the residual 

life distribution of the others. 

In [4], Arjas and the author introduced the concept of a system weakened by 
failures. In this paper, this notion is analyzed further and simple conditions for it 

are given in the case of a generalized multivariate exponential distribution, where 

the failure process is a time homogeneous Markov process. 

Notation. We write S=(S,,...,&). For any t*O, denote X,={i:$>t, i= 

k}. Then X = (Xt)ta;o is a stochastic process with values in the set 9, = 

l’;r &I,. . .) k}}. We consider 9, as partially ordered through inclusion. 
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As the underlying probability space we take the path space 0 = {x: x is a decreas- 

ing, right continuous function R, + Y0 with x(03) = @}. Let X, be the coordinate 

process on 0, that is, X,(x) =x(t). The map defined above which connects S with 

the process X is one-to-one from Wt onto R. 

Let (9,)tz0 be the natural history (filtration) on a, that is, 9, = q(X,: s < t). When 

we have a probability measure P on 0, we suppose that the a-fields 9, are completed 

with all P-null sets. Dellacherie’s ‘usual conditions’ are then satisfied, that is, the 

history (9,) is right continuous and s0 contains all null sets. 

Partial order relations. If s, TV R:, we write s < r if si s t, for all i. If x, y E 0, we 
write x G y if x(t) G y(t) for all t. Then the bijection s + x is also an order 

isomorphism. 

We compare probability measures on R: through the stochastic order: we call P 

smaller than Q and write Ps Q if IfdP< jf dQ for all increasing bounded 

functions f: lR: + R. (We tacitly assume also the Bore1 measurability of the functions 

$) It can be shown (see, e.g., Arjas [2]) that the class of test functions f in the 

definition above can be reduced in various ways without altering its content. Sufficient 

classes of test functions are, among others, 

(i) increasing indicators, 

(ii) indicators of sets of the form lJy=, {s: s, > qj, . . . , sk > qJ}, where all the qj’s 
are rational, 

(iii) continuous, increasing and bounded functions. 

Note that the class (ii) is denumerable. Sets with increasing indicators are called 

upper, their complements lower sets. 

A probability measure P on I&?: is called associated if, for all increasing bounded 

f and g, Cov(f; g) = j fg dP -jf dP 5 g dP 2 0. Here again the class of test functions 

f and g can be reduced to any of the classes (i)-(iii) above. (For a systematic 

treatment of association see, e.g., Barlow and Proschan [5].) 

For other partially ordered spaces, the concepts of stochastic order and association 

are defined analogously. 

1. The prediction process and the residual prediction process 

In the ‘dynamical approach’, conditional distributions with respect to the past of 

the process at time t (that is, w.r.t. 9,) play a fundamental role. For a while, let t 
be fixed. It is well known that there exists a regular conditional distribution (r.c.d.) 

p, of S given 9, : p,(A) = P(S E A I%,). 

If E is a topological space, denote by 9’(E) the set of all probability measures 

on the Bore1 sets of E with the topology of weak convergence of measures. It is 

easy to see that the r.c.d. p,( .), considered as a function n+ 9(R:), is a 

9(R:)-valued random variable and for all h E C(Rl), j h dpu, = E[h(S) (9,] a.s. 
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Consider again the failure process (X,). For each time t we have the prognosis 

p, for S (and, equivalently, for (X1)&. Thus we are led to study pu, as a 

B(lR:)-valued stochastic process. The following important theorem from Aldous 

[l] shows that this process has a regular modification. To formulate the general 

results, we replace S by a more general random variable with values in a Polish space. 

1.1. Theorem. Let E be a Polish space and let ( 9,)ra0 be ajilrrarion on the probability 

space (Q 9, P) satisfying Dellacherie’s ‘usual conditions’. Let X be an E-valued 

random variable. Then there exists a ??( E)-valued cadlag process p = (p,)rt[o,mI such 

that for any r E [0, ~1, I_L, is a r.c.d. of X given 5,. This process is uniquely determined 

up to indistinguishability. (‘Cadlag’ means: righr continuous with left limits.) 

