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In this series of three papers we discuss finitely presented infinite simple
groups. It is known (see [3]) that every finitely generated group with
solvable word problem can be embedded in a finitely generated simple
subgroup of a finitely presented group. Since all finitely generated subgroups
of finitely presented simple groups have solvable word problem, it is natural
to ask which classes of finitely generated groups with solvable word problem
can be embedded in finitely presented simple groups. The first paper contains
a method for constructing finitely presented infinite simple groups. In the
second paper we show that certain finitely presented Abelian groups and all
linear groups over the integers can be embedded in finitely presented simple
groups. Finally, in the third paper we show that a particular finitely
presented group with unsolvable conjugacy problem can be embedded in a
finitely presented group and that this gives a finitely presented simple group
with unsolvable conjugacy problem.

The work in this and the following two papers was done with the guidance
of Professor Graham Higman. I would like to thank him for all this help.
This work-was done under the sponsorship of the Science and Engineering
Research Council.

INTRODUCTION

This paper extends the work done by Higman [1], which is in turn based
on work done by Thompson [3]. The formulation here resembles that of [1]
rather than [3].

The aim is to describe a procedure for constructing finitely presented
infinite simple groups. We take a finitely presented simple group, G, ,,
constructed in [1] and a large group, %, ,, which contains it. We shall prove
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the result, essentially due to Thompson, that if K is a group satisfying
G, <K< Z,, then the derived subgroup, K’, is simple. This results leads
us to construct subgroups of ¥, | which are finitely presented, contain G,
and have derived subgroups of finite index. The resulting derived subgroups
are finitely presented simple groups.

We take certain types of subgroup, H, of ¥, , and produce a set, y, of
defining relations for the group (G, ,, H). We show that if H is a finitely
presented subgroup of an inverse limit of wreath products, then the set of
relations, y, is finitely based. Thus (G, ,, H) is a finitely presented group.

Using this procedure we can construct a finitely presented simple group
containing GL(3,7) (see [2]), which is not contained in any of the
previously known finitely presented simple groups (see [1]). So, using this
method, we do indeed get some new examples of such groups.

DESCRIPTION OF %, | AND G, |

Let W be a free semigroup, with 1, freely generated by {a,,...,a,}. We will
always assume that #n > 2; (if n = 1 the construction gives nothing new).

A subset of W is called a subspace if it is closed under right multiplication
by elements of W.

A subspace, Y, of W is called inescapable if given any u € W there exists
some w& W such that uw€ Y. For example, the set Y={weE W|w
contains at least one a,} is an inescapable subspace of W.

A subspace, X, is called cofinite if |W\X| < 0o. Since there is a finite
bound on the length of words not belonging to X, a cofinite subspace is
inescapable.

A homomorphism, 0, between subspaces of W, is a map satisfying
(uw)8 = (uf)w, for all w € W, whenever ufl is defined. An isomorphism is a
bijective homomorphism and if the domain and range of an isomorphism are
inescapable (cofinite), then it is called an inescapable (cofinite) isomorphism.

If u, v € W, then u is said to be an initial segment of v if there exists some
w € W such that uw =v. We call u a proper initial segment of v if w# 1.

If Z is a subspace, the set {y € Z | no proper initial segment of y belongs
to Z} is called the basis for Z. A subset of W is a basis if it is the basis of
some subspace. An inescapable (cofinite) basis is the basis of some
inescapable (cofinite) space. Bases are precisely the subsets U, of W, such
that no element of U is a proper initial segment of any other element of U,
and U is a basis for Z if and only if it is the unique maximal basis such that
every element of Z is uw, for some u € U, w € W. A basis is inescapable if
and only if it is a maximal basis, and is a cofinite basis if and only if it is
maximal and finite. Thus every basis is contained in some inescapable basis,
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and it is not hard to see that every finite basis is contained in a cofinite basis
(see [1]).

We are particularly interested in cofinite bases, so we note some basic
results. Proofs, explanations and a detailed discussion of cofinite bases and
G,., in general, can be found in [1].

If U={u,,.,u,} is a cofinite basis, then so is U’ = {u;,...,u;_,,
UiQy ey Uiy Up 14y U}, U’ is called an elementary expansion of U. Any
basis which can be obtained from U by a finite series of elementary
expansions is called an expansion of U. Every cofinite basis is an expansion
of the basis {a,,..., a,}, and if U, V are cofinite bases we can find a cofinite
basis which is an expansion of them both. Since any finite basis is part of a
cofinite basis, given z € W, we can find a cofinite basis, and hence a cofinite
subspace, containing z.

By an extension of an inescapable isomorphism, 6, we mean an
inescapable isomorphism, #’, such that uf’ = uf, whenever uf is defined.
Also, 6 is maximal if it has no non-trivial extensions.

LemMmA 1. Every inescapable isomorphism, 6, has a unique maximal
extension, 0*.

Proof. If @ has domain Y, define
Y*=1|zE€ W|3y € W((zw)0 = yw, for all w€ W such that zw € Y)}.

Then Y* is an inescapable subspace, because Y is and @ is a homomorphism.
Define a map, 8*, on Y* by the rule z6* = y, where (zw)f = yw whenever
zw € Y. If z € Y'*, then (zu) 6* is defined, for all u € W. Choose any w € W
such that zuw € Y; then (zuw)@ = yuw, by definition of 8*. So (zu)0* =
yu = (z0*)u, and #* is a homomorphism. If z* = y = v6*, choose w such
that zw, vw € Y. Then (zw)8 = yw = (vw)6, and so zw = vw. Thus z =v and
#* is injective. The range, Z*, of #* is a subspace, since * is an
isomorphism, which contains the range of #. Thus Z* is an inescapable
subspace and 6* is an inescapable isomorphism which clearly extends 6.

Suppose that ¢ is an inescapable isomorphism which also extends 8. If
x¢=v, then, for any w such that xw€ Y, (xw)f=ovw. So x€ ¥* and
x0* = v, ie., 8* extends ¢. Thus 8* is the required maximal extension of 6.

If # and ¢ are inescapable isomorphisms, we define the composition, § © ¢,
by the rule u(f o ¢) = (u6) ¢, whenever (uf)¢ is defined. It is easy to see that
fo ¢ is an inescapable isomorphism and straightforward checking of the
groups axioms yields:

LEMMA 2. The set of maximal inescapable isomorphisms forms a group
under the operation 8¢ = (0 o §)*.
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We call this group %, and it is essentially the group constructed by
Thompson [3].

