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In this series of three papers we discuss finitely presented infinite simple 
groups. It is known (see [3]) that every finitely generated group with 
solvable word problem can be embedded in a finitely generated simple 
subgroup of a finitely presented group. Since all finitely generated subgroups 
of finitely presented simple groups have solvable word problem, it is natural 
to ask which classes of finitely generated groups with solvable word problem 
can be embedded in finitely presented simple groups. The first paper contains 
a method for constructing finitely presented infinite simple groups. In the 
second paper we show that certain finitely presented Abelian groups and all 
linear groups over the integers can be embedded in linitely presented simple 
groups. Finally, in the third paper we show that a particular finitely 
presented group with unsolvable conjugacy problem can be embedded in a 
finitely presented group and that this gives a finitely presented simple group 
with unsolvable conjugacy problem. 

The work in this and the following two papers was done with the guidance 
of Professor Graham Higman. I would like to thank him for all this help. 
This work-was done under the sponsorship of the Science and Engineering 
Research Council. 

INTRODUCTION 

This paper extends the work done by Higman [ 11, which is in turn based 
on work done by Thompson [3]. The formulation here resembles that of [ 1 ] 
rather than [3]. 

The aim is to describe a procedure for constructing finitely presented 
infinite simple groups. We take a finitely presented simple group, G,,, , 
constructed in [ 1 ] and a large group, Y,,, , , which contains it. We shall prove 
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the result, essentially due to Thompson, that if K is a group satisfying 
G,,, <K < <y”,, then the derived subgroup, K’, is simple. This results leads 
us to construct subgroups of ,Vn,i which are finitely presented, contain G,,, 
and have derived subgroups of finite index. The resulting derived subgroups 
are finitely presented simple groups. 

We take certain types of subgroup, H, of ,yn,, and produce a set, x, of 
defining relations for the group (G,,, , H). We show that if H is a finitely 
presented subgroup of an inverse limit of wreath products, then the set of 
relations, x, is finitely based. Thus (G,., , H) is a finitely presented group. 

Using this procedure we can construct a finitely presented simple group 
containing GL(3, Z) (see [2]), which is not contained in any of the 
previously known finitely presented simple groups (see [ 11). So, using this 
method, we do indeed get some new examples of such groups. 

DESCRIPTION OF ,3;, 1 AND G,, , 

Let W be a free semigroup, with 1, freely generated by {a, ,..., a,}. We will 
always assume that n > 2; (if n = 1 the construction gives nothing new). 

A subset of W is called a subspace if it is closed under right multiplication 
by elements of W. 

A subspace, Y, of W is called inescapable if given any u E W there exists 
some w E W such that uw E Y. For example, the set Y = (w E W 1 w  
contains at least one a,} is an inescapable subspace of W. 

A subspace, X, is called cojkite if 1 w] < 00. Since there is a finite 
bound on the length of words not belonging to X, a colinite subspace is 
inescapable. 

A homomorphism, 8, between subspaces of W, is a map satisfying 
(UW)e=( 8) f u w, or all w E W, whenever u0 is defined. An isomorphism is a 
bijective homomorphism and if the domain and range of an isomorphism are 
inescapable (cotinite), then it is called an inescapable (cofinite) isomorphism. 

If u, v E W, then u is said to be an initial segment of u if there exists some 
w E W such that uw = u. We call u a proper initial segment of u if w # 1. 

If Z is a subspace, the set { y E Z ] no proper initial segment of y belongs 
to Z} is called the basis for Z. A subset of W is a basis if it is the basis of 
some subspace. An inescapable (coJnite) basis is the basis of some 
inescapable (cofinite) space. Bases are precisely the subsets U, of W, such 
that no element of U is a proper initial segment of any other element of U, 
and U is a basis for Z if and only if it is the unique maximal basis such that 
every element of Z is uw, for some u E U, w E W. A basis is inescapable if 
and only if it is a maximal basis, and is a colinite basis if and only if it is 
maximal and finite. Thus every basis is contained in some inescapable basis, 
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and it is not hard to see that every finite basis is contained in a cofinite basis 
(see PI). 

We are particularly interested in cofinite bases, so we note some basic 
results. Proofs, explanations and a detailed discussion of cofinite bases and 
G,,, in general, can be found in [ 11. 

If u= {Ui,..., u,} is a cotinite basis, then so is U’ = {u, ,..., ui-, , 
Uia, )...) Uia,, Ui+ 1),,.) u,}, U’ is called an elementary expansion of U. Any 
basis which can be obtained from U by a finite series of elementary 
expansions is called an expansion of U. Every colinite basis is an expansion 
of the basis {a,,..., a,}, and if U, V are cofinite bases we can find a colinite 
basis which is an expansion of them both. Since any finite basis is part of a 
cofinite basis, given z E W, we can find a cofinite basis, and hence a colinite 
subspace, containing z. 

By an extension of an inescapable isomorphism, 8, we mean an 
inescapable isomorphism, O’, such that ~0’ = ~0, whenever ut9 is defined. 
Also, 0 is maximal if it has no non-trivial extensions. 

LEMMA 1. Every inescapable isomorphism, 8, has a unique maximal 
extension, e*. 

Proof If 6’ has domain Y, define 

Y* = {z E W)3y E W((zw)O= yw, for all w  E W such that zw E Y)). 

Then Y* is an inescapable subspace, because Y is and 0 is a homomorphism. 
Define a map, O*, on Y* by the rule zB* = y, where (zw)O= yw whenever 
zw E Y. If z E Y*, then (zu) 19* is defined, for all u E W. Choose any w  E W 
such that zuw E Y, then (zuw)O= yuw, by definition of l3*. So (zu) 19” = 
yu = (zO*)u, and 8* is a homomorphism. If zB* = y = ~8*, choose w  such 
that zw, uw E Y. Then (zw) 0 = yw = (VW) 13, and so zw = ZIW. Thus z = v and 
8” is injective. The range, Z*, of t?* is a subspace, since 8* is an 
isomorphism, which contains the range of 6. Thus Z* is an inescapable 
subspace and 8* is an inescapable isomorphism which clearly extends 0. 

Suppose that 4 is an inescapable isomorphism which also extends 0. If 
xd = U, then, for any w  such that xw E Y, (xW)6’= VW. So x E Y* and 
xt?* = U, i.e., 19* extends 4. Thus 19* is the required maximal extension of 19. 

If 0 and 4 are inescapable isomorphisms, we define the composition, 0 0 4, 
by the rule ~(0 0 0) = (uO)$, whenever (uO)# is defined. It is easy to see that 
0 0 4 is an inescapable isomorphism and straightforward checking of the 
groups axioms yields: 

LEMMA 2. The set of maximal inescapable isomorphisms forms a group 
under the operation 84 = (8 o #)*. 
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We call this group CFn,l and it is essentially the group constructed by 
Thompson [ 31. 

