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Abstract 

Ito, M. and G. Thierrin, Congruences, infix and cohesive prefix codes, Theoretical Computer Science 
136 (1994) 471 485. 

A language L _~ X * is called a cohesive prefix code if xLyc~L ~ 0 implies that y = 1 and xL c L for any 
x, y~X*. An example of cohesive prefix codes is an infix code. We determine first the structure of 
cohesive prefix codes and then we study several relationships between maximal infix codes and 
maximal cohesive prefix codes. Finally, we determine the structure of a cohesive prefix code that is 
a right semaphore code. 

1. Introduction 

C o n g r u e n c e s  occu r  n a t u r a l l y  in the  t h e o r y  of  l anguages  a n d  a u t o m a t a .  W i t h  every  

l a n g u a g e  L o v e r  an a l p h a b e t  X is a s soc ia t ed  its syn tac t i c  c o n g r u e n c e  PL a n d  the 

c o r r e s p o n d i n g  syn tac t i c  m o n o i d  Syn(L) .  Severa l  i m p o r t a n t  classes of  l anguages  can  be  

c h a r a c t e r i z e d  by the  p rope r t i e s  o f  the i r  syn tac t i c  c o n g r u e n c e s  and  the  c o n n e c t e d  

syn tac t i c  m o n o i d s .  Also  m a n y  in te res t ing  p rope r t i e s  of  codes  are  re la ted  to  the  

di f ferent  types  of  c o n g r u e n c e s  tha t  can  be a s soc i a t ed  wi th  them.  F o r  example ,  infix 
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codes and prefix codes are, respectively, classes of their syntactic and right syntactic 
congruences. 

In this paper, we consider properties of languages that are classes of congruences or 
right congruences, especially in relation with codes. After establishing, in Section 2, 
several general properties of languages that are classes of congruences, we introduce, 
in Section 3, an important  family of such languages, the family of cohesive prefix codes 
which is a subfamily of the prefix codes. In particular, we give a characterization of the 
syntactic monoid of these languages. Section 4 is devoted to the study of closure 
properties of cohesive prefix codes as well as the properties of maximal cohesive prefix 
codes. In the last section, we consider cohesive prefix codes that are also right 
semaphore codes and give some representations of them. 

2. Congruences 

Let X be a finite alphabet and let X* be the free monoid generated by X. An 
equivalence relation p on X* is said to be right (left) compatible if u=v(p) implies 
ux=-vx(p) (xu=xv(p)) for every xeX*.  l f p  is right and left compatible, then p is said 
to be compatible. Remark that an equivalence relation p is compatible if and only if 
r-s(p)  and u--v(p) implies ru=sv(p). Using this property, the product of classes of 
p can be defined naturally to obtain a new monoid X*/p called the quotient monoid 
of X* modulo p. Right (left) compatible and compatible equivalence relations are also 
called, respectively, right (left) congruences and congruences. If L is a language over 
X and if ueX*, then let L." u={x[x6X*,  uxeL}, L ' .u={x[x~X*,  xueL} and 
L . . u = { ( x ,  y) lx, yeX*, xuyeL} 

The relation R z defined by u - V(RL) if and only if L ." u = L." v is a right congruence 
called the principal right congruence or the right syntactic congruence defined by L. 
The principal left congruence LR is defined symmetrically. The relation PL defined by 
u-V(PL) if and only if L . .  u = L. .  v is a congruence called the principal congruence 
or the syntactic congruence defined by L. The quotient monoid Syn(L)=X*/Pc is 
called the syntactic monoid of L. If not empty, the set WL={U~X*IL.'u=O} 
(LW=-{uEX*IL..u=O}), called the right (left) residue of L, and the set 

W(L)= {u~X* I L . .  u = 0}, called the residue of L, are classes of respectively RL (LR) 
and PL. If the (right, left) residue of a language L is empty, then L is said to be (right, 
left) dense. Remark that PL----- RL and that L is a union of classes of RL and PL. 