The maximal extension of a cofinite isomorphism is also cofinite and it is
again straightforward to obtain:

LEMMA 3. The set of maximal cofinite isomorphisms forms a subgroup
Guiof Ty

The group G, , is the same as the group so named in [1]. We note here
that if X = {x,,..., x,}, we can define cofinite subspaces of the set of words
XW={x;w|1ig<r, wE W}. Again we have that the set of maximal
cofinite isomorphisms forms a group, G,,. This group is also finitely
presented, and is constructed in detail in [1].

We now construct and define the elements and subgroups of %, | in which
we are interested.

SYMBOLS AND H-EXPANSIBLE GROUPS

A column is an object of the form

u
g )
v

where u and v are words in W and g € %, ,. We say that k € %, | has or
contains the above column if, for all w € W such that wg is defined, (uw)k is
defined and (uw)k = v(wg). In this case, & is said to be almost defined on u.

LEmMMA 4. If k has the columns

then g=h and v = y.

Proof. There exists an inescapable subspace, Y, on which both g and A
are defined. By definition, for all w € Y, (uw)k = v(wg) = y(wh). Thus we
can suppose that v = yx, for some x € W. Then wg = x(wh), for all w € Y.
This implies that every word in the image of ¥ under g has initial segment x.
But Yg is an inescapable subspace and so we must have x=1. Thus v =y
and wh=wg, for all we€ Y. Since & and g are equal on an inescapable
subspace, Lemma 1 gives h = g.
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We say that g € &, | is expansible if there exists a cofinite basis on which
g is almost defined.
Let g€ %, , be expansible and almost defined on the cofinite basis
{1y 5.y ug}. If the columns
U
&i
v

i

belong to g, we call the set of these columns a symbol for g and write it

u, - U
& o & |- ()
v, e U

It is easy to see that {v,,..., v} is a basis; to show that it is a cofinite basis
we need to show that it is maximal. If {v,,..., v,} is not maximal, then there
exists some v, which can be taken in the range of g, which is independent of
this set (i.e., for no v; does there exist w, y € W such that vw=uv, y). Let
xg=v. The set {u,,..,u;} is a cofinite basis, so there exist w, y such that
xw=u;y, for some u;. Choose z such that (yz)g; is defined and then
(xwz)g=vwz and (u;yz)g=v,(yz)g;. So v and v, are not independent,
which is a contradiction. Thus {v,,.., v,} is also cofinite basis.

If g, has symbol

xl e xr
h, - h |,
Yoo Yy
then the symbol
Uy e Uy WXy e Ui, Uy e U
& - & M R gy o &
Uy o Uiy Uiy o Ui Uing ot U

is also a symbol for g and we call it an expansion of I. Any symbol which
can be obtained from I' by a finite series of expansions is also called an
expansion of I'. Also, I is called a contraction of any of its expansions.

LemMMmA 5. If g and k have symbols respectively

ul e us vl "o US
(gl gs) and (kl ks),
v, e v, Yoo Y
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then gk has symbol

ul e uS
gk, o gsks)'
i s

Proof. Define a map, 7, by the rule (u;w)r = y,(wg;k;), whenever w(g;k;)
is defined. Since {u,,...,u;} and {y,,..,y,} are cofinite bases and g; and k;,
are inescapable isomorphisms, 7 is an inescapable isomorphism.

The set Y= {u;w|1 Li<s, wg; and (wg;) k; defined} is an inescapable
subspace and, for all y € Y, yr = y(gk). Thus, by Lemma 1, gk is the unique
maximal extension of z. If w(g,k;) is defined, then (u,w)gk= (y;w)r=

yiwg;k;), so gk has the above symbol as required.

We call the third symbol above a combination of the first two.

Let HE KK . A symbol for g€ %, | is called an H-symbol if all the
elements of the mlddle row of the symbol belong to H.

A group K (containing H, as above) is said to be H-expansible if it
satisfies the following two conditions:

(i) for all g € K, there exists a cofinite basis {u,,..., u,} such that g
contains the columns

i
i £l

for some A, €E H, v, € W,

(ii) there exists a set of generators, (g,);c;,» for K such that every
element g; g; - g; , of K, has an H-symbol which is the combination of
some H-symbols for g; ..., g; .

The first condition ensures that every element of K has an H-symbol and
the second ensures that every relation in K has an H-symbol. We need both
of these conditions when we discuss a defining set of relations for K, below.

LEmmA 6. If K is H-expansible, then any set of generators for K satisfies
condition (ii) above.

Progf. Suppose that (k; ),e ; also generate K. Every element k; --- k; can
be written in the form g; .- g; - o By By By assumption there are
H-symbols for each g, whose combmatlon is an H-symbol for this word.
But the combination of the subset of these symbols for i, v Birp is an H-
symbol for k;. In this way we get H-symbols for each k ;,» Whose
combination is an H-symbol for the original word considered. (Note, since
%, . is a group, and therefore associative, the combination of symbols is an

n,
associative operation.)

481/90/2-2
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Let H be a subgroup of &, ,. We are interested in groups of the form
(G,..,H), the group generated by G,, and H. We shall reserve script
notation for subgroups of %, ; containing G, , and -# will always be the
group (G, ,, H)

At this point we introduce notation which will be used throughout this and
the following papers. For A € , |, it is easy to see that the map given by the
rules

a,w - a,(wh), whenever wh defined

a;y—a;y, 2ign, forallye w

is an inescapable isomorphism. By o, we will always mean the unique
maximal extension of this map.

LEMMA 7. The groups H and H* = {0, | h € H} are isomorphic.

Proof. We define a map 6:H—- H* by the rule h8=o,. Given
k,h€ %, |, let Y be an inescapable subspace such that, for all y € Y, (yk)h
is defined. Let Z be the inescapable subspace consisting of all elements of the
" form a,y or a;w, for y€Y, w€W and 2 ign For any z€Z,
20,6, = 204,, and so, by Lemma 1, 6,0, = 0,,. Thus # is a homomorphism.

If o,=0,, then wh=wk, whenever both are defined. There exists an
inescapable subspace on which both A and k are defined and so, again by
Lemma 1, # = k. Thus 4 is an isomorphism, as required.