Proof. 1”. Let K, be a sequence of compact subsets of E such that 

P(XG K,)S 2-2” for all n. 

Let h, be a sequence of functions in C(E) such that for all n, 0~ h, s 1 and the 

h,‘s separate the points of Y(E). The following lemma is a straightforward applica- 

tion of Prokhorov’s theorem: 

Lemma. Let p, E Y(E) and suppose 

(i) for afi the limit lim, j h, d/l, = a, exists ; 

(ii) lim, lim, pj(KC,) = 0. 

Then there is a measure p E 9(E) such that pj + p and j h, dp = a,, for all n. 

2”. For every nonnegative rational r, let a, be a regular conditional distribution 

of X given 9,. Then We can also be considered as a 9(E)-valued random variable. 

Let My be a cadlag version of the martingale P(X & K,) 9,). By a well known 

martingale maximal inequality, 

P sup M;>2-” 
> 

G 2”P(X G K,) s 2-“. 
f 

Denote N, = {lim, supr My = 0)c. Then P( N,) = 0. 

Then let H: be a cadlag version of the martingale E[ h,,(X) 1 S,]. Denote 

N2 = 3r E Q+, n EN such that (T,(KC,) # M: or 
I 

h,du,#H: . 
I 

Then P( N2) = 0. 

3”. Now fix r E R, and let rjlt, q E Q, rj > r. In the complement of N, u Nz the 

sequence U,(W) satisfies the conditions of the lemma in 1”. Thus there exists a limit 

measure pl+( w) satisfying 

I h, dF,+(W) = H:+(w) = H:(w) for each n. 
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Correspondingly, a left limit measure Pi- is defined in the complement of 

N, v N2. 

Choose P,(W) = Pi+ on ( N1 u N2)’ and p,(w) = constant on N, u Nz. It is easy 

to see that for each t, p, is a r.c.d. of X given .F,. 

4”. The uniqueness of /1 follows from the uniqueness (mod P) of the r.c.d.‘s 

P(X E . 19,) and from the cadlag property. 0 

1.2. Definition. The process p in Theorem 1.1 is called the prediction process of the 

random variable X with respect to the history (9,). 

The idea of a prediction process was introduced by Knight [13]. Aldous [l] 

developed a somewhat different approach, which we follow here. In the next 

proposition we have listed some basic properties of the prediction process: 

1.3. Proposition. Under the assumptions of Theorem 1.1, the prediction process p has 

the following properties: 

(i) For any (S,)-stopping time T, pT is a regular conditional distribution of X 

given FT. 

(ii) For any positive predictable stopping time T, pT- is a r.c.d. of X given .9-. 

(iii) Denote p; = CL,-. Then the process p - is a predictable LP( E )-valued process 

such that for any predictable stopping time T, /I; is a r.c.d. of X given .9-. 

(iv) If SW E U(X) (modulo null sets), then p is a (nonhomogeneous) strong Markov 

process. 

Proof. (i) is easy to prove by approximating T from above by stopping times taking 

only countably many values. (ii) follows from (i) and the martingale convergence 

theorem, and (iii) is an immediate corollary to (ii). 

In order to show (iv), let T be any finite stopping time, t > 0 and B any measurable 

subset of 9’( E). Then there exists a measurable function f: E + 02 such that ll+LT+ltB) = 

f(X) a.s. Now P(E.L~+~ E B 1 %T) = jf(x)pAdx). Thus J’(w+~ E B 16) is he)- 
measurable. 0 

Note that in the case of the failure process as described above, the condition in 

(iv) is satisfied since the fundamental c-algebra is that generated by S. 