The maximal extension of a cofinite isomorphism is also cofinite and it is 
again straightforward to obtain: 

LEMMA 3. The set of maximal cofinite isomorphisms forms a subgroup 
G,,, 06%. 

The group G,,, is the same as the group so named in [ 11. We note here 
that if X= (x, ,..., xI}, we can define cofinite subspaces of the set of words 
XW= {xiw j 1 < i < r, w E W}. Again we have that the set of maximal 
cotinite isomorphisms forms a group, G,,,. This group is also finitely 
presented, and is constructed in detail in [I]. 

We now construct and define the elements and subgroups of .Fn,, in which 
we are interested. 

SYMBOLS AND H-EXPANSIBLE GROUPS 

A column is an object of the form 

where u and v are words in W and g E .Vn,, . We say that k E .F,,, , has or 
contains the above column if, for all w E W such that wg is defined, (uw)k is 
defined and (uw) k = u(wg). In this case, k is said to be almost defined on u. 

LEMMA 4. If k has the columns 

theng=handv=y. 

Prooj There exists an inescapable subspace, Y, on which both g and h 
are defined. By definition, for all w E Y, (uw)k= v(wg) = y(wh). Thus we 
can suppose that u = yx, for some x E W. Then wg = x(wh), for all w E Y. 
This implies that every word in the image of Y under g has initial segment x. 
But Yg is an inescapable subspace and so we must have x = 1. Thus u = 4’ 
and wh = wg, for all w E Y. Since h and g are equal on an inescapable 
subspace, Lemma 1 gives h = g. 
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We say that g E Fn, 1 is expansible if there exists a cofinite basis on which 
g is almost defined. 

Let g E Fn’,,, be expansible and almost defined on the cofinite basis 
{U 1 ,***, us}. If the columns 

belong to g, we call the set of these columns a symbol for g and write it 

It is easy to see that {vi,..., us} is a basis; to show that it is a colinite basis 
we need to show that it is maximal. If {vi ,..., us} is not maximal, then there 
exists some v, which can be taken in the range of g, which is independent of 
this set (i.e., for no vi does there exist w, y E W such that uw = ui y). Let 
xg= u. The set {u ,,..., us} is a cot-mite basis, so there exist w, y such that 
xw = uiy, for some ui. Choose z such that (yz) gi is defined and then 
(xwz) g = uwz and (ui yz) g = vi( yz) g,. So u and ui are not independent, 
which is a contradiction. Thus {vi ,..., vs} is also cofinite basis. 

If gi has symbol 

x1 *** x, 

t 1 

h, ... h, ) 

Y, ... Y, 

then the symbol 

241 ... Uiml UiXl a** uix, ui+l ... 24, 

g1 .‘. gi-1 h, ‘*’ h, gi+l “* g, 

u1 ... Vipl v,y, *** UiYr Ui+l “’ us i 

is also a symbol for g and we call it an expansion of r. Any symbol which 
can be obtained from r by a finite series of expansions is also called an 
expansion of I-. Also, r is called a contraction of any of its expansions. 

LEMMA 5. If g and k have symbols respectively 
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then gk has symbol 

u, a*- us 

g,k, .-. g,k, . 

Yl .*’ YS 1 

Proof: Define a map, 7, by the rule (uiw)7 = y,(wg,k,), whenever w( g,k,) 
is defined. Since {u, ,..., us} and { y, ,..., y,} are cofinite bases and gi and ki 
are inescapable isomorphisms, 7 is an inescapable isomorphism. 

The set Y = {uiw 1 1 < i < s, wgi and (Wgi) ki defined} is an inescapable 
subspace and, for all y E Y, ys = y( gk). Thus, by Lemma 1, gk is the unique 
maximal extension of 7. If w( g,k,) is defined, then (uiw) gk = (uiw)7 = 
yi(wgiki), so gk has the above symbol as required. 

We call the third symbol above a combination of the first two. 
Let H<K<.F,,,. A symbol for g E %FA,, is called an H-symbol if all the 

elements of the middle row of the symbol belong to H. 
A group K (containing H, as above) is said to be H-expansible if it 

satisfies the following two conditions: 

(i) for all g E K, there exists a cofinite basis {u, ,..., u,} such that g 
contains the columns 

for some hi E H, vi E W, 

(ii) there exists a set of generators, (gi)i,l, for K such that every 
element gi, gi2 ... gi,, of K, has an H-symbol which is the combination of 
some H-symbols for gil,..., gim. 

The first condition ensures that every element of K has an H-symbol and 
the second ensures that every relation in K has an H-symbol. We need both 
of these conditions when we discuss a defining set of relations for K, below. 

LEMMA 6. If K is H-expansible, then any set of generators for K satisfies 
condition (ii) above. 

ProoJ: Suppose that (kj)j,J also generate K. Every element kj, ..a kjr can 
be written in the form gi, 1 . . . g,, p . . . gir, +.a gir 4. By assumption there are 
H-symbols for each gir s whose combination is an H-symbol for this word. 
But the combination of’the subset of these symbols for gi, ,,..., gi,,p is an H- 
symbol for kj,. In this way we get H-symbols for ‘each kj,, whose 
combination is an H-symbol for the original word considered. (Note, since 
%,1 is a group, and therefore associative, the combination of symbols is an 
associative operation.) 

481/90/Z-2 
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Let H be a subgroup of g,‘,,i. We are interested in groups of the form 
(G,,i, H), the group generated by G,,, and H. We shall reserve script 
notation for subgroups of gn’,,i containing G,,, and R will always be the 
group (G,, , y W. 

At this point we introduce notation which will be used throughout this and 
the following papers. For h E Pn’,, i, it is easy to see that the map given by the 
rules 

Q, w -+ q(wh>, whenever wh defined 

aiY+ aiYY 2 Q i < n, for all y E W 

is an inescapable isomorphism. By cr,, we will always mean the unique 
maximal extension of this map. 

LEMMA 7. The groups H and H* = {oh 1 h E H} are isomorphic. 

ProoJ We define a map 8: H + H* by the rule he = u,, . Given 
W-K,,, let Y be an inescapable subspace such that, for all y E Y, (yk)h 
is defined. Let Z be the inescapable subspace consisting of all elements of the 
form a,y or aiw, for yE Y, WE W and 2<i<n. For any zEZ, 
ZO~U,, = zcrkh, and so, by Lemma 1, ukc,, = uk,,. Thus 0 is a homomorphism. 