We will often want to talk about elements of %, , in terms of their
symbols. Any object of the form

ul “ee uS
(gl Tt g_s)’
vl cas vs

where {u,,..,u;} and {v,,..,v,} are cofinite bases and g, €%, ,, will be
called a symbol. By the element, t € %, |, with this symbol we mean the
unique maximal extension of the map 7*, given by (u,w)7* =v,(wg,), for all
w such that wg,; is defined (1<i<s). It is easy to see that ™ is an
inescapable isomorphism so, by Lemma 1, in this way every symbol defines
a unique element of Z, ;.

In particular, if a is any element of G, |, choose a cofinite basis {u,,..., &}
in the domain of a. Then « has the symbol

ul see uS
N )
ua e ug

5
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Furthermore, if {u,,..., #,} and {v,,..., v,} are any two cofinite bases, then

U, < U
v, e U

is a symbol for some element of G,, ;.

Conversely, if I' is a symbol for g in the sense defined prior to Lemma 5
and I defines the element ¢ in the manner just indicated, then we see that
(u;w)e = (u;w) e* = v,(wg,) = (u;w) g, for all w such that wg; is defined.
Thus g and ¢ are equal on an inescapable subspace and so, by Lemma 1,
g=¢. Thus a symbol for g € %, ;| defines g and the above definitions are
reasonable.

It is worth noting, and is easily seen be a similar argument to that above,
that if a symbol, 4, defines 7 € ¥, ,, then any expansion of 4 also defines 7.

From now on we shall assume that the group -# is H-expansible.

Lemma 8. If # is H-expansible, then # and .# =(G, ,H*) are
equal.

Proof. We need to show that H* € .# and H < ,.#.
Since # is H-expansible, for given # € H we can find an H-symbol,

ul v uS
(,,1 ,,S),
Uy e 0

for A. Choose a cofinite basis {a,, w,,.., w,} and let @, y; and B be the
elements of G, ; with symbols respectively

u, u, - U
1 1 .. 11,
al w2 e WS
a, wy e Wi Wy Wi e Wy a, W, e W
1 1 ... 1 1 1 e 1 and 1 1 ..« 1 .
Wi W, e Wiy @y Wi, ot W v, Uy e D

for 2 € i< S. By definition, for k € H, o, has symbols

al a2 Py an a‘ W2 vea WS
(k 1 - 1 ) and ( kK 1 - 1).
al az Y a" al W2 aea wS
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Then, by Lemma 5, the product 0Oy V204, VsOhYs +** V37,8 has symbol

ul..- us
hy - h
Ul... vS

But a symbol for % defines the unique element % and so A=
a0y, -+ Y50y Vs -+ V2B E(G,,1, H*), for any h € H.

Since h € &, |, there exists some p such that 4 is defined on y. Expand the
column

repeatedly until we obtain a set of columns
wz, - uz
kp - k|,
UiX, o UX,

where each z; is longer, as a word, than y. The set {z,,..., z,} is a cofinite
basis and so, for some z;, there exists x such that yx = z;. But A is defined on
u, yx so h contains the column
u, yx
(7
v

for some v € W. Thus, by Lemma 4, k;=1 and so we can expand the above
symbol for A to a symbol of the form

xl e xt W
(gl e 8 1)’
Yo oo Ve Z

for h. We can now expand this to the symbol

Xy v X, wa;, -+ wa,
Y, - Y, za, - za
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By definition of ¢,, the symbol

ax, - ax, aw a, - a,
g g 1 1 - 1
@y, o a4y, a4z a, - a,

is a symbol for o,. If §, p € G, , are the elements with symbols respectively

ax, a,x, aw a, a,
1 1 1 1 1 )
X, X, wa, wa, wa,
and
y, -y, za, za, - za,
( 1 e 1 1 1 e 1 )
ay, = ay az a, -4y

then, by Lemma 5, 0, and d#p have the same symbol. Thus o, = dhp € #
and # = #, as required.

From the above lemma we see that we can, and we will, take -# to be
generated by the generators of G, | and the set {g, | & belongs to some fixed
set of generators of H}.

LEMMA 9. If g€ # and # is H-expansible, there exists a unique H-
symbol for g which has every other H-symbol for g as an expansion.

Proof. Suppose that

Uy - U Xy o X
I’=(h1 hs) and A=(kl k,)
Uy - U Yoo Y
are two H-symbols for g, neither of which is a non-trivial expansion of any
H-symbol. Since {u,,..., u,} and {x,,.., x,} are cofinite bases we can assume,
by swapping I' and 4 and reordering their columns if necessary, that
Uy = X2y, U, =X, 2,, for some cofinite basis {z,,..., z,}.

The set, Y;, of all we& W such that both wh, and (z,w) k, are defined is an
inescapable subspace. For all weE€Y,, v,(wh)=(x,z,w)g=y,(z;w)k,. If
v;p=1y,, for some p€ W, then wh,= p(z,w) k,. Thus every word in the
inescapable subspace y;A; has initial segment p, so we must have p= 1.

Hence we can assume that v, =y, w,, for some w; € W. Since {v,,...,v,} is a
cofinite basis, so is {w,..., w, b
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Let A be the eiement with symbol

zl e zt
hy, - B
wl ava wt
Then I’ contains the columns
X112y e Xy 2
h, h,
BSL ST 41 ¢"

and hence can be contracted to the symbol

Xy Uy 0 U
h ht+1 hs
Vi Uspr o0 U

By Lemmad, h=k, € H, so this is an H-symbol for g which is a
contraction of I. By assumption this contraction cannot be non-trivial, so we
must have z;=--- =z,=1 and u, = x,. Then, from Lemma 4, h, =k, and
Uy =1

Applying this argument to each of the columns of the above two symbols
in turn, we see that these symbols must be identical. Hence every H-symbol
for g can be obtained by expanding a unique uncontractable H-symbol for g.

We call the unique uncontractable H-symbol for g the shortest H-symbol
for g.

DEFINING RELATIONS FOR 4

Throughout this section we still assume that -# is H-expansible. The
element, J, will always be the element of order 2 with symbol

a a - a,, 4a,a a,a - 4a,a,
1 1 s 1 1 1 v 1
a,a, a4 - a4, a, a,a, -+ a,a,

We say that a set, {#,,..., 7,}, of elements of G, , is of fype s if there exists a
cofinite basis {a,, w,,..., w,} such that #; has the symbol

a, W, 0 Wi Wp Wi o W
1 1 ... 1 1 1 -1, 1igs.
w; s

i Waoo Wiy Gy Wiy o W
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We will take as generators of # the generators of G, , and a set {g, | A
belongs to some fixed set of generators for H}. With this set of generators,
the following sets of relations will be shown to define #.