If h E C(E), then the process J h dp, is a cadlag version of the martingale 

E[ h(X) 1 Sf]. This follows directly from the definition of weak convergence, since 

CL, is cadlag w.r.t. the weak topology. On the other hand, it is clear that noncontinuous 

functions h can be found such that there exist paths of the process J h d/-L, that are 

not cadlag. However, as Aldous mentioned in [ 11, this can happen only on a null set: 

1.4. Proposition. For any bounded measurable function h : E + R, the process Y, = 

J h dp, is a martingale with a.s. cadlag paths. Moreover, Y,- is indistinguishable from 

the process J h dp,_. 
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Proof. Denote by M a cadlag version of the martingale E[A(X) 1 S,]. By Proposition 

1.3(i), for any finite stopping time T, YT = M7 a.s. But p is optional, and the map 

p + 5 h dp from 9?(E) to R is measurable, so that Y is optional. Since M is also 

optional, it follows that Y and M are indistinguishable. 

The second assertion is proved analogously. The process (pI_) is left continuous 

and thus predictable. It follows that the process (I h dp.,_) is predictable. On the 

other hand, it is well known that (Y,-) is the predictable projection of Y. Thus the 

indistinguishability of (Y,-) and (j h dp,_) follows from Proposition 1.3(ii). 0 

Now we turn back to the life length vector S and the failure process (X,). Let p 

be the prediction process of S. 

Remark. As an alternative, we could study the prediction process of X, equipping 

0 with the Skorohod D-metric. This would be equivalent to considering S with a 

slightly finer topology on R:. For the aims of this paper, however, the normal 

topology is more convenient. 

For a given positive r, the information contained in p, can be split into two parts: 

the information up to time r, which is exact, and the future, for which only a 

distribution is known. In some contexts it is better to have the past ‘cut off’ from 

CL,. Therefore we define also a ‘residual prediction process’, which consists of the 

‘future part’ of CL. 

For SER:, PER, denote (s-r)t=((~l-t)+,...,(~k-t)+) and sit= 

((sr~t),...,(.s~~t)). Then we can write S=(Sr,t)+(S-t)+. Define a mapping 

+ : CF”(R:) xR++ P(R:) by 

I 
h d$(p, t) = 

I 
h((s- t)‘) dp(s), h E C(W:). 

The proof of the following lemma is straightforward: 

1.5. Lemma. * is continuous. 

Now we define: 

1.6. Definition. The residual prediction process of S is the 9’(R:)-valued process 

V! = 4%, t). 

Clearly vr is a r.c.d. of (S- T)+ given ST, where T is any finite stopping time. 

This shows also that p is indistinguishable from the process aSnt * v,, where * means 

convolution and 6 is the Dirac measure. Since convolution on R: is continuous 

with respect to weak convergence and since S A t is a continuous process, we have 

/_& = 6Sn, * V,-. It follows that p and Y have exactly the same jump times. 
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The prediction process p and the residual prediction process v each have their 

advantages. The important property of p is that the integral processes, jf dp, are 

martingales. On the other hand, it can be shown that v is a time homogeneous strong 

Markov process. In fact, the residual prediction process can be regarded as a 

modification of Knight’s definition of a prediction process, which also implies the 

strong Markov property (see [13]). 

1.7. Proposition. The residual prediction process v is a time homogeneous strong 

Markov process. 

Proof. Let T be any finite stopping time and t > 0 arbitrary. We want to show that 

the conditional distribution of v T+I given 9T is a function of vy only, and, moreover, 

a function which does not depend on T. It suffices to show this for the conditional 

distribution of j h dvr,, given 9r, for every function h E C(W:). So let h be fixed. 

Denote g,(s) = s+-ool,,,,) and A(s) = (gl(sl), . . . , gr(sk)). Then ST+, = 9T v 

o(f,((S- T)+)). Denote also h,(s) = h((s - t)‘), and let &, be a sequence of finite 

measurable partitions of IR: such that v(&,) increases towards the Bore1 o-field of 

w:. 

Now define the jointly measurable function p : W: x P(W:) + R by (taking O/O = 0) 

By the martingale convergence theorem, it is easy to see that 

P(s,((S- T)+L VT) a2 E[h(C- T)+) 19~ v dfi((S- T)+))l 

‘=“E[h((S-(T+r))+)~~~+,]-- j hdv,,,. 

Note that p depends on t and h, but not on T. 