If uh=uk, then wh = wk, whenever both are defined. There exists an 
inescapable subspace on which both h and k are defined and so, again by 
Lemma 1, h = J!. Thus 0 is an isomorphism, as required. 

We will often want to talk about elements of <Va,i in terms of their 
symbols. Any object of the form 

where {u ,,..., us} and {v, ,..., us} are cofinite bases and gi E yn,l, will be 
called a symbol. By the element, t E Fn’,,, , with this symbol we mean the 
unique maximal extension of the map t*, given by (uiw)r* = ui(wgi), for all 
w  such that wg, is defined (1 Q i Q s). It is easy to see that r* is an 
inescapable isomorphism so, by Lemma 1, in this way every symbol defines 
a unique element of gn’,, i . 

In particular, if a is any element of G,,, , choose a cofinite basis {u, ,..., us} 
in the domain of a. Then a has the symbol 



FINITELY PRESENTED INFINITE SIMPLE GROUPS 301 

Furthermore, if {u, ,..., u,} and in,,..., us} are any two cofinite bases, then 

is a symbol for some element of G,,, . 
Conversely, if r is a symbol for g in the sense defined prior to Lemma 5 

and r defines the element E in the manner just indicated, then we see that 
(U~W)F = (u~w) E* = ni(wg,) = (uiw)g, for all w  such that wgi is defined. 
Thus g and E are equal on an inescapable subspace and so, by Lemma 1, 
g = E. Thus a symbol for g E .F?,,, defines g and the above definitions are 
reasonable. 

It is worth noting, and is easily seen be a similar argument to that above, 
that if a symbol, A, defines r E ,Yn, r, then any expansion of A also defines t. 

From now on we shall assume that the group Z is H-expansible. 

LEMMA 8. If 3 is H-expansible, then R and &T’= (G,,, , H*) are 
equal. 

Proox We need to show that H* SO?? and HE g. 
Since R is H-expansible, for given h E H we can find an H-symbol, 

for h. Choose a cofinite basis {a,, We,..., ws} and let a, yi and p be the 
elements of G,,, with symbols respectively 

t 

24, u2 .a’ u, 
1 1 ..’ 1 ) 

a, w2 ... w, i 

i 

a, w2 ... wi-l wi wi+, *-. w, a, w2 ... w, 

1 1 *a. 1 1 1 a** 1 

1 t 

and 1 1 **a 1 

wi w2 e.1 wipl a, w~+~ .a. w, v, v, *** v, 

for 2 < i < S. By definition, for k E H, uk has symbols 
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Then, by Lemma 5, the product auh, YOU,,, -a- Y~o~,Y~ * -. y3 y2P has symbol 

But a symbol for h defines the unique element h and so h = 

auh --- 0’ E (G,,, 3 

SLi,kyi2s~n,, , 
H*), for any h E H. 

there exists some y such that h is defined on y. Expand the 
column 

repeatedly until we obtain a set of columns 

where each zi is longer, as a word, than y. The set (zr ,..., zr} is a cofinite 
basis and so, for some zj, there exists x such that yx = zj. But h is defined on 
u, yx so h contains the column 

for some v E W. Thus, by Lemma 4, kj = 1 and so we can expand the above 
symbol for h to a symbol of the form 

for h. We can now expand this to the symbol 
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By definition of IS,,, the symbol 

is a symbol for oh. If 6, p E G,, , are the elements with symbols respectively 

t 

a,x, .*. UlXf a,w a, ... a, 

1 . . . 1 1 1 a.. 1 
x, *.. Xt wa, wa, -.- wa, 1 

and 

t 

Y, .*- Y, za, za2 a.. za, 
1 . . . 1 1 1 *.. 1 

a,y, ... a, yt a,z a2 ... a, 1 

then, by Lemma 5, u,, and 6hp have the same symbol. Thus u,, = 6hp E R’ 
and oz” = *A?, as required. 

From the above lemma we see that we can, and we will, take A? to be 
generated by the generators of G,., and the set {a,, 1 h belongs to some fixed 
set of generators of H}. 

LEMMA 9. If g E R and A?+ is H-expansible, there exists a unique H- 
symbol for g which has every other H-symbol for g as an expansion. 

ProoJ Suppose that 

and 

are two H-symbols for g, neither of which is a non-trivial expansion of any 
H-symbol. Since {u, ,..., us} and {x, ,..., x,} are cofinite bases we can assume, 
by swapping I-’ and A and reordering their columns if necessary, that 
U, = x,z, ,..., U, =x, zI, for some cofinite basis {z, ,..., z,}. 

The set, Yi, of all w  E W such that both whi and (ziw) k, are defined is an 
inescapable subspace. For all w  E Yi, vi(whi) = (x, zi w) g = y,(zi w) k, . If 
vip = y,, for some p E W, then wh, = p(zi w) k,. Thus every word in the 
inescapable subspace y,h, has initial segment p, so we must have p = 1. 
Hence we can assume that vi = y, wi, for some wi E W. Since {v, ,..., us} is a 

cofinite basis, so is (w, ,..., wt}. 
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Let h be the element with symbol 

Then r contains the columns 

and hence can be contracted to the symbol 

Xl %t1 *-. us 

h h,,, *-* h, . 

Yl ut+1 **- 0, 1 

By Lemma4, h = k, E H, so this is an H-symbol for g which is a 
contraction of K By assumption this contraction cannot be non-trivial, so we 
must have zr = .a* = zt = 1 and U, =x,. Then, from Lemma 4, h, = k, and 
“l=Yl* 

Applying this argument to each of the columns of the above two symbols 
in turn, we see that these symbols must be identical. Hence every H-symbol 
for g can be obtained by expanding a unique uncontractable H-symbol for g. 

We call the unique uncontractable H-symbol for g the shortest H-symbol 
for g. 

DEFINING RELATIONS FORK 

Throughout this section we still assume that R is H-expansible. The 
element, 6, will always be the element of order 2 with symbol 

a, a2 ... a,-, a,a, a,a, e-e anan 

1 1 a** 1 1 1 . . . 1 . 

anal a2 Se. a,-, a, a,a, ..a anan 1 

We say that a set, {q2,..., r,}, of elements of G,,, is of type s if there exists a 
cofinite basis {a,, w2 ,..., wS} such that vi has the symbol 

t 

a, w2 .a. wiPl wi wi+, *.. w, 
1 1 **a 1 1 1 *a’ 1 ) 

1 

l<i<s. 

wi wz *** Wi-1 a, Wi+l ‘*’ W, 
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We will take as generators of R the generators of G,,, and a set {uh / h 
belongs to some fixed set of generators for H}. With this set of generators, 
the following sets of relations will be shown to define Z. 