(A) The defining relations of G, , and H* = {0, |h € H}.

The relations in the following sets are written in terms of general elements of
G,, and H*, not just on elements from the chosen generating set. The
elements are considered as a “shorthand” notation for the words on the
chosen generating set to which they correspond. Since we have relations 4, it
does not matter which of the words a particular element of G, , or H* is
taken to represent.

(B) {ao,=0,a|h€EH, a €G, ,, a fixes all words of the form a, w}.
(C) ({d0,00,=0,00,0|h keEH}
(D) {0,=104 1,04, 1,0, Ny -+ N31,€ | h € H}, where

u, u,
hy h
vl e v

s

is any symbol for ¢, {#,,.., #1,} is any set of type s and if {a,, w,,.., w} is
the basis of the domains of the #,, then 7 and ¢ are the elements with
symbols respectively

Uy U, e U a, W, - w
r 1 - 1 and I 1 .. 1
a, w, - W v, v, - U

The element ¢, has unique shortest symbol

al az s an
( A )
al az e an
and considering symbols for all the elements above, we see that the relations
AUBUCUD=yhold in %, |, by Lemma 5.
LemMma 10. If p is any element with a symbol of the form
a, wy - W W, W oo Wy
( 1 1 ... 1 1 1 U | ) ,
W, Wi - w, a, Weop o Wy

the relation po,p~'0,=0,po,p”" is a consequence of ALUBUC.
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Proof. Let a, § be the elements with symbols respectively

a, w, e oW, oW, W, W
11 e 111 e 1
a Xz - Xy a,a; X,y vt Xy
and
a, X3 -0 X, Q0 X Xy
11 e 11 1 e 1
a; Wy e W Wy, Wy s Wy

The relation adf =p is in A and «, § fix a,, so the relations

po,p "0, = abfo,f~ Sa~'a,  (A)

=ado, o 0" (AUB)
= a0, 90, da " ©)
=o,a0f0,8 ' a”' (AUB)
=0,p04p " (A)

are consequences of AU B U C, as required.

LemMma 11. If {n,,..,.1n,} is a set of type s, the relation OpMis1On,,, """
MiOrMi M= = Mis 1Ok Mis1Okyy MOk, = Ong Mis 1 Ony iy, MiOhk, 18 8
consequence of A\ BUC.

Proof. From Lemma 10 we have 4,0,1,0,=0,13,0,1,.

Since n,1,,n, fixes a, (m#7r), n,n,0,1,=n,0,1,1, is a consequence of
AUB.

Thus the relations

OnMm+1Cny,, " MeOn M Mg 10k M 11

m+1
=0, 1 OuMms 1Ck, Mt 1AMy Mimg2

=0pn, N lmi 1Ok, M 10k My 2 Ning2

=0y, " nr—lah,_lﬂm+lakm”m+lnroh,’7r  Mmaa
=0, Mt tMms 10k, Mm+1%n,,, " NrOnp Mr > Uit
MO et M2

=0p k Um+1%n_
mtm m+

are consequences of AUBUC.
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Applying this result to the left-hand side of the relation in the statement of
the lemma, for r=j and m=1i, i + 1,...,j — 1, gives the desired right-hand
side.

The next lemma allows us to ignore the order of the columns in a symbol
when obtaining a relation from the symbol.

LEmMMA 12. If {n,,..n,} is a set of type s and u is a permutation of the
set {m,.,rl, 1<m<r<s, then the relation oy My, Oy, - 1,0, =
@, 0n Mm+10n,,,,, " MNrOn, By is a consequence of ALUBUC, where a,
and 8, have symbols respectively

Wy e Wy Xy Xy ot Xy Wep e W
1 .. 1 1 1 . 1 1 1
Wy o0 Wy Gy Wyq s W Weog e W
and
Wy o0 Wy Wy 0 W, 4 Wepr on Wy
1 1 1 1 1 |
Wy o Wy Vi 0 Ve Vegr Wy 0 W

(xmu,l =ap, X; =W, (Ju # m), Viw-141=815 Vi1 = Wi g (iu #r)).
Proof. If is sufficient to show the result for any u = (ij), m<i<j<r
The relations

OpMiv1 " Op

=M1 Op, Mig1OnMiv 1 Mig2Op, 0 MiOy,
=Hig1On, Miv2Mis1OpMis1 Oy, v HiOp,
F=0iv 1O, Miv2Cn, 0 MjOn i 1 On M
=Nic1Ony, M= MiOn MiOk,_ MiMi10n Miv 1
=0 iR 1Ony,  Mj—1Opy Hifig 1Op Misa
=00 i1 Ony, Mt iMie 1 M2 Oy, M1 On MM 1 On Mis
F=HiOn w1 Ony o Mim1 Op, Myn o MMMl = Wi i1 O i
=0 Mis1Cpyy, Ujm1Op, Mi0p Mis1
are consequences of A\ B\ C, as are the relations
Op, Mm1** Ony My =N = Wi U1 Op M1 2 On, M

and

NiviMjs104,

j+1

Wiva = O, = MjsaCnyy o MO Mo M Mie i Wi 20 Wy
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(using the same techniques). The relations #,,,, --- m;7;%; - 1,,, , =, and
Mo MMM N, =B, @=(ij)) belong to A, so the relation
hyTms10hy, * " MeOn, = QHOp N1 Oy, MO, s Where = (1 1), is
a consequence of AU B C, as required.

THEOREM 1. If the group # =(G, ,H), HE Y, |, is H-expansible,
then the relations y, as described above are a set of defining relation for # .

Proof. Suppose that a,0, a,0,, - a,0, =1 is a relation in -#, where
a,€G,  and A, € H.
A# is H-expansible and so, in view of Lemma 6, we can find H-symbols

Ui 1q o Uiy Uin 0 Uy
1 1 and Li= | kiyv - ki,
Vit U Uir o s

for a; and 0, respectively, such that

fUpp U
& o 8 »
Upy o Uy

where g, =k, ;k, ;- k, ;, is a symbol for the identity. By Lemma 4 we
must have g;=1 and wu,;=u, ;, for 1<j<s. Thus the relations
Oy, =04, Oy, = 1 are consequences of A.