Finally, writing P(u, p) = Do(u), define the mapping cr : P(Iw:) + .P(R:) by 

a(p)(B) = p(f;‘(P,‘(B))) = 
I 

I~p(,,(u),p)ts~P(du). 

Then cz( r+)(B) is aversion of P(s h dv,,, E B( 9=). Thus (Y(v~) is ar.c.d. ofJ h dvT+, 

given 9F 0 

2. The martingale representation theorem 

To apply martingale calculus, we recall the notation of Arjas and Norros [4]. Let 

T,=O, J,,=e); T, = inf{Si: 1 s i < k, Si > T,-,}, 

J,,={i: S,=T,,}, nal. 
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We assume that P(S, = 0) = 0 for all i. Then {T,,, Jn} is a marked point process with 

mark space Y= Y,,\(o). (If the probability that two or more components fail 

simultaneously is zero, then the mark space can be reduced to (1,. . , k}.) 

Denote further 

No two of the single jump processes N(I) can jump simultaneously (and, unless 

k = 1, some of them never jump). 

Let A(I) be the (3f)-compensator of N(I), and denote by M(I) the martingale 

N(I) - A( I). We recall the well-known martingale representation theorem (see, e.g., 

Jacod [lo], BrCmaud and Jacod [6]): 

2.1. Theorem. Let M be any locally square integrable local martingale with respect to 

the (internal!) history (9,). The there existpredictableprocesses C(I), I E 9, such that 

Using the representation theorem we can prove the following fact about the 

prediction process: 

2.2. Proposition. The prediction process (and the residual prediction process) jumps 

exactly at the jump times of the fundamental martingales M(I). More precisely, for 

any Jinite stopping time T, 

{/_+ # /_+} 2 IJ {AM,(I) # 0). 

Proof. 
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3. Systems weakened by failures 

One motivation for considering multivariate life distributions with positive depen- 

dence between the component life lengths is the idea that the components of a 

system can often be assumed to ‘support’ each other. For example, the destruction 

of one component often increases the stress on the others. In that case, the event 

that one component fails has an immediate causal influence on the expected life 

lengths of the remaining components. Our definition of a system weakened by 

failures is a formalization of this aspect of failure process dynamics. 

3.1. Definition. The system S is weakened byfailures (WBF), if the prediction process 

P jumps downwards at failure times, that is, ps, c pus,- a.s. for every i = 1, . . . , k. 

Remark. This definition differs a little, not only in form but also in content, from 

the corresponding definition in Arjas and Norros [4]. The latter worked only in the 

case of continuous compensators A( I), while a rather sophisticated extra condition, 

‘monotonically weakened by failures’, was used in the general case. However, there 

is no implication in either direction between ‘monotonically weakened by failures’ 

and Definition 3.1. 

It is important to note that the definition of a system weakened by failures could 

have also been made in terms of the residual prediction process: 

3.2. Proposition. S is weakened by failures Ifand only if the residual prediction process 

jumps downwards at failure times, that is, vs, s vs,_ a.~. for every i = 1, . . . , k. 

Proof. The assertion follows directly from the equation 

PI = a,,, * v,. q 

To proceed, we need certain results concerning square integrable martingales on 

(a, 9, (St), P). In the martingale representation theorem, the predictable 

‘coefficient’ processes are not determined uniquely. The following lemma, which 

turns out to be very useful, deals with the choice of ‘suitable’ coefficient processes 

C(I). 

3.3. Lemma. Let M be a locally square integrable local martingale with MO = 0. Suppose 

that AM,, G 0 a.s. for all i. Then the predictable coeficient processes C(Z) in the 

representation 

can be chosen so that, for all I, C(I)GD~O, where D,=C, C,(Z)AA,(I). (The 

notation ‘AM,’ means the jump of the process M at time t: AM, = M, - M,-.) 
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Proof. By Theorem 3.75 of Jacod [ 111 there exist predictable processes Y(Z) which 

are the ‘predictable conditional expectations’ of the jumps AMU,. In terms of Arjas 

and Norros [4], Y,(Z) = Z,(Z) - M,_ and Yl(Z) has the interpretation that it tells 