A language L ___ X *, L ¢ 0, is called rc-simple if L is a class of a right congruence and 
c-simple if L is a class of a congruence. The following result is well known and easy to 
prove. 

Fact  2.1. For a language L, the following conditions are equivalent: 
(1) L is rc-simple (c-simple); 
(2) L is a class Of RL (a class of PL); 
(3) Lxc~L ~: 0 (xLyc~L -¢ O) implies Lx ~_ L(xLy ~_ L). 



Con,zruences, &fix and cohesive prefix codes 473 

M a n y  examples  of  rc-simple or c-simple languages can be found in several families 
of codes. Recall that  a code C over X is a nonempty  language C ~ X  + such that  
c ~ c 2 ..- cm = d ~ d 2 . . . d,, c~, d i sC ,  implies that  m = n and c ~ = d ~ . . . . .  cm = dm. Let L ~_ X + 

be a nonempty  language over  X. If u, u x e L  (u, xuEL)  implies x = 1, then L is a code 

called a p r e f x  (suffix) code. If u, x u y e  L implies x = y = 1, then L is a code called an infix 

code. It  is immedia te  that  every prefix code is an rc-simple language and that  every 

infix code is a c-simple language. 
Decompos i t ions  of regular rc-simple languages in connect ion with prefix codes 

have been given in [6] where rc-simple languages are called right simple languages. 
These decomposi t ions  can easily be extended to the general case in the following way. 

Proposition 2.2. Let  L be a nonempty rc-simple language. Then 

(1) (f l ~ L, then L = { I } or L =  P* where P is a prefix code; 

(2) (f l (~L, then either L is a prefix code or L =  PQ* where P and Q are prefix codes. 

Proof.  (1) Clearly, L is a submonoid  of X*.  If u, u x e L ,  then from 1 =U(RL) follows 
x = u X ( R L )  and x ~ L .  Therefore,  L is right uni tary and the conclusion follows. 

(2) Suppose that  L is not a prefix code and let P = { u ~ L l v e L ,  x e X * ,  

u = t;x ~ x = 1 }. Then P is a prefix code and P ¢ L. Let T =  Ix  ] x e X * ,  L x  ~ L}. Clearly, 
T is a nonempty  submonoid  of X * and, since L is not a prefix code, T ¢  { 1 }. Let v~ L. 
Then t ,=uy  for some u~P, y ~ X * .  F r o m  u s L ,  u y ~ L  follows L y ~ L  and hence y e T .  

Therefore  L =  P T. Let t, tz e T. Then L t z ~  L with Lt ~ L. Hence, L z ~ L  ¢ O, Lz  ~ L and 
z~ T. The submonoid  T is right uni tary  and therefore generated by a prefix code Q, 

i.e. T=  Q*. 

Fact 2.3. Let  L be a nonempty language with L ~ X +. Then 

(1) L is a prefix code i f  and only i f  every f ini te  nonempty subset o f  L is rc-simple; 

(2) L is an infix code !f and only ~f every.finite nonempty subset o f  L is c-simple. 

Proof.  (1) If L is a prefix code, then every nonempty  subset of  L is also a prefix code 
and hence rc-simple. Conversely,  suppose that  u, uxEL.  Then {u, ux} is re-simple and 
hence a class of a right congruence. This implies that  {u, ux, ux 2 . . . .  } is contained in 
the same class as u. This is possible only if x = 1. Therefore L is a prefix code. 

(2) The p roof  is similar by replacing {u, ux} by {u, xuy}.  

If L is a prefix code, then, since L is a union of classes of  PL and every nonempty  
subset of a prefix code is also a prefix code, L is a union of classes that  are prefix codes. 
If L W  is the left residue of L, then W(L)  is contained in LW and, if not empty,  LW is 

a union of classes of PL. 