For some set {n;5., 1} of type s, the relations O, = 1,04, M:0k,,
M5Ok, Mg NaE; belong to D, where 7; and ¢; have symbols

Vin Uia = Uy a, Wy 0 W
1 1 - 1 and 1 1 . 11,
a wp e W Uiy Uip v U

respectively. The relations ¢;a;,,7;,, =1, 1 <i<m— 1, are consequences
of A and so the relation

O1Op e Qo Oy =0T, 0, My e Op s oo MOy My o0 Oy, oot M

Ok M2 O, Ms oo M2l

m,s

is a consequence of y. Then, by Lemma 11, the relation a,0, ---a,0, =
0,710, Ny0,, < N0, Mg -+ 1€, IS @ consequence of . We have already
noted that the relations g, = 1 are consequences of y, as are the relations
nin;=a,t,&, = 1. So the relatxon @04 -+ a,a, =1 isa consequence of .
We w1sh to construct finitely presented groups so eventually we will
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consider cases where the relations y are finitely based. With this in mind we
prove the following lemma.

LEMMA 13. The set of relations A\UB\UC is finitely based if H is
finitely presented.

Proof. G, is finitely presented, see {1], so by assumption the relations
A are finitely based.

The group G, , is the set of all maximal cofinite isomorphisms between
subspaces of the set of all words of the form x;w, for some finite set
{X, - X,} which is disjoint from W. This group is also finitely presented, see
[1]. Given an element § € G, ,_, define an element ff by the rules

(@;u)(Bf) = a;v,
(@,u)(ff) = a,u,

where 2 j<n and (x;_,u)f=x;_,v. It is not hard to see that ff€ G, ,
and in fact that f'is an isomorphism between G, ,_, and the subgroup, K, of
elements of G, , which fix all words of the form a,w. Thus K is finitely
generated by, say, {a,,..., a,,}. Then AU B is generated by A and the finite
set {a;0,=0,0a;| 1 <i< m, h belongs to a fixed finite set of generators of
H}.

The set AUBWUC is generated by A, B and the finite set
{00, 00, =0,00,5|h, k belong to the fixed set of generators of H}. Thus
A UBU C is finitely based.

SuBGROUPS OF WREATH PRODUCTS

We now describe a class of subgroups of %, | with the property that, if H
belongs to this class, -# is H-expansible, and, if H is finitely presented, so
is #.

Let A and B be permutation groups of the sets I" and 4, respectively, and
suppose that 4 is finite. We can form the wreath product A wr B as a
permutation group on the set I X 4. However, it will be convenient for us to
regard A wr B as a permutation group on 4 X I'; we can do this since there is
a natural bijection between I"'X 4 and 4 X I'. Thus, if g is an element of
A wr B, the image of (4, y) €4 X I' under g is of the form (b, ya,), where
bE B, a; €A and Jb is independent of y. We can associate g with the set
{b,as| o€ 4}.

There is a natural projection p: A wr B — B given by gp = b. Also, if 4 and
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C are permutation groups and & is a homomorphism 6: 4 —» C, 8 induces a
natural homomorphism 8’: 4 wr B — C wr B, given by

{b,as|d€ 4} {b, (a;)0| 6 € 4).
We also note that the permutation wreath product is associative and so
(AwrBYywrC=A4wr(BwrC)

Suppose that F is a free group acting faithfully on itself by right
multiplication and let .S, be the symmetric group on N = {a,,..., a,}, in its
natural representation. We will define, inductively, F(wrS,)’ to be
(F(wr S,)""Ywr S, and S,(wrS,) to be (S,(wrS,) ')wrS,. Since we
have associative wreath products, we can think of S,(wr S,)'~' as acting on
N, the cartesian product of i copies of N.

If :F>FwrS, is any homomorphism, we define 6,: F(wrS,)' -
F(wr §,)"*! to be the natural homomorphism induced by the homomorphism
6;_,:F(wr S,) "' > F(wr S,), for i=1,2,3,.. and setting 6, = 6. We let p,
and ¢, be the natural projections p;:F(wrS,) - S,(wrS,)”' and
9;: S, (wrS,) = S,(wrS,) "' Then the diagram

FT»erSn—erF(wrS")z—;;m——» F(wr §,)" —» F(wr §,)"" ' —— ...

i i+1
P]J pzl P,l D1+|l

S, «—S,wrS, e -— 8, (wrS,) e S, (wrS,) —— ..
L1 92 o Pis

is commutative in the sense that p,=#6;p,, ,¢;. We can read off, from the
diagram, unique homomorphisms y,: F - §,(wr S,) ' such that ker y,, , S
ker y;.

Let ¥=();kery, and consider the group F/¥. For convenience of
notation we will now suppose that # is a homomorphism F—- FwrS,_,,
where S,_, is the permutation group on {a,,...,a,_,}.

n—1

LemMmA 14. If we have a homomorphism 6: F > Fwr S, | and F/V¥ is
the group defined by 0 as above, F/'¥ can be embedded in ¥, ,.

Progf. Define a map, 7,, by the rules
(ua,w)t, = (u(ly,)) a,w

(anw) TL = an w,

where L € F, u is a word of length r which does not contain a, and w € W.
Clearly, 7, is a well-defined homomorphism between subspaces of W.
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If (@;x)7,=(a;y)t,, then i=j, and, if i=n, x=y. If u(Ly,)a,w=
v(Ly,)a,z, where neither v nor u contains a,, neither v(Ly,) nor u(Ly,)
contains a,, so u(Ly,)=v(Ly,) and w=2z. Each of Ly, and Ly, is a
permutation which preserves lengths of words, so we must have r=s and
u =v. Thus 7, is an isomorphism.

Given any z € W, (za,) 7, and (za,)t; ' are both defined. So za, belongs
to both the range and domain of 7, which are thus inescapable.