(A) The defining relations of G,,, and H* = {Us 1 h E H}. 

The relations in the following sets are written in terms of general elements of 
G ,,,, and ff”, not just on elements from the chosen generating set. The 
elements are considered as a “shorthand” notation for the words on the 
chosen generating set to which they correspond. Since we have relations A, it 
does not matter which of the words a particular element of G,,, or H* is 
taken to represent. 

(B) {aoh=u,,aIhEH,aEG,,,, a fixes all words of the form a, w). 

(C) {da, da, = uk da, 6 / h, k E H}. 

(D) {oh = TCJ~,YI~U~, 1.’ v,uh,vs e.. v3vqe I hE HI, where 

24, *** u, 

i 1 

h, ... h, 

v, a.* v, 

is any symbol for u,,, {q2 ,..., qs} is any set of type s and if {a,, w2 ,..., ws} is 
the basis of the domains of the vi, then r and E are the elements with 
symbols respectively 

The element u,, has unique shortest symbol 

and considering symbols for all the elements above, we see that the relations 
AU B U C U D =x hold in .Yn., , by Lemma 5. 

LEMMA 10. If p is any element with a symbol of the form 

t 

a, w* ... w,_, w, w,+, f.1 w, 

1 1 ... 1 1 1 *** 1 ) 
w2 wj ..- w, a, w,+~ ... w, 1 

the relation pu,p-‘a, = u,pu,p-’ is a consequence of A U B U C. 
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Proof Let a, p be the elements with symbols respectively 

and 

The relation a&3 = p is in A and a, p fix a 1, so the relations 

pa,p-‘a, = af@u,p-’ 6a-‘a, (A) 

= ah, &,a-’ (AUB) 

= auk 60,6a ~ ’ cc> 

= u,aS/?u,p-’ aa-’ (AUB) 

= u,pu,p - ’ (A) 

are consequences of A U B U C, as required. 

LEMMA 11. If {q2,..., q,} is a set of type s, the relation u,,~~~+,u,,~+, ..- 

?fj”hjvj qj- I *” vi+ laki~i+luki+, “’ 

consequence of A U B U C. 
~j”kiTuhpi~i+luh,+,ki+, ‘** $“hjki is a 

Proox From Lemma 10 we have r,.uhqruk = ukq,.uh q,. 
Since ?llvrnqr fixes a, (in # r), qrnrruhrr = q,u,q,rl, is a consequence of 

A u B. 
Thus the relations 

are consequences of A U B U C. 
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Applying this result to the left-hand side of the relation in the statement of 
the lemma, for I = j and m = i, i + l,..., j - 1, gives the desired right-hand 
side. 

The next lemma allows us to ignore the order of the columns in a symbol 
when obtaining a relation from the symbol. 

LEMMA 12. If {q2,..., qS} is a set of type s and p is a permutation of the 
set {m,..., r}, I <m < r < s, then the relation oh,rlm+,oh,+, ... rl,.o,,,= 

‘, ‘h ~m+l”htm+ljr 
... qruh p,, is a consequence of AU B U C, where a, 

and ji have symbols respe&vely 

w* -** w, x, x,+, *** x, Wr+, *** w, 

1 . . . 1 1 1 a*. 1 1 ‘a. 1 

w2 .-a w, a, w,+~ ... w, w,+~ ... 1 w,, 

and 

t 

w2 a-. w, w,+, -.. w, a, w,+, ... w, 

1 . . . 1 1 **a 1 1 1 **. 1 

w2 ..* w, Y,+1 *** Y, Yr+1 wrt1 *.. w, 

(Xmu-i=a*,xj=Wj, (j~fm),y,,-,+,=a,,yi+l=Wi~+I (bfr)). 

Prooj If is sufficient to show the result for any ,D = (ij), m < i < j < r. 
The relations 

'hiritl *'* ‘h, 

=Vi+l”h,+, ~i+l”h,~i+l~i+2uhi+~ **’ rj”h, 

=~i+l”hi+,~i+Z~i+luhi~i+~ohi+~ *” qj”h, 

= Vi+1”hi+,Vi+2uhi+z ‘*’ qj”hil?i+ l”hiri+ I 

=~itl”hi+, “* ‘?j-1 vj”hj?ljuhjm,l?i?li+ l”hiqit I 

= Vj”hjl?jni+ l”h,+, ‘.. ‘?j-lohim, ‘li~itl”h,)li+l 

=~j"hj~itluhi+l~itl~j~itI~it2uhi+2 “* ‘lj~l”hj~,~j~itluhi~it I 

= qj”hjqit l”hi+, *** ~j--l”hj_,~j-l ". Vi+lVjVitl **' q j  ~itl"hj~iti 

= qj"hj'lit I”h,+, **’ ‘Ij~I”hj~,~juh,‘li+l 

are consequences of A U B U C, as are the relations 
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(using the same techniques). The relations qm+ I ... ni qj pi *a* qm+ 1 = Q, and 
rl, .** Vj+lVi+lVj+l .a. n,. =/3, @ = (ij)) belong to A, so the relation 
uh,%nt l’h,+, “’ ~r~h,=a~uhmll~mtl~h~,+l,n 

a consequence of A U B U C, as required. 
.a. vruhru~p, where ,u = (ij), is 

THEOREM 1. If the group Z= (G,,, , H), HE %Fn,, , is H-expansible, 
then the relations x, as described above are a set of defining relation for 3. 

Proof: Suppose that a,uh,a2uh, ..a a,uh, = 1 is a relation in 2, where 
ai E Gn.1 and hi E H. 

2@ is H-expansible and so, in view of Lemma 6, we can find H-symbols 

for Cfi and chi respectively, such that 

where gj = kl,jk2,j . . . k,,j, is a symbol for the identity. By Lemma 4 we 
must have gj = 1 and u,,~ = u~,~, for 1 < j < s. Thus the relations 
ugj = uk,,j “* ukmj - - 1 are consequences of A. 

For some set, {q?,..., rs ) of type s, the relations uhi = tiuki ,~,u~~,~ ‘.+ 
, . . n2 ei belong to D, where ri and si have symbols ’ vs”ki,s?ls 

i 

vi,l vi,2 .‘* vi,s 

1 1 ..* 
a, w, .a. w, 

respectively. The relations si ai + , ri+ , = 1, 1 < i < m - 1, are consequences 
of A and so the relation 

aluh, -.a amoh m =altluk,,,v2 “’ uk,.,vs “’ t/2”k2,,v2 “’ ok2s,vs “’ v2 

. . . 0 
k,,,q2 “* uk,,,vs “* qZEm 

is a consequence of x. Then, by Lemma 11, the relation a, uh ... a,uh = 
al~lug,v2ug2 ... vgsrs .a- v2Em is a consequence of x. We have alreamdy 
noted that the relations ugj= 1 are consequences of x, as are the relations 
IJiVjj=alrlEm = 1. So the relation a, uh, + . . a,,, ah, = 1 is a consequence of x. 

