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a b s t r a c t

Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant disorder characterized by

progressive heterotopic bone formation in skeletal muscle tissue. Patients with FOP show malformed

digits, osteochondroma, and other skeletal abnormalities due to abnormal patterning during develop-

ment. Heterozygous mutations in the Activin A receptor type I (ACVR1) gene, which encodes the bone

morphogenetic protein (BMP) type I receptor ALK2, have been identified in not only typical FOP

patients but also patients with unusually mild or severe clinical features. The serine/threonine kinase

activity of ALK2 may be constitutively activated by mutations in the GS domain or the kinase domain.

Based on these findings, selective small chemical inhibitors and allele-specific RNAi approaches for

mutant ALK2 have been developed for preventing heterotopic bone formation in FOP. Other novel

treatments have also been reported to block heterotopic bone formation in patients with FOP. These

findings open the door to the next step in FOP treatment and related research.

& 2012 Japanese Association for Oral Biology. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal
dominant disorder that causes progressive heterotopic bone forma-
tion in skeletal muscle tissue [1–3]. A heterozygous substitution of
‘‘G’’ with ‘‘A’’ in the Activin A receptor type I (ACVR1) gene at
position 617 (c.617 G4A) has been identified in both familial and
sporadic cases of FOP [4]. The ACVR1 gene encodes ALK2, a type I
receptor for bone morphogenetic proteins (BMPs), which are potent
bone growth-inducing factors in mammals [3]. BMPs, but not the
ciation for Oral Biology. Published

iology, Research Center for

397-1 Yamane, Hidaka-shi,
related transforming growth factor-b (TGF-b) or activin, are able to
induce heterotopic bone formation in skeletal muscle tissue [3,5].
The differences in the biological activities of BMPs and other
members of the TGF-b family are explained by the specific intra-
cellular signaling pathways that are activated through cell surface
BMP receptors.

The members of the TGF-b family bind to type I and type II
receptors on their target cells [5] (Fig. 1). Both types of receptors
are transmembrane serine/threonine kinases. Type I and type II
receptors recognize different types of substrates and are classified
on the basis of their structures. Type I receptors have a conserved
‘‘GS’’ domain, which is a glycine- and serine-rich domain in the
intracellular region. These receptors are inactive kinases until
bound to a ligand. Type II receptors lack the GS domain and are
constitutive active kinases that phosphorylate the GS domain of
by Elsevier B.V. All rights reserved.
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Fig. 1. BMP and its receptors. BMPs bind to type I and type II receptors, which are

transmembrane serine/threonine kinases that are expressed on the cell mem-

brane. The type II receptors (BMPR-II, ActR-II, and ActR-IIB) phosphorylate the GS

domain of the type I receptors (ALK1, ALK2, BMPR-IA/ALK3, and BMPR-IB/ALK6).

The activated type I receptors subsequently phosphorylate downstream effectors,

such as Smad1/5/8, in the cytoplasm.
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the type I receptors in the ternary complex that is formed on
ligand binding. BMP signaling is transduced by 4 types of type I
receptors (ALK1, ALK2, BMPR-IA/ALK3, and BMPR-IB/ALK6) and
3 types of type II receptors (BMPR-II, ActR-II, and ActR-IIB)
(Fig. 1). The phosphorylation of the GS domain activates the
kinase activity of type I receptors by changing their three-
dimensional structures. Thus, the GS domain is considered the
molecular switch of the type I receptor.