Let ¢, € %, | be the maximal extension of 7,. Define 2: F—> ¥, | by the
rule L—eg,. If ¢, =¢,, for some L, K€ F, then for any u=5b,--- b,
(b;#a,) we have u(Ly,)a,=(ua,) e, =(ua,) e, =u(Ky,)a,. Thus
u(Ly,)=u(Ky,) for all words u, of length r, not containing a,. Hence
Ly,=Kuy,, for all r, and so LK~'€ W. If L € ¥, then Ly, =1, for all r,
and so ¢, = 1. Thus ker 2= ¥ and F/¥ is isomorphic to a subgroup of %, ,.

Let H, be the subgroup of %, isomorphic to F/¥ as above. Then
Hyo=le,|LEF} and is completely determined by the original
homomorphism 6: F - Fwr S, . We call H, the subgroup of %, , defined
by 6.

LemMA 15. Ifh€ H,, then h has an H ,-symbol of the form
a, a, a,
( A )
an - a4, ,n a,

Proof. Let LE€F be an element such that A=¢,. Since
§:F— FwrS,_,, we can think of L# as an ordered n-tuple (L,.,....,L,_,, 7),
where L, Fand 7€ S, _,. Let h;=¢, € Hy and let 7 be the element with

symbol
a - a,., a,
hy - h,_, 1 )
an - a, n a,
We show that h=r1.

The set {qua,w,a,z|1<i<n—1,z,u,wE€ W, u does not contain a,
and (ua,w) h; defined} is an inescapable subspace. We have that (a,z)h =
anz = (a"Z)T and (aiuanw)h = (aiu)(LWr+1) anw = ain(u(LiWr)) anw =
a;n(ua,w) h; = (a;ua,w)t. So h and 7 are equal on an inescapable subspace,
and, by Lemma 1, h=1.

where € S, _|.
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LemMMmA 16. If I' is an H,symbol which is the combination of H,-
symbols T,,..,T, and 4 is an expansion of I, there exist expansions
Ay sy 8, Of Ty ooy T, respectively, such that A is a combination of 4,,...,4,,.

Proof. Any expansion of I' is obtained by a finite sequence of expansions
which involve replacing one column of the form

u
h
v
by the columns
ua, - wua,_, ua,
hl hn—l \ ’
va,m -+ va,_m va,
where
a, an—l an
hy - Ry 1
an - a, 7 a,
is an Hg-symbol for h. Thus, if
Uy uy -+ U
r={k, k, - k|,
vl 1)2 s US
we may inductively assume that
w,a;, e UG, U@, U, -+ U
A= h, - h,_, 1k, -k,
v,a, - V4, T va, U, ‘v U
Let
Uiy v Uiy
I'i= 8i,1 o 8is o
Ui o Ui

where Uy, ;= U, Up,i =V; and kj= 81.;82,; " &m,j If

a - G, 4

li.l li,n—l
am; v Ay T 4
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is an Hg-symbol for g; |, by Lemmas 5 and 4 we must have n=m;7, --- 7,,
and h;=1, ;1, ;- I, ; (since kK, =g, ; -+ g,.,)- Thus, if we let

U1, Ui 1 18p_y Ui 0y Ui 0 Uiy
4,= I linon 1 &i2 &i,s s
U047 U1, 7 U4, Uip Ui s

4, is an expansion of I'; and 4 is a combination of 4,,...,4,,.

LemMmA 17. If H, is the subgroup of %, , defined by 6, the group
#4=(G, ,Hy) is Hy-expansible.

Proof. We take as generators for #, all the elements of G, | and all the
elements of H,. These elements all have H,-symbols so in proving that .#;
satisfies condition (ii) for Hg-expansible groups we automatically prove that
it satisfies condition (i).

We show that % satisfies condition (ii) by induction on the length of an
element of -#, as a word in the chosen generators.

Since every generator has an Hg-symbol, we have the first step of the
induction.

Suppose that t € #, has H,-symbol

xl ves xr
(kl k,)
ooy

and that @ € G, | has symbol

a, : a, a,
hl hn_1 1 ,
an - a, % a,

so we can expand the above symbol for t repeatedly until its bottom row is
an expansion of the cofinite basis {u,,..., u;}. Suppose the resulting symbol is

z, z,
&1 &:
w, W,
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The identity has symbol

a, a,
1 1
al vee a"

so we can expand the symbol above, for a, to a symbol of the form

w] ‘e W[
||
q, - 4

By Lemma 5, we can now combine these symbols to get a symbol for za. By
induction hypothesis, we can assume that the original symbol for r was a
combination of H,-symbols for each of the generators which make up 7.
Thus, by Lemma 16, we have the result for za.

If A € Hy has H,-symbol

a a,_, a,
hl h,,_l 11,
an - a,_, 7 a,

we can repeatedly expand this until we obtain a symbol of the form

yl I yr
( A )
wl e wr
for h. By Lemma 5, the combination of this symbol and the symbol above
for 7 is a symbol for th and is also a combination of symbols for the
generators which make up 7A. This completes the induction step.

By 6; and d,, 1 <i<n, nE€ES,_,, we shall always mean the elements of
G,., with symbols respectively

a, a - a, , aaa, -+ Qq,a,4q;_, a,a,q;
a,qa; a, - a, , aqaa - a,a,4; , a,
a,a,a;., - a,a,a, a,a, - a,d,
1 1 1 1
a,a,a;,, - a,qa, a,a, --- a,qa,
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a,a, e @a,_ ., aa, a; 4y
1 1 1 1 ... 1 ).
a,a,m - a,a,_, % a,a, a, - a

n

and

Let E be a set of generators for H, and their inverses. Let D' =
{ohzéélﬁhlézohz---5,,40,,"715,,---53,,_253,,4---52(5, 03, | h € E}, where

h has H g-symbol
a v Gy 4y
( hy « h,_, 1.
an - a,,m a,
Let Y =AUBUCUD Cy.

Lemma 18. If g € H, has symbol

a, a,_, a,
g - &1 1
au a4 aq,

the relation 0, = 69,0, -+ 6,_,0, 0, 6,00, is a consequence of y'.