We wish to construct finitely presented groups so eventually we will 



FINITELY PRESENTED INFINITE SIMPLE GROUPS 309 

consider cases where the relations x are finitely based. With this in mind we 
prove the following lemma. 

LEMMA 13. The set of relations A V % v C is finitely based if H is 
finitely presented. 

Proof: G,,, is finitely presented, see [ 11, so by assumption the relations 
A are finitely based. 

The group G,,, is the set of all maximal colinite isomorphisms between 
subspaces of the set of all words of the form xjw, for some finite set 

IX 1 ,..., x,} which is disjoint from W. This group is also finitely presented, see 
[ 11. Given an element /I E G,,,- , define an element pf by the rules 

where 2 < j < n and (xj- I u)p = xi-, u. It is not hard to see that PfE G,, , 
and in fact that f is an isomorphism between G,,,-, and the subgroup, K, of 
elements of G,,, which fix all words of the form a, w. Thus K is finitely 
generated by, say, (a, ,..., a,,,}. Then AU B is generated by A and the finite 
set (aio,, = ohai 1 1 < i < m, h belongs to a fixed finite set of generators of 
HI. 

The set AU B U C is generated by A, B and the finite set 
(60, aa, = uk 60,,6 1 h, k belong to the fixed set of generators of H}. Thus 
A U B U C is finitely based. 

SUBGROUPS OF WREATH PRODUCTS 

We now describe a class of subgroups of F,,,l with the property that, if H 
belongs to this class, R is H-expansible, and, if H is finitely presented, so 
is G??. 

Let A and B be permutation groups of the sets r and d, respectively, and 
suppose that A is finite. We can form the wreath product A wr B as a 
permutation group on the set r x A. However, it will be convenient for us to 
regard A wr B as a permutation group on A x P, we can do this since there is 
a natural bijection between r x A and A x IY Thus, if g is an element of 
A wr B, the image of (6, y) E A X r under g is of the form (6b, ya& where 
b E B, a, E A and 66 is independent of y. We can associate g with the set 
(6, a, 16 E A 1. 

There is a natural projection p: A wr B + B given by gp = b. Also, if A and 
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C are permutation groups and 8 is a homomorphism 8: A + C, 19 induces a 
natural homomorphism 8’: A wr B + C wr B, given by 

We also note that the permutation wreath product is associative and so 

(AwrB)wrC=Awr(BwrC). 

Suppose that F is a free group acting faithfully on itself by right 
multiplication and let S, be the symmetric group on N= {a, ,..., un}, in its 
natural representation. We will define, inductively, F(wr S,)i to be 
(F(wr S,)‘-‘) wr S, and S,(wr S,)’ to be (S,(wr S,)‘-‘) wr S,. Since we 
have associative wreath products, we can think of S,(wr S,)‘-’ as acting on 
N’, the Cartesian product of i copies of N. 

If 8: F+ F wr S, is any homomorphism, we define Bi: F(wr SJi + 
F(wr S,Ji’ ’ to be the natural homomorphism induced by the homomorphism 
f9-, : F(wr S,)‘-’ + F(wr S,$, for i = 1, 2, 3,... and setting 8, = 0. We let pi 
and $i be the natural projections pi: F(wr SJi --f S,(wr S,)‘-’ and 
$i: S,(wr S,)’ -+ S,(wr S,)‘-‘. Then the diagram 

F~FwrS,~F(wrS,,)*_;j;)...- F(wrS,)’ TF(wTS,,)~“B~;: . . . 

I 

I , 
PI p2 

I 
pi 

I 
pit1 

I 
S, x S, wr S, - e.. - S,(wr SJ-‘T S,(wr SJi - ... 

62 I @i+, 

is commutative in the sense that pi = Bipi+ , $i. We can read off, from the 
diagram, unique homomorphisms vi : F + S,(wr S,)‘- ’ such that ker vi+ 1 G 
ker vi. 

Let Y = ni ker vi and consider the group F/Y. For convenience of 
notation we will now suppose that 0 is a homomorphism F + F wr S,-, , 
where S, _, is the permutation group on {a, ,..., a, _, }. 

LEMMA 14. If we have a homomorphism 8: F + F wr S,_ 1 and F/Y is 
the group de3ned by B as above, F/Y can be embedded in Y,‘,,, . 

ProoJ Define a map, rL, by the rules 

@a, w> rL = WWJ a,w 

(a, w) rL = a, w, 

where L E F, u is a word of length r which does not contain a,, and w  E W. 
Clearly, rL is a well-defined homomorphism between subspaces of W. 
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If (qx) 7L = (q.Y> 7,) then i = j, and, if i = n, x = y. If u&I,u,.) a,w = 
U(LIJYJ anz, where neither v nor u contains a,, neither v(Lp,) nor u(Lyl,) 
contains a,, so u(Qr) = v(L~~) and w =z. Each of LIJI, and Lyl, is a 
permutation which preserves lengths of words, so we must have r = s and 
u = u. Thus 7L is an isomorphism. 

Given any z E W, (za,) 7L and (za,) 7;’ are both defined. So za, belongs 
to both the range and domain of 7L which are thus inescapable. 

Let E, E .Yn,i be the maximal extension of 7L. Define Z: F + gn,, by the 
rule L+E~. If eL=~K, for some L, K E F, then for any u = b, . .. b, 
(bi# u,) we have u(Lw,) a, = (ua,) E, = (ua,) E, = u(Kv,) a,. Thus 
u&y/,) = u(Kv,.) for all words u, of length r, not containing a,,. Hence 
Lv, = KY,., for all r, and so LK-’ E Y. If L E !P, then Lv,= 1, for all r, 
and so E,, = 1. Thus ker C = Y and F/Y is isomorphic to a subgroup of Z,., . 

Let H, be the subgroup of ,%in., isomorphic to F/Y as above. Then 
H, = (eL j L E F) and is completely determined by the original 
homomorphism 19: F + F wr S,-, . We call H, the subgroup of 35;. , defined 
by 6. 

LEMMA 15. If h E H,, then h has an HO-symbol of the form 

a, ... a,_1 a, 

h, ... h,-, 1 

a,7r ... a,_,n a, 

where TE S,-,. 