‘what would be the jump AM, if there would be a failure of pattern Z at time 

f 

where B =C AA(J) and Y=C Y(J)AA(J). Moreover, the processes Y(Z) can be 

chosen so that Y, = 0 whenever B, = 1. Then (with O/O = 0) 

B- 1 
D= Y+- Y=- YGO 

1-B 1-B 
and 

D-C(Z)=& F- Y(Z)-& Y=-Y(Z)aO. 0 

From Lemma 3.3 we immediately obtain a simple criterion for a martingale to be 

zero (and for two martingales to be equal): 

3.4. Proposition. Let M be a locally square integrable martingale such that MO = 0 

andAMs~=Oforalli=l,...,k. ThenM=O. 

Proof. Applying Lemma 3.3 for the martingales M and -M yields that the coefficient 

processes C(Z) in the representation theorem 2.1 can be chosen to be all identically 

zero. III 

From Lemma 3.3 we get also the following result, which is central in our positive 

dependence considerations. This result was, in a slightly different form, implicitly 

presented also in Arjas and Norros [4]. 

3.5. Proposition. Let M and M’ be square integrable martingales such that for all 

i = 1, , . . , k, AMst G 0 and AM’sz s 0. Then Cov( M,, ML) 2 0. 

Proof. We may assume that M, = Mb = 0. Let M and M’ have the representations 

M=C 
I 

I 

‘G(Z) dM(O, M;=C 
I 0 I 

I 

C:(Z) dM,(Z). 
I 0 

By Lemma 3.3, we may assume that, for all Z, 

C(Z)<1 C(J)AA(J)=DSO and C’(Z)<C C’(J)AA(J)=D’GO. 
J J 
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By the rules of Stieltjes stochastic calculus, 

Cov( Mm, ML) = E( M, M’),. = E 1 C C,(Z)C:(J) d(M(Z), M(J)), 

Since 

(M(Z), M(J)), = ’ (6, -AA,(I)) dA,(J), 

we can write 

(M, M’), = C I’ C<(Z)C:(Z) d,%(Z) - C C C C,(Z)C:(J)AA,(Z)AA.JJ) 
1 0 SGL I J 

=; j’ G(OC:(O dAS(0-t C C.s(OCX~)AA,(~) - DsE , 
0 1 

where A’(Z) means the continuous part of A(Z). (For a summary of calculation 

rules used above, see Arjas and Norros [4].) 

In the last expression, the first sum is nonnegative, because C(Z) C’( I) a 0. But 

so is the second, since for any finite predictable S, Z&D; = 1, C,( Z)AAs(Z)ZIl,s 

1, Cs(Z)C’s(Z)AAs(Z). Thus we have shown that (M, M’) is in fact increasing. 0 

The next proposition gives equivalent conditions for Definition 3.1: 

3.6. Proposition. Let % be a set of increasing bounded functions rWt + [w such that, 

for all ply P.~ E ~GQZ), 

For h E R denote M: = j h dp,, where p is the prediction process. Then the following 

conditions are equivalent: 

(i) S is weakened by failures ; 

(ii) for all h E X, AMi c”-‘-Oforalli=l,...,k; 

(iii) for all h E X, the coe#icients C”(Z) in the representation 

I 

C:(Z) dM,(Z)+ M,h 

can be chosen so that Ch(Z)sC, Ch(J)AA(J)=Dh<O. 

Proof. (i) e (ii): By Proposition 1.4, for all h E Yt’, AM:, =a.s. j h dp, -j h dZ++. 

The assertion follows immediately. (ii) e (iii): The assertion follows from Lemma 

3.3. 0 

From condition (iii) above we can make the following observation: 
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3.7. Theorem. If S is weakened by failures, then the prediction process p is increasing 

between the failure times Si. 

Thus the paths of the prediction process of a system weakened by failures have 

a piecewise monotone structure with respect to the stochastic order. Upwards jumps 

occur only at the times at which one or more of the compensators A( I) have a jump. 

We conclude this section with the following result, which was, with a slightly 

modified definition of a system weakened by failures, presented in Arjas and 

Norros [4]. 