Proof. By induction on the length of g as a word in the elements of E.
If g € E, then the result follows by definition of D’.
Suppose that the result holds for g and let # € E have symbol

a, a,_1 a,
B, o k., 1].
arn -+ a, % a,

Then gh has symbol

a, An-1 a,
(glhlu o Bnothpne 1 )
a,un a,_,um a,
By assumption the relation ¢,=éé,0, ---6,_,0, 0, ,+--9,00, is a

consequence of y’ and so, using Lemma 12 with the induction hypothes1s, the
relation

Opn=00,0, -0, 10,  Oy_+0,06,ad,0,

By Op By e 8,555,

481/90/2-3
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is a consequence of x', where ¢ =4,0,6,, =06,---0,_,8,6, - 0, (a,,
B, from Lemma 12). The relations 44, dad;, = 5,66, e, af =1 and 6,6, =
J,. are consequences of A and 6, da fixes a,. So the relation o,,=
06,0, <+ 6410y, 6y_y 20,04, 610y 8, 4+ 0,00,, is a conse
quence of y'. We note that the 5 belong to a set of type 3n —2 and so we

have the result for o,, by Lemma 11.

ul o us
= ( ki, - k& )
vl e US
is any Hg-symbol for o,, g€ Hy, and {n,,...n,} is any set of type s, the

relation 6,= 10, 1,0, 1,04 1, ++* 1,€ s a consequence of x', where T and
€ have symbols

U, U, - U a, w, - w
( 1 1 ... 1 ) and ( 1P 1 - 1 ),
a, w, 0w v, U, v D

N s

Lemma 19. If

respectively.

Proof. By Lemma 9, I' is an expansion of

al a2 “re an
a, a, - a,
and by Lemma 12, we can, and will, suppose that the columns of I' are in

any order which suits us. The proof is by induction on the number, m, of
columns of the form

inr.
Ifm=1,



FINITELY PRESENTED INFINITE SIMPLE GROUPS 317

and the relation is 0, = tg,¢6. But 76 =1 is a consequence of A, in this case,
and 7 fixes a,, so the result is a consequence of 4 U B,
If m = n, then

aa 0 aa, . 44, Voo ot Vs
r: gl vee gn—l 1 1 vee 1
aa g - 4 a4 4a, Yy ot Vs
and the relation is 0,=10, 1,0,,13 > Og My_y " ME. Let a be the

element with symbol

a, W, W, Wyppr 0 We Wy
a aq,qa, - analan Zp+1 Zs analal

some z,, ;,.., Z;. The relations a*‘njaz d;, 2< j< n, are consequences of
A and a fixes a, so the relation 6,=06,a"'0, n,--- 0, 1, , -+ 1,00,66,
is a consequence of y’, by Lemma 18. The element raéls fixes a, and so the
relation tad, d0,06,a"'t"' =0, is a consequence of x’. The relation
ad,80,066,a 't =¢ is a consequence of 4 and so we have the required
relation for o, as a consequence of y'.

We now consider the expansion

Uy - Uy usa, usa, u,a,
kI ksvl h] hn-l 1
vy - Uy, Veam - Vga, T Vg4,

of I" and assume the result for any set {v,,..., v;} of type s. For a given set
{Nyss m,} Of type r=s+n—1, we want to show that the relation §,=
Wy My O, NsOn, =+ Np_yOn, Me_y*+* M€ is a consequence of y’, and we
can assume that the relation g, = 7’0, v, --- 6, v, - v,€’ is a consequence of
x', for any set {v,,..., v} of type s.

Let § be the element with symbol

a, wy, - We o Wy Wey o W,
1 1 .- 1 1 1 1 ,
a, z, - zZ,., z.,a, 2,a, -+ Z.4,

for some z,,..., z,. Let v;=8""'n;8, 2 < i< s— 1; then there is a v, such that
{vy,..., v} is a set of type s. Taking the symbol

Z, oz o@ay o 414, 4,4,
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for O,» We have, from the case m=n, that the relation O, =
TNy NsOp Mgiy == Op 1Moy Mp€” is @ consequence of yx'. Now,
Ny N =vB ", €"v -+ v’ =¢ and T'B~' =1 are consequences of A4,
and f fixes a,, so the relations

)
ag_z'o’klvz Ry O’k P, ens

!
Vo €

— -1

=07 0, My Oy _ BYi0y Vs oo V€

— "

=T0,,1, gkklﬂvsﬂf'nz MO Moy O Mgy nzg"vs R

= ‘[gklnz Uks,,nsohlrlwl Gh,,,,nn—l -ee M,E

are consequences of y’, completing the induction step.

Clearly, D' < D. The above lemma shows that every relation in D is a
consequence of y’, thus y’ is a set of defining relations for -#;. We have
already shown, in Lemma 13, that if H, is finitely presented the relations,
AU B\U C are finitely based. If H, is finitely generated, we can take the set
E < H,, above, to be finite, so we can suppose that the set D’is finite and
hence that the relations y’ are finitely based. Thus we have the following
theorem.

THEOREM 2. If 0 is any homomorphism from a free group, F, to the
wreath product, Fwr S, _,, and if the subgroup, Hy, of &, , defined by 0 is
Jfinitely presented, so is the group (G, ,, H,).

A USeruL LEMMA

The constructions above have been made in such a way that we can apply
the following lemma, which is essentially a result of Thompson [3]. We give
a proof of the lemma since Thompson’s formulation is very different from
that of this work.

LEMMA 20. If K is a subgroup of %, | containing G, ,, then the derived
subgroup, K', is simple.

Proof. We show that any non-trivial normal subgroup, N, of K contains
K'. Then, since G}, , is simple and nonabelian (see [1]), we have G} , =G, ;
and so G, , < K'. Thus K’ satisfies the initial conditions on K and so any
non-trivial normal subgroup of K’ contains K”. But K" <t K and K" # 1
since G, ; < K"; thus K’ < K" and so K’ is contained in all its non-trivial
normal subgroups.

Suppose that N is a non-trivial normal subgroup of K and that tE N is

non-trivial. If ur+# u and u = yw, then yt # y, so choose u € W such that
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utr # u and suppose that 7 is not defined on any proper initial segment of u.
Let ur = v; then u # v.

We use u to construct a non-trivial element in G, ;M N and then, since
G, , is simple, we have G,  © N. We then use this result to show that K/N
is abelian.