ProoJ Let L E F be an element such that h = E,. Since 
&F-+FwrS,_,, we can think of LB as an ordered n-tuple (L, ,..., L,- 1, n), 
where Li E F and rr E S,-, . Let hi = sLi E H, and let 7 be the element with 
symbol 

a, ... a,-, a, 
h, ..a h,-, 1 

a,n ... a+,71 a, 

We show that h = 7. 

The set {a,uu, w, a, z 1 1 < i < n - 1, z, U, w E W, u does not contain a, 
and (ua, w) hi defined} is an inescapable subspace. We have that (u,z)h = 
a,z=(a,z)z and (a,ua,w)h = (a,u)(L~,+,)a,w = ain(u(Liyl,))a,w = 
ai7z(uu, w) hi = (a,ua, w)t. So h and 7 are equal on an inescapable subspace, 
and, by Lemma 1, h = 7. 



312 ELIZABETH A. SCOTT 

LEMMA 16. If r is an HO-symbol which is the combination of H,- 
symbols rl ,..., r,,, and A is an expansion of r, there exist expansions 
A , ,a**, A, of rl ,“‘, r,,, , respectively, such that A is a combination of A, ,..., A,,, . 

ProoJ Any expansion of r is obtained by a finite sequence of expansions 
which involve replacing one column of the form 

by the columns 

ua, ..a ua,-, ua, 

h, -.a h,-, 1 
va,7c .=. vu,-,7c vu, 

where 

i 

a, ... a,-] a, 
h, ..a h,-, 1 

a,71 ... and a, ! 

is an HO-symbol for h. Thus, if 

we may inductively assume that 

uIal ..* u,a,-, ua, u, a.. us 
h, . . . h,-, 1 k, ..a k, 

v,a,71 e-e v,a,-,7r va, v2 .a. v, 

Let 

t 

Ui-I,1 “’ ui-l,s 

ri = gi,l *‘* gi,s 3 

ui,l ‘** ui,s 

where u,,~ = uj, V,,j= Vj and kj= gl,jgz,j .** gm.j* If 

a, s.* a,-, a, 
li,* *‘* li,n-1 ’ 

a,q .*. a n-1ICi a, 



FINITELY PRESENTED INFINITE SIMPLE GROUPS 313 

is an HO-symbol for gi,, , by Lemmas 5 and 4 we must have 71 = 7c1 71, .a. rc, 
and hj = ll,jlz,j -aa l,,j (since k, =gl,, . . . g,, r). Thus, if we let 

i 

u~-l,I”l “* Ui~l,l”n-l UibI,lan ui-1,2 ‘*’ ui-l,s 

Ai= 1i.I ... li.n-1 1 gi.2 “* gi,s 3 

ui,lu,7ri *** Ui,lan-171i ui,l un ui,2 “* ui,s 1 

Ai is an expansion of ri and A is a combination of A, ,..., A,,, . 

LEMMA 17. If H, is the subgroup of Fn,, defined by 9, the group 

;FcB = (Gw H,) is HO-expansible. 

Proof We take as generators for LWO all the elements of G,,, and all the 
elements of H,. These elements all have HO-symbols so in proving that (PO 
satisfies condition (ii) for HO-expansible groups we automatically prove that 
it satisfies condition (i). 

We show that ZO satisfies condition (ii) by induction on the length of an 
element of RO as a word in the chosen generators. 

Since every generator has an HO-symbol, we have the first step of the 
induction. 

Suppose that r E RO has HO-symbol 

x, ... x, 
k, ..a k, 

Y, ..* Y, 

and that a E G,,, has symbol 

Each h E H, has a symbol of the form 

so we can expand the above symbol for t repeatedly until its bottom row is 
an expansion of the cofinite basis {u, ,..., us}. Suppose the resulting symbol is 
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The identity has symbol 

a, .-. a, 

t 1 1 . . . 1 

a, ..a a, 

so we can expand the symbol above, for cz, to a symbol of the form 

i WI 1 WI 1 

41 

*a* ... . . . 

1 

. 

4t 

By Lemma 5, we can now combine these symbols to get a symbol for XX. By 
induction hypothesis, we can assume that the original symbol for t was a 
combination of HO-symbols for each of the generators which make up r. 
Thus, by Lemma 16, we have the result for ra. 

If h E H, has H,-symbol 

we can repeatedly expand this until we obtain a symbol of the form 

. . . Y, 

. . . 

t: i 
6 3 

. . . ).$I I 

for h. By Lemma 5, the combination of this symbol and the symbol above 
for r is a symbol for rh and is also a combination of symbols for the 
generators which make up rh. This completes the induction step. 

By 6i and d,, l<i<n, TcES~-~, we shall always mean the elements of 
G,, I with symbols respectively 

i 

al a2 -a- a,-, anala, ..a %%ai-1 &alai 

1 la.. 1 1 . . . 1 1 

ana,ai a2 ..a a,-, anala, maa %Aai-1 4 

a,a, a,, 1 ..a analan a,a, .a* anan 
1 . . . 1 1 . . . 1 

a,a,ai+ 1 *a. ana,an a,a, ... anan ) 
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and 

UlUl **a ala,- I alan a, ... a, 

1 . . . 1 1 1 1.. 1 . 

u,u,7T *** a,a,-,n a,an a, ..e an i 

Let E be a set of generators for H, and their inverses. Let D’ = 
{a,=66,f?,,6,a,~ . . . dnelohnm,dn . . . 83n-283n-2 ..- 6,6, 66,1 GEE}, where 
h has HO-symbol 

Letx’=AUBUCUD’Gx. 

LEMMA 18. If g E H, has symbol 

i 

a, ... a,-, a, 

g, *** gn-I 1 

a,~ -.a a,-+ a, i 

the relation CJ, = @,a,, .I* 13~-,o~,_~ d,_, ..a 6, 66, is a consequence of x’. 

ProoJ By induction on the length of g as a word in the elements of E. 
If g E E, then the result follows by definition of D’. 
Suppose that the result holds for g and let h E E have symbol 

i 

a, .e- a,-, a, 
h, +.. h,p, 1 

a,7r .a. anp17z a, 

Then gh has symbol 

a, **a a n-1 a, 

g,h,, ... gn-,hcn-,ju 1 . 
a,,un ... a n-l~n a, 

By assumption the relation og= #,a,, ... Bn-,ug,-, 6,-, a.. 6, 66, is a 
consequence of x’ and so, using Lemma 12 with the induction hypothesis, the 
relation 
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is a consequence ofx’, where a=?I,a,6,,/?=6, +..S,-,p,S,_,...S, (a,, 
p, from Lemma 12). The relations 66,&x6, = di 66, da, a/3 = 1 and 6,6, = 
6,, are consequences of A and 66,6a fixes a,. So the relation ogh = 
f% og -.a 6,-Iogn-, 13,~, --+ 6,0, 6, .a~ uhcn-,,u6,_, ... 6, 66,, is a conse- 
quence of x’. We note that the c$ belong to a set of type 3n - 2 and so we 
have the result for ug,, by Lemma 11. 