3.8. Theorem. If S is weakened by failures, then it is associated. 

Proof. Let f and g be any increasing bounded functions rW$ + Iw. Denote M<= 

s f dp, and Mf = j g dp,. By assumption, the martingales M’ and Mg satisfy the 

assumptions of Proposition 3.5. Thus 

Cov( f (S), g(S)) = Cov( ML, MS) z 0. 0 

4. A connection between aging and dependence 

The relationships between notions of aging and those of dependence have been 

discussed to a certain extent in reliability literature. For example, Harris [12] 

included a positive dependence condition to his definition of multivariate increasing 

hazard rate; this was needed in the proofs of closure properties. Brindley and 

Thompson [7] showed that their concept of multivariate increasing failure rate is 

compatible with both positive and negative dependence between the component 

life lengths. 

Arjas [2] gave a definition for multivariate increasing failure rate with respect to 

a history (9,) (MIFR/(9,)), which was based on the stochastic process approach. 

In the case of the internal history, his definition can be given in terms of the residual 

prediction process: 

4.1. Definition. The component life length vector S is said to have a distribution 

with multivariate increasing failure rate (MIFR) if the residual prediction process v 

is a decreasing process. 

The intuitive meaning of this definition is that whatever happens at the component 

level, the residual life lengths become always stochastically shorter. Since a system 

is weakened by failures whenever its residual prediction process decreases at failure 

times (Proposition 3.2), MIFR trivially implies WBF. As a corollary to Theorem 

3.8 we then get the following result: 

4.2. Theorem. If S is MIFR (in the sense of Dejinition 4.1), then it is associated. 
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Thus, Arjas’ definition for MIFR (w.r.t. the internal history) implies a form of 

positive dependence between the component life lengths. 

There is a certain formal analogy between Theorem 4.2 and a well known result 

of Fortuin, Kasteleyn and Ginibre (see [9]). They showed that for a probability 

measure on a finite lattice, the ‘logarithmic convexity’ condition 

P({a v b])P({a A b)) z= P({a])P({b)) 

implies association. Also MIFR is a kind of logarithmic convexity condition; for 

example, it implies the convexity of the compensators A(Z) (see Arjas [3]). 

5. An application: A multivariate exponential distribution 

As an application we consider the case that the $O-valued process X is a time 

homogeneous Markov process. Then the compensators A(Z) are linear between 

failure times, with derivatives (that is, stochastic intensities) that are functions of 

the present state X, only. 

For brevity, write 9 instead of S,. Now let h,(Z) be the intensity for failure 

pattern Z when the state of the process X (that is, the set of operating components) 

is K. In usual Markov process terminology, AK (I) is the transition intensity from 

state K to state K\Z. (We assume AK(B) = 0.) 

Since we want to compare this kind of measures for different initial states, we 

allow the initial state X0 to be any fixed element of 4. 

We call the corresponding distribution of S the multivariate exponential distribution 

(MED). This model contains as special cases several multivariate exponential 

distributions that have appeared in the literature, e.g. that of Marshall and Olkin 

(see [14]). In a MED, the times between failures are exponential, and at a given 

time, the set of still functioning components contains all information from the past 

that is relevant for predictions of the future. In general, the lower-dimensional 

distributions do not have these properties, especially, the one-dimensional distribu- 

tions need not be exponential. The bivariate case has been studied at least in Sagsveen 

[151. 
In a construction below we need the well known Strassen representation theorem 

for stochastic ordering. Since Strassen’s original paper [16] is rather abstract and 

difficult to read, we present here Strassen’s theorem and its proof in a form which 

is restricted to our case. As a lemma we need an application of the separating 

hyperplane theorem. 

5.1. Lemma. Let M be a convex and closed set of probability measures on a Polish 

space E. Then, for any probability measure P on E, P-E M if and only if j f dP< 

SUPQEM jfdQforallfeC(E). 