Let {u, u,,..., u,} and {v, v,,..., v,} be cofinite bases and let a and § be the
elements with symbols respectively

ua,a, ua,a, ua,a, --- ua,a, Ua, Uua; -~ U@, U, - U

1 1 1 1 1 1 - 1 1 1

ua,a, wua, ua,a; -+ ua,Q, ua,a, ud, --- ua, U, - U
and

va,a, va,a, va,a, --- va,a, va, Va; - 0@, U, - U

1 1 1 1 1 ) B | 1 1

va,a, va, va,a; --- va,q, va,a, Va; - va, U, - U

Then a and g are even and thus belong to G, ,;, which has index at most 2 in
Gn,l (See [1])'

Choose y such that yr~' and yf are both defined. Since yf is defined, y is
not an initial segment of va, so yr~' is not an initial segment of ua, and
yr~'a is defined. If v is not an initial segment of p, then u is not an initial
segment of yr~!' and so yr lar=yr 't=y=yB. If y=va,a,w, some w,
then yr~'ar =va,a,w = yB. Similarly, if y is of the form va,a,w, va;,w or
v;w (for i>2), then yr 'ar=yB. Thus r 'ar is equal to f on an
inescapable subspace, and so f=1""ar.

Then a~'t~'ar € G, NN, and is non-trivial since (ua,a})a”
ua,a', for any i for which the left-hand side is defined.

Take n and { contained in K. We want to show that Nn{= N{n. Choose
w € W such that (uw)n ="' and (vw) (™', u, v as above, are defined. Choose
4, vE G, , such that (uw)u = (uw) n~" and (vw)v = (vw) {~". Since G, , has
index at most 2 in G, |, it is not hard to see that we can in fact choose 4 and
v to be in G, ;. (If a; is not an initial segment of u, let n be the element of
G,, which swaps a;a, and a;a, and fixes everything else. Then if
G, #G.,,, n&€ G}, and = fixes u, so (uw) mu = (uw) n~". Either u or mu
belongs to G, ,.) Since G, , < N, it is sufficient to show that Nunv{ = Nv{un.

n,1 =

If 4 and v have symbols respectively

1

lr=lar #

uw U, U vtw v, - D
1 1 .. 1 and 1 1 - 11},
e y, -y, (owpy z, -z
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let y and p have symbols

a, a,_, a,a, a,x; -+ QX
uwa, --- uwa,_, uwa, U, - U
and
a, - a, aa aw, - aw,
vwa, - vwa, vwa, z, -z,

Using the same techniques as above, we can choose y and p to be in G, ,.
We show that #' = yuny ="' and ¢’ = pv{p ' commute, which gives the result.

If y=a,w’, for any w €W, 2ig<n~1, then yp'=p=yp{. If
y=a,w', then yp does not have initial segment vwa;, j # 1. So y(pv{) does
not have initial segment vwa,, j# 1, and hence y{' (= y(pvip ")) is of the
form a,z, whenever it is defined. Since n’ fixes all words of the form q,z,
'l = y{'n’. Similarly, {’ fixes all words of the form a,z and if y=a,w’,
yn'¢’ = y{'n’, whenever yn' is defined. Thus #’{’ and {’n’ are equal on an
inescapable subspace and so #'{' ={'n’.

DERIVED SUBGROUPS

Finally, we want finitely presented simple groups; so we are interested in
the cases when #7 is of finite index in -#,. Although we cannot give
necessary and sufficient conditions for this, the theorem below shows that if
H, is a finitely presented subgroup of ¥, , defined by 6, then H, can be
embedded in a finitely presented group with a simple derived subgroup of
finite index. When H, is finitely presented, the lemmas and theorems above
give that derived subgroup is a finitely presented simple group.

An element of FwrS,_, is an ntuple (L,,..,L, ,,7), where
L,.,L, \€EF, n€S,_, and (P,a)(L,,..L,_,,n)=(PL,,a;x), for all
PcF. Let 6 be a homomorphism from F to FwrS, ,. If
LO=(L,,.,L,_,7), wecall L,,.,L,_, the first 8-components of L. The
kth 6-components of L are defined, inductively, to be all the (kK — 1)st 8-
components of L,,..L,_,.

Let H, be the group defined by 6 and let ¢, be the image of L in Hg (see
Lemma 14). Then ¢, =1 if and only if L € ¥, and refering to the diagram
above Lemma 14, we see that this is so if and only if all the 8-components of
L lie in ker y,.

Let i be the natural embedding of S,_, in S,, which identifies S,_, with
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the set of all elements fixing a,. We have a homomorphism §*: F» Fwr §,,
given by L#*=(L,,...,L,_,,L,m). Let p* and ¢} be the natural maps
corresponding to p; and ¢;, on the diagram. Since / is a monomorphism, we
have ker y, = ker w} and clearly the set of 8*-components of L is just L
itself and the set of §-components of L. Let ¢} be the image of L in Hy. and
then ¢} =1 if and only if ¢, = 1. In other words, H, is isomorphic to H,..

THEOREM 3. Let 8 be a homomorphism from a free group F to the
wreath product Fwr S,_, and let H, be the subgroup of ¢, | defined by 6.
There exists an integer m and a homomorphism ¢: F - Fwr S, _| such that
H, is isomorphic to H, and (G, ,. H,)’ has finite index in (G, ,, H,). if H,
is finitely generated.

Proof. 1IfL6=(L,,..L, ,,7), then define ¢: F~ Fwr S,,_, by the rule

Le=(L,...L, |,L,.,L.m), where ! is the natural embedding of S, , in
S, _, which identifies S,_, with the set of all elements which fix
Q,.d,, - ay,.,. From the discussion above, we see that H, is isomorphic
to H,.

From relations D for #, we have
Op=00,04 0,0, -0, 10, \OnO40p 1Oy Om 1040m (- 0,00,

If H, is finitely generated we can choose a finite set of generators {k,,.... k,},
for H,. Let G,,, =G, ,JG,, a From the relation in D, above, for k; we
geto, = toy-iay,t -+ oy, for some 1 € #, U #7 a and integers ¢;, ... g,

The g;;, 1 < j < r, increase with m but q;; (i # j) is independent of m. Thus
we can choose m large enough so that, if

gu—1 g, - 4,
M= q.ll ‘hz'_l qtzr ’
qn 4 qrr— 1

then det M > 0. Thus, adding non-zero multiples of the rows of M together,
we can reduce M to the form

b, . 0
0 b, - 0
0 0 - b

r

Carrying out the same operations on the set of words {o}" 'oz;f O ey
ofioy .- ofr '), we see that o) €. #7, U #,a. Thus #7 has index at most
2bb,--- b,, in #,.
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If H, is finitely presented we have, from Theorem 2 and Lemma 17, that
#, is a finitely presented infinite simple group.
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