LEMMA 19. If 

is any HO-symbol for o,, g E H,, and {r2 ,..., r,} is any set of type s, the 
relation og = Tok,?j20k, “’ qSok,vS . . . r12 E is a consequence of x’, where z and 
E have symbols 

11 i 111 I) and (%: 11 !:I :I), 

respectively. 

Proof: By Lemma 9, r is an expansion of 

i 

a, a2 ... a, 
g 1 ... 1 

a, a2 .a+ a, i 

and by Lemma 12, we can, and will, suppose that the columns of r are in 
any order which suits us. The proof is by induction on the number, m, of 
columns of the form 

in r. 
Ifm= 1, 

i 

a, x2 .e. x, 

r= g i . . . i 
a, x2 . ..x. 1 
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and the relation is cg = W,E. But rs = 1 is a consequence of A, in this case, 
and r fixes a,, so the result is a consequence of A U B. 

If m = n, then 

i 

U,Q, *** UlU,-l aI% Yntl **’ Ys 
r= g, *a* g,-, 1 1 es.1 

u,u,,u *.. a1 a,-+ alan Yn+1 .‘. Ys 1 

and the relation is u~=~cJ~,~~(T~,~/~ .a. u~,~,~I”-, .+a n2s. Let a be the 
element with symbol 

a1 w2 ... Wil W ntl *** W s-l w s 

1 1 *** 1 1 . . . 1 1 7 

a1 anala a.- ana1 a” z,t1 ‘*- Z s-l ana1 aI i 

some z,~, ,..., z,. The relations a-‘qja = Sj, 2 < j < n, are consequences of 
A and a fixes a, so the relation CJ~= &,a-‘~,,~, ... u, -,n+, .a+ n2aS,66, 
is a consequence of x’, by Lemma 18. The element tad, 8 fixes a, and so the 
relation ta~,6u,S6,a-‘~-’ =ug is a consequence of x’. The relation 
ad,66,66,a-‘t-’ = E is a consequence of A and so we have the required 
relation for ug as a consequence of x’. 

We now consider the expansion 

u, ... usp, u,a, *.. u,u,_, u,u, 
k, *.. I?-, h, *.. h,-, 1 

u, ... u,-, v,u,71 ... v,u,_,7c v,u, 

of r and assume the result for any set {V 2,..., vs} of type s. For a given set 

IfI *,..., q,} of type r = s + n - 1, we want to show that the relation 6, = 
r”k,h “’ ‘k,_, vs”h, **- ~r-l”h,m,~r-l . . . r12 E is a consequence of x’, and we 
can assume that the relation u, = r’uk,vz . . . uk,v, . . . v2 E’ is a consequence of 
x’, for any set { v2 ,..., vS } of type s. 

Let /3 be the element with symbol 

a, w* *.- w,-, w, wst, *.. W, 
1 1 3.. 1 1 1 . . . 1 2 

a, z2 aee z,-, z,u, z,u2 -a. z,a, 1 

for some z2 ,..., z,. Let vi = p-‘qip, 2 < i < s - 1; then there is a v, such that 
IV *,..., vS} is a set of type s. Taking the symbol 

z2 *** z, u,u, .*. ala,-, 
1 . . . 1 h, a** h,-, 

z* *** z, a1u171 -.. a,a,-,n 
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for uk,, we have, from the case m = n, that the relation uk,= 
r”& . . . ~,cJ~,~,+, ... uh,-i~,-i ... q2.sN is a consequence of x’. Now, 
yq12 . . . qspl =vp, &“V, -** V,E’ = E and r’p- ’ = r are consequences of A, 
and /3 fixes a,, so the relations 

are consequences of x’, completing the induction step. 
Clearly, D’ c_ D. The above lemma shows that every relation in D is a 

consequence of x’, thus x’ is a set of defining relations for X0. We have 
already shown, in Lemma 13, that if H, is finitely presented the relations, 
A U B U C are finitely based. If H, is finitely generated, we can take the set 
E E H,, above, to be finite, so we can suppose that the set D’is finite and 
hence that the relations x’ are finitely based. Thus we have the following 
theorem. 

THEOREM 2. If 8 is any homomorphism from a free group, F, to the 
wreath product, F wr S, _, , and if the subgroup, H,, of gn’,,, defined by 0 is 
finitely presented, so is the group (G,,, , Ho). 

A USEFUL LEMMA 

The constructions above have been made in such a way that we can apply 
the following lemma, which is essentially a result of Thompson [3]. We give 
a proof of the lemma since Thompson’s formulation is very different from 
that of this work. 

LEMMA 20. If K is a subgroup of YE’,,, containing GA,, , then the derived 
subgroup, K’, is simple. 

ProoJ We show that any non-trivial normal subgroup, N, of K contains 
K’. Then, since GL,, is simple and nonabelian (see [ 1 I), we have G$ 1 = GA,, 
and so G ;,i c_ K’. Thus K’ satisfies the initial conditions on K and so any 
non-trivial normal subgroup of K’ contains K”. But K” u K and K” # 1 
since Gi,, c K”, * thus K’ <K” and so K’ is contained in all its non-trivial 
normal subgroups. 

Suppose that N is a non-trivial normal subgroup of K and that T E N is 
non-trivial. If UT # u and u = yw, then yr # y, so choose u E W such that 
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us # u and suppose that r is not defined on any proper initial segment of u. 
Let ur = V; then u # U. 

We use u to construct a non-trivial element in GL,, n N and then, since 
GA,, is simple, we have GL,, c N. We then use this result to show that K/N 
is abelian. 

Let (24, z+,..., us} and {v, Us,..., us} be cofinite bases and let a and /3 be the 
elements with symbols respectively 

i 

ua,a, uu,u* uu,u3 **a uu,u, uu2 l&l3 ..* uu, 24, .** u, 

1 1 1 . . . 1 1 1 *** 1 1 a** 1 
uu,u2 uu* UUlU3 .a. uu,u, uu,u, uu3 a.* ua, u2 .-a u, 1 

and 

t 

uu,u, va,a2 va,a3 a.* va,a, vu, vu3 aa. vu, v2 .a- v, 

1 1 1 . . . 1 1 le.*1 1 -*.I. 
ualu2 vu2 vu1 a3 *.- VUIUn VUIU, vu3 ... vu, v2 ... v, 1 

Then a and j3 are even and thus belong to GA,, , which has index at most 2 in 
G,,, (see Ill). 