5.2. Theorem (Strassen). Let P and Q be probability measures on the subsets of 4. 
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Then P s Q (in the sense of stochastic order) if and only if there exists a transition 

probability matrix Ii’ = ( T( I, J)),,,,9 such that 
(i) Il is ‘upwards’, that is, ~(1, J) > 0 implies I c J; 

(ii) Q= PIT, that is, Q({J})=C, P({I})r(I, J)for all JEW. 

Proof. The ‘if’ part is easy to check. So assume P s Q. Denote M = {P’: there exists 

an upwards kernel 17 such that P’= PZI}. It is easy to see that M is convex and 

closed. We have to show that Q E M. To apply Lemma 5.1, letfbe any function 9 + R. 

Define a function y : 4 + 4 so that, for every 1, y(I) 2 1 and 

f(r(O) = y~f(J). 

Let 17 = (r( 1, J)) be the deterministic transition matrix defined by ~(1, J) = S,.(t),,. 
Now f 0 y 2 f and f 0 y is a decreasing function. Thus we have 

and the theorem is proved. Cl 

As a corollary we get the following result for finite (not necessarily probability) 

measures on the subsets of 9. 

For a function LY : 9 + R,, denote by cu^ the measure with point mass function a, 

that is, &(A) =Clci(( (Y (I) for & E 9. For two such functions, say (Y and /3, we write 

&<p^ if $(V)cfi(V) for each upper set VG~. 

5.3. Corollary. Let (Y and p be functions from 9 into 08,. Then the following are 
equivalent: 

A 
(i) 6 G p; 

(ii) there exists an upwards stochastic matrix (T( I, J)) such that, for all J, 

C, o(Z)44 J) s P(J). 

Proof. Again the (ii)*(i) part is immediate. If 1 cu(l)=C p(I), then (i)+(ii) 

follows directly from the theorem. If C cy(l) <C P(1), first increase the value cz(+) 

so that an equality of the total masses is achieved. Then apply the theorem, and 

finally remove again the extra mass from 4 to obtain the asserted inequality. 0 

In order to apply our results to the MED, we have to find conditions which 

guarantee stochastic dominance between two such distributions. So let P and Q be 

two MED’s with respective intensity functions K~ (I) and AK (I) and initial states 

X,, and Y,,. We need the following notation: For 4 # I c L G K E 4, denote A E( I) = 

c ,& K,L AK (I u J). Thus A E (I) is the total intensity, when the set of still operating 

components is K, for a failure whose intersection with L is I. 
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5.4. Proposition. Let P(Q) be a MED with intensity function ~~(1) (AK (I)) and 

initial state X0 ( YO). Suppose 

(i) X0? YO; 

(ii) foranyK, Lwith KzL, ;:<A,. 

Then Pa Q. 

Proof. We prove the proposition by the familiar technique, showing that processes 

X and Y, with respective distributions P and Q, can be defined on the same 

probability space so that X 2 Y everywhere. 

By assumption (ii) and Corollary 5.3, for all pairs K z L, there exists a transition 

matrix (vF(Z,J)),,~~$ such that I,,, nE(I,J)=l and c, ~~(l)n-f(l,.f)SA~(J). 

Denote 

a(-& K)= c KK(J), ML, K)= C KK(J), 
Jn L=O JnL#@ 

c(L, K J) = AL(J) -c K:(I)d(h J), 4-k K) =C CCL, K J), 
I J 

d(L, K)=u(L, K)+b(L, K)+c(L, K); 

KK(J) 
d(J)=--_ JnK=@, 

KK (J) 
a(L, K)’ 

r;(J) =- 
b(L, K)’ 

JnK#& 

q:(J) = 
4-k K J) 
c(L, K) 

Now consider the following stochastic mechanism. Suppose the processes X and 

Y have been generated up to time T, and at time T a failure is obtained (or T = 0). 

Let XT = K, Y,- = L, and suppose K 2 L (induction hypothesis). Then the next 

failure time and pattern are determined as follows: 

1. Choose the waiting time W until the next failure from the distribution 

Exp(d(L, K)). 
2. Give a random variable U the value 1, 2 or 3 with probabilities 

a(-& K)Id(L, K), b(L, K)Id(L, K) and c(L, K)/d(L, K) respectively. (1 means 

failure in process X only, 2 in both X and Y and 3 in Y only.) 