The c.617 G4A mutation in the ACVR1 gene, which was first
identified in patients with FOP, causes an arginine-to-histidine
substitution at position 206 (p.R206H) in ALK2 [4]. The p.R206H
mutation is located in the GS domain and is expected to change
the kinase activity of ALK2 in patients with FOP [4]. The over-
expression of the mutant ALK2 p.R206H induces a set of BMP
signaling cascades in cultured cells [6,7]. Therefore, FOP is
considered the first example of a genetic condition caused by
the gain of function of BMP receptors in mammals. Recently,
genetic diagnoses have identified variants of FOP that have
different clinical features and are caused by novel mutations at
different positions in ALK2. In addition, some novel potential
treatments have been found to block or reduce the heterotopic
bone formation induced by the mutant ALK2 in a mouse model of
FOP and in patients with FOP.
Fig. 2. Mutations in ACVR1/ALK2 identified in patients with FOP. Each number

indicates the position of a mutation detected in the cDNA of the ACVR1 gene (c) or

in the ALK2 protein (p). Note that all of the mutations are localized to the

intracellular domain of ALK2.
2. Typical features of FOP

The p.R206H mutation in ALK2 was the first identified sub-
stitution in FOP. This typical mutation is found not only in
sporadic cases but also in familial cases of FOP in several different
populations, including African-American, European American,
European (UK), Korean, native Brazilian, and Japanese patients
[4,7,8]. FOP is transmitted in an autosomal dominant fashion. In
early studies, mutations in a 36 cM region at chromosome 4q27–
31 and in the NOG gene (encoding the BMP antagonist noggin)
were reported as potentially responsible for FOP, but the ACVR1

gene was mapped to chromosome 2q23–24 [4,9,10]. Causative
mutations in the NOG gene have since been excluded by linkage
and mutational analyses [11]. The overexpression of BMP-4 in
lymphocytes has been reported in FOP patients, suggesting that
BMP-4 is one of the downstream target genes of BMP signaling in
a positive feedback loop [12].
Most patients with the p.R206H mutation exhibit a malforma-
tion of the big toes (hallux), i.e., hallux valgus, as one of the
typical phenotypes that can be recognized at birth before hetero-
topic bone formation begins. In 16 Japanese patients, 29 out of 31
feet (93.5%) showed hallux deformities at various degrees [13].
Patients with the p.R206H mutation also showed osteochon-
droma of the proximal tibia and other skeletal malformations
due to disorganized patterning during development [1].

Heterotopic bone formation in FOP patients can be induced by
local skeletal muscle injury, including intramuscular immuniza-
tion, biopsy, and surgical operation [1]. Influenza-like illnesses are
also known to induce heterotopic bone formation in FOP patients.
However, heterotopic bone formation is not observed in the
diaphragm, tongue, extra-ocular muscles, cardiac muscle, or
smooth muscles of patients with FOP [1–3]. The molecular-level
differences between the bone-inducible and bone-uninducible
muscles are still unknown.

FKBP12 binds to the immunosuppressive drug FK506 and has
been suggested to be involved in the suppression of intracellular
signaling via type I TGF-b and BMP family receptors [14,15]. It binds
to the GS domain of unbound receptors and is released through the
phosphorylation of the GS domain by type II receptors in response to
ligand binding [15]. The p.R206H mutation has been shown to
reduce the affinity of ALK2 for FKBP12, in the absence of ligand
binding, in a pH-dependent manner [16].
3. Variations in FOP

After the identification of the p.R206H mutation in ALK2 in 2006,
additional genetic mutations have been found in the coding region
of ACVR1 in patients who show heterotopic bone formation and
other skeletal abnormalities (Fig. 2). In the GS domain of ALK2,
4 mutations have been found in addition to p.R206H: p.L196P,
p.P198-F199del_insL, p.R202I, and p.Q207E [17–19]. Moreover,
several mutations have been found in the serine/threonine kinase
domain of ALK2, such as p.R258S, p.G325A, p.G328E/R/W, p.G356D,
and p.R375P [18–23]. Some of the mutations in the kinase domain
have been suggested to be exposed at the interface with the GS
domain and to be involved in the interaction with FKBP12 [19,20].