Choose y such that yr-’ and y/I are both defined. Since y/3 is defined, y is 
not an initial segment of vu, so yz- ’ is not an initial segment of ua, and 
yz-‘a is defined. If u is not an initial segment of y, then u is not an initial 
segment of yr-’ and so yr-‘a7 = yt-’ z=y= yj?. If y=uululw, some w, 
then yr -‘a7 = ualu2w = y/3. Similarly, if y is of the form vu, aiw, uaiw or 
uiw (for i > 2), then y7 -la,= yp. Thus 7-‘a7 is equal to /I on an 
inescapable subspace, and so a = r-rat. 

Then a-It-la7 E GA,, n N, and is non-trivial since (uu,al) am17-‘ar # 

uu,u’,, for any i for which the left-hand side is defined. 
Take q and c contained in K. We want to show that Nr[= NQ. Choose 

w  E W such that (UW) v-l and (VW) c-r, U, u as above, are defined. Choose 
P, v E G,,, such that (uw)~ = (uw) q-r and (uw)v = (uw) [-‘. Since GL,, has 
index at most 2 in G,, i, it is not hard to see that we can in fact choose ~1 and 
v to be in G;,,. (If a, is not an initial segment of u, let 7c be the element of 
G n,l which swaps uiu, and uiun and fixes everything else. Then if 
G,,, # GL,,, n @ GA,, and 7c fixes u, so (uw) zp = (uw) 11-l. Either p or rc~ 
belongs to GA,, .) Since GA,, _ c N, it is sufficient to show that Npr,$ = Nvc~q. 

If p and v have symbols respectively 

uw 242 *.. u, 

1 1 .*. 1 ) and ( (I:)v E iii t ), 

(uw)lu Yz *** Y, 
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let y and p have symbols 

t 

a, *a* a n-1 ana, anx2 ..a a,x, 

1 . . . 1 1 1 . . . 1 

uwu, *-- uwa,-, uwa, 24, ... u, 1 

and 

i 

a2 .a. a, a,a, a,w, *a* a,w, 

1 . . . 1 1 1 . . . 1 . 
vwa2 ... vwa, vwa, z2 ..* z, i 

Using the same techniques as above, we can choose y and p to be in GA,, . 
We show that v’ = ypqy-’ and c’ = pv@ - ’ commute, which gives the result. 

If y=C$w’, for any w’E W, 2<i<n-1, then yq’=y=yc’. If 
y = a, w’, then yp does not have initial segment vwuj, j # 1. So y@vC) does 
not have initial segment uwuj, j # 1, and hence yC’ (= y@v@- ’ )) is of the 
form a, I, whenever it is defined. Since r’ fixes all words of the form a, z, 
yq’[’ = y[‘q’. Similarly, [’ fixes all words of the form a,z and if y = a, w’, 
JJ~‘[’ = yc’r’, whenever yy’ is defined. Thus v’[’ and i’q’ are equal on an 
inescapable subspace and so r’[’ = [‘q’. 

DERIVED SUBGROUPS 

Finally, we want finitely presented simple groups; so we are interested in 
the cases when 2; is of finite index in &. Although we cannot give 
necessary and sufficient conditions for this, the theorem below shows that if 
H, is a finitely presented subgroup of Yn’,,i defined by 0, then H, can be 
embedded in a finitely presented group with a simple derived subgroup of 
finite index. When H, is finitely presented, the lemmas and theorems above 
give that derived subgroup is a finitely presented simple group. 

An element of F wr S,- i is an n-tuple (L, ,..., L,- 1, 7c), where 
L L-1 1 ,‘..9 E F, XE S,,-, and (P,a,)(L ,,.., Lnel, or)= (PLi,aiz), for all 
P E F. Let 0 be a homomorphism from F to F wr S,-, . If 
LB= (L, ,..., Ln-,,7c), we call L ,,..., L,-, the first @-components of L. The 
kth e-components of L are defined, inductively, to be all the (k - 1)st O- 
components of L, ,..., L,-,. 

Let H, be the group defined by 19 and let aL be the image of L in H, (see 
Lemma 14). Then eL = 1 if and only if L E Y, and refering to the diagram 
above Lemma 14, we see that this is so if and only if all the &components of 
L lie in ker yl,. 

Let I be the natural embedding of S,- , in S,, which identifies S,_ , with 
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the set of all elements fixing a,,. We have a homomorphism 8* : F --) F wr S,,, 
given by LB* = (L ,,..., L,-,, L, nl). Let pi* and d,? be the natural maps 
corresponding to pi and Qi, on the diagram. Since I is a monomorphism, we 
have ker w, = ker ~7 and clearly the set of f?*-components of L is just L 
itself and the set of &components of L. Let et be the image of L in H,. and 
then E: = 1 if and only if E,, = 1. In other words, H,j is isomorphic to H,. . 

THEOREM 3. Let 0 be a homomorphism from a free group F to the 
lvreath product F wr S, _, and let H, be the subgroup of .?“,., defined by 8. 
There exists an integer m and a homomorphism 4 : F -+ F wr S, _, such tha! 
H, is isomorphic to H, and (G,.,, H,)’ has finite index in (G,,., , H,). if H,) 
is JinilelJ* generated. 

Proof: If Le = (L, ,..., L, , , n), then define 4: F --+ F wr S, _, by the rule 
LQ = (L, ,..., L, ,, L )..., L. 711). where I is the natural embedding of S, , in 
S ,,-, which identifies S,-, with the set of all elements which fix 
a,, a, + , ,..., a m , . From the discussion above. we see that H, is isomorphic 
to H,. 

From relations D for T0 we have 

If H, is finitely generated we can choose a finite set of generators (k, ,.... k,), 
for H,. Let G,., = Gh*, u Gh., a. From the relation in D, above, for kj we 
get uk, = su$,-l~~~ . . . a?.: for some 7 E U: U F&a and integers qj, ,..., qjir. 

The qij, 1 < j < r, increase with m but qji (i # j) is independent of m. Thus 
we can choose m large enough so that, if 

921 M= , q22 

L : 
-1 . . . 

92r 

(1 r, 4 r2 i I3 ... q,,-1 

then det M > 0. Thus, adding non-zero multiples of the rows of M together, 
we can reduce M to the form 

Carrying out the same operations on the set of words (ut:l ‘a:;: a.. uY,;~,..., 
(JQQ . . . 0 

2;‘, b; 

ykr,- ’ 1. we see that a:~ E PI, U ?‘&a. Thus TV:, has index at most 
... b,, In Pi. 

, 



322 ELIZABETH A. SCOTT 

If H, is finitely presented we have, from Theorem 2 and Lemma 17, that 
OF: is a finitely presented infinite simple group. 
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