3. Choose the next failure pattern as follows: 

if CJ = 1, take J from the distribution p: and set XT+w = K\J, YT+ w = L; 

if U = 2, take I with the distribution r: and set X,,, = K\I; then choose J with 

the distribution rrE(I, .) and set YT+w = Y\J; 

if U = 3, take J from the distribution q: and set X,,, = K, YT+w = L\J. 

Then the inclusion X,,, 2 Y7+ w holds, and it is easily seen that the algorithm 

above gives correct transition intensities to both processes X and Y. Thus we have 

proved the proposition. q 

From Proposition 5.4 we obtain a sufficient condition for a MED to be weakened 

by failures: 
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5.5. Proposition. Let P be MED with intensity function AK(I). Suppose that for all 

K,LwithK=,L,if<AL.ThenPisWBF 

Proof. We prove the proposition by showing that the residual prediction process 

of the system decreases at failure times. By the Markov property, the value of the 

residual prediction process at time t is MED with intensity function h,(l) and 

initial state X,. Thus we only have to show that if we consider two MED’s with 

intensity function AK (I) and initial states K, L such that K 2 L, then the distribution 

with smaller initial state is stochastically smaller. But this follows directly from 

Proposition 5.4. 0 

The condition in Proposition 5.5 has a simple intuitive meaning: having fewer 

operating components implies higher failure intensities for the remaining ones. In 

the special case that the components fail only one at a time, the condition is simply 

the following: 

for all i6 Lc K, hK({i})dAL({i}). 

Next we shall discuss the necessity of our conditions for stochastic order and WBF 

by a multivariate exponential distribution. First we note that in Proposition 5.4, the 

condition is necessary for K = X0, L = YO: 

5.6. Proposition. Let P (Q) be a MED with intensity function K (A) and initial state 

K (L). Suppose that P 3 Q. Then LE G XL. 

Proof. Let Vs 4 be any upper set. Denote a = zf( V), b = i,( V). We have to show 

that ash. Denote V’={ZE V: Ic L} and V”={ZuJ: IE V’,Jr L”}. It is easy to 

see that V” is an upper set and a = K*F( V”) and b = iL( V”). 

Assume the contrary: a > b. Let X be the canonical failure process and consider 

P and Q as distributions for X. Now, by the differential definition of intensity, 

P(XC,E V”)=P(X;UJ,E V”, T,cF<T~)+o(~) 

= P(J1 E V”, T, < ~<T~)+o(e)=ae+o(e) 

and, correspondingly, Q(Xz E V”) = be + o( e). (T, and J, are defined at the begin- 

ning of Section 2.) Thus P(XC, E V”) > Q(XT. E V”) when F is sufficiently small. But 

{XC, E V”} is a lower set (on the canonical space a, or, through the natural identifica- 

tion, on KY:). Thus we get a contradiction with the assumption P2 Q. 0 

The condition in Proposition 5.5 can now be shown to be necessary in the case 

where all transitions are possible. 

5.7. Proposition. Let P be MED with intensity function AK (I). Suppose that AK (I) > 0 

for all K, I such that C$ # I c K. Then P is WBF if and only if if =G i, for all L, K 

such that Lc_ K. 
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Proof. The ‘if’ part is Proposition 5.5. The ‘only if’ part follows from Proposition 

5.6, since for any K, L such that K 3 L, the transition K + L occurs with positive 

probability: thus the MED with intensity function A,(Z) and initial state K must 

be bigger than that with initial state L. 0 

Remarks. 1. The Markov property of X implies that the residual prediction process 

is constant between failure times. Thus, for a MED, WBF is equivalent to MIFR. 

2. By Theorem 3.8 and Proposition 5.5, the condition i,” s XL implies association 

for MED. Though this condition is to a certain extent also necessary for WBF 

(Proposition 5.7), it is not necessary for association. For example, Sagsveen [ 151 

proved that in the bivariate case, MED is associated if 
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