The clinical features in patients with these mutations in ALK2,
except p.R258S, are different from those in patients with the



Fig. 3. Treatments for preventing heterotopic bone formation in FOP. Treatments

developed for preventing heterotopic bone formation are indicated in this

schematic of BMP signal transduction. The details are explained in the text.
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p.R206H mutation. Four independent patients with the p.G356D
mutation exhibited shortening/truncation malformations of the
thumbs and halluces [18,23]. Severe malformations in the thumbs
and halluces were observed in other patients who had the
p.G328W and p.G328E mutations [18,22]. The tight link between
heterotopic bone formation, the mutations in ALK2, and the
malformations of the digits suggests that the fine-tuning of BMP
signaling is required for the normal development of the skeletal
muscle, thumbs, and halluces. Indeed, it was reported that the
transient activation of BMP signaling is essential for normal
muscle regeneration in adult mice [24]. Moreover, deletion of
the Bmp-4 and/or Bmp-7 gene causes skeletal abnormalities,
including polydactyly, in newborn mice [25].

In contrast to the severe digital phenotypes seen in FOP
patients, some patients who have other mutations in ALK2 have
milder phenotypes, especially with respect to heterotopic bone
formation in the muscle. One patient did not have hallux
malformations at birth but developed trismus and heterotopic
bone formation in the thigh muscle after a motorbike accident at
the age of 21 years [17]. The p.L196P mutation was identified in
this patient by sequencing [17]. Modeling of p.L196P in silico

revealed a steric clash with the kinase domain that is predicted to
weaken its interactions with FKBP12 [17]. The overexpression of
the p.L196P mutant in C2C12 myoblasts induced BMP signaling
equivalent to that of the p.R206H mutant, at least in vitro,
suggesting that the p.L196P mutation activates ALK2. However,
ALK2 activity may have been suppressed in vivo (i.e., in the
patient) by some unknown molecular mechanism prior to the
motorbike accident [26].

Recently, another novel mutation in ALK2 was identified in a
patient with congenital hallux valgus. In this patient, heterotopic
bone formation was induced by a viral illness at age of 47 years [27].
Analysis of the ACVR1 gene revealed heterozygosity of a c974G4C
mutation that causes a p.G325A substitution in ALK2 [27]. Another
FOP patient, who had normal toes and showed slow progression
of heterotopic bone formation, had a c.1124 G4C mutation that
caused a p.R375P substitution [18]. Together with the p.L196P case,
these FOP cases with late-onset heterotopic bone formation suggest
the importance of the genetic diagnosis of FOP even in patients who
do not show typical clinical features.
4. Development of treatments for preventing heterotopic
bone formation

Although there is no effective treatment for preventing hetero-
topic bone formation in FOP, several trials of new treatments have
been initiated based on the ALK2 findings (Fig. 3).

Because most of the ALK2 mutations found in FOP patients
represent activated forms of the BMP receptor, a specific inhibitor
of this receptor would prevent the intracellular signaling induced
by the mutant ALK2. LDN-193189 was developed on the basis of
structure of dorsomorphin, which inhibits the phosphorylation of
Smad1/5/8 but not p38 by BMP type I receptors. Treatment with
LDN-193189 reduced heterotopic bone formation in mice carry-
ing a p.Q207D mutation in ALK2 [28]; it should be noted that
this mutation has not been identified in FOP patients. Recently,
two small compounds produced by fungi, NG-391 and NG-393,
were shown to inhibit BMP signaling by mutant ALK2 (p.R206H)
in vitro [29].

Recently, retinoic acid and related chemical compounds were
found to be potent inhibitors of BMP signaling induced hetero-
topic bone formation in the skeletal muscle [30]. Because BMPs
induce heterotopic bone formation via endochondral ossification,
retinoic acid was examined as an inhibitor of chondrogenesis
in vitro and in vivo. The inhibitory activity of retinoic acid is
mediated via RAR-g but not RAR-a or RAR-b [30]. A synthetic
selective agonist of RAR-g inhibited heterotopic bone formation
induced by BMP-2 in skeletal muscle [30]. Other types of RAR-g
agonists also had similar effects on heterotopic bone formation.
Among them, CD1530 blocked FOP-like heterotopic bone forma-
tion in mutant mice carrying the ALK2 p.Q207D mutation [30].
CD1530 has been suggested to inhibit BMP signaling by reducing
SMAD protein levels [30].

Chemical inhibitors of BMP receptors may suppress the intra-
cellular signaling induced by both wild-type and mutant ALK2. To
develop a specific inhibitor of mutant ALK2, allele-specific RNAi
has been tested. Double-stranded small RNAs with simple muta-
tions targeting the p.R206H-coding transcript were not allele
specific and inhibited both the mutant and wild-type ACVR1

transcripts in vitro [31]. However, the introduction of a single
additional nucleotide mutation in the RNA generated an allele-
specific dsRNA that suppressed the expression of only the mutant
ALK2 [31]. This allele-specific inhibition by RNAi was confirmed
to suppress expression of both the p.R206H and p.G356D mutant
proteins [31]. Thus, allele-specific RNAi may represent a novel
type of treatment for FOP.
5. Treatments preventing heterotopic bone formation in FOP

There has been one case report of FOP that described the
prevention of heterotopic bone formation for 14 years [32]. The
patient, who had a c.617 G4A mutation, received bone marrow
transplantation for the treatment of intercurrent aplastic anemia. No
heterotopic bone formation occurred during the 14 years during
which the patient received immunosuppressive drug treatment
(prednisone, cyclosporine, and methotrexate) after the bone marrow
transplantation [32]. However, heterotopic bone formation resumed
when the patient discontinued these medications. This resumption
of heterotopic bone formation indicates that bone marrow trans-
plantation is not an effective treatment for FOP in spite of the fact
that BMP-4 overexpression in lymphocytes has been reported
previously to underlie heterotopic bone formation. This case also
suggests that the immune system may be involved in the induction
of bone formation in FOP patients.

Recently, it was reported that a combination of rosiglitazone
and low doses of prednisone effectively prevented heterotopic
bone formation in a patient with FOP [33]. The suggested
molecular mechanism of this action is that rosiglitazone induces
the activation of PPAR-g, which promotes the differentiation of
bone marrow mesenchymal stem cells into adipocytes rather
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than into osteoblasts. These two case reports suggest that treat-
ments that do not directly block BMP signaling may still effec-
tively prevent heterotopic bone formation in FOP patients.

A recent finding describing a role for vascular cells suggests an
alternative treatment strategy [34]. Endothelial cells express some
cell surface-specific markers, such as Von Willebrand factor (vWF)
and TIE-2. Immunohistochemical staining of the heterotopic bones
formed in FOP patients showed that both chondrocytes and
osteoblasts, which were identified by staining with anti-Sox9
and anti-osteocalcin respectively, were co-stained with vWF and
Tie-2. In normal bone tissues, these endothelial markers were not
detected in either chondrocytes or osteoblasts, suggesting that
endothelial cells transdifferentiate into mesenchymal cells in FOP
patients. Indeed, the over-expression of ALK2 p.R206H, but not
wild-type ALK2, induced the mesenchymal transdifferentiation
of cultured endothelial cells into osteoblasts, chondrocytes, and
adipocytes [34]. Moreover, the treatment of endothelial cells with
BMP-4 and TGF-b2 did not induce heterotopic bone formation
in vivo but did induce the same changes in vitro [34]. These findings
suggest that the conversion of endothelial cells into mesenchymal
cells is a critical molecular mechanism underlying heterotopic
bone formation in FOP patients.
6. Conclusions

All patients with FOP exhibit mutations in the GS domain or
kinase domain of ALK2, a type I BMP receptor. Although most FOP
patients share many common clinical features, several novel
phenotypic variations that characterize FOP have also been found.
The genetic diagnosis of FOP through the sequencing of the ACVR1

gene is useful. The development of specific inhibitors of ALK2 and
other types of treatment will be useful to prevent heterotopic
bone formation in FOP patients.
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