Proposition 2.4. Let  L be a prefix code. Then 

(1) the PL-class o f  1 is {1}; 
(2) irA is a class Of PL with A ~ {1 ) and i f  A is not contained in i W, then A is a prefix 

code. 
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Proof.  (1) If u ~  I (PD and if vsL ,  then v u ~ v ( P D .  Hence v, vu~L and u =  1. 
(2) Let u, v~A with v=uz .  Then there exists x ~ X *  such that  x u e L .  F r o m  u=-v(PD 

it follows that  xu -xv (PL) .  Since x u e  L, xvc  L. Hence, xu~ L and xv = xuz 6 L. Since L is 

a prefix code, z =  1, i.e. A is a prefix code. [] 

Corol lary 2.5. I f  L is a prefix code that is left dense, then every class :~ { 1} of  PL is 

a prefix code and L is not a regular language. 

Corollary 2.6. I l L  is a prefix code that is left dense, then the syntactic monoid 

M = Syn(L) o f  L has the following properties: 

(a) For every u~M,  u x = u  implies x =  1. 

(b) M is infinite. 
(c) No element u ¢ 1 is periodic, 

Proof.  This follows from the fact that  every class of  the syntactic congruence not 
containing the identity is a prefix code and that  L is not regular. [] 

3. Cohesive prefix codes 

A nonempty  language L~_X + such that  x L y c ~ L ¢ O  implies y = l  and xL~_L  is 
a prefix code and a class of its syntactic congruence. Such a prefix code is called 
a cohesive prefix code. 

Clearly, every infix code is a cohesive prefix code, but the converse is not true in 
general. For  example,  P = a*b over X = {a, b} is a cohesive prefix code, but not  an infix 
code. This example  is a special case of the following general class of  prefix codes that  
are cohesive prefix codes. Let X=- Y w Z  with Y ~ Z  = 0  and Y, Z not empty.  Then 
P = Y 'Q ,  where Q is an infix code over  the suba lphabe t  Z, is a cohesive prefix code in 
X*.  Remark  that  these codes are not suffix and hence not  infix. 

Recall [3] that  a nonempty  language L ~ X  + such that  xLyc~L~eO implies y =  1 is 

a prefix code called a p-infix code. Clearly, every cohesive prefix code is p-infix, but the 
converse is not  true. For  example,  {a, ba} over X = {a, b} is a p-infix code, but not 
a cohesive prefix code. A prefix code that  is a class of its syntactic congruence is not 
necessarily a cohesive prefix code. For  example,  take {a"b"]n >~ 1} over  X =  {a, b~. 

Fac t  3.1. Let L be a finite language. Then L is a cohesive prefix code if and only i lL  is an 
infix code. 

Proof.  ( ~ ) Obvious.  

( ~ )  Suppose that  L is not  an infix code. Then there exist x, y ~ X *  and u ~ L  such 
that  [xy I ~> 1 and xuy~L.  By definition, y - -  1 and x L  ~_ L. Remark  that  I xl ~> 1. For  any 
n ~> 1, x"L~_L. Hence, L is infinite, a contradict ion.  [] 
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A consequence of the above propos i t ion  is that  every nonempty  subset of a finite 
cohesive prefix code is also a cohesive prefix code. However ,  this is no more  the case in 
general for infinite cohesive prefix codes. Take,  for example,  the cohesive prefix code 
P=b*a over X ={a ,  b}. The subset b*a',,{ba} is clearly not  a cohesive prefix code. 

Proposition 3.2. A nonempty language L~_X + is an infix code if and only if every 
nonempty finite subset of L is a cohesive prefix code. 

Proof.  ( ~ ) Obvious.  

( ~ )  Suppose that  u, xuy= v~L with x, y e X * .  Since the subset A = {u, v} is a finite 
subset of  L, A is a cohesive prefix code. Hence, y =  1 and xA = {xu, xZu} ~_A. This 
implies x = l .  [] 

Fac t  3.3. I f  L is a cohesive prefix code, then its residue W(L) is not empty. 

Proof.  Suppose that  W(L) is empty.  Let a6X,  u~L and let xuay~L for some x, y s X * .  
Then ay= 1, a contradict ion.  [] 

If L is a cohesive prefix code, then, since L is a class of PL, L is a disjunctive element 
of Syn(L). Since the residue of L is not  empty,  Syn(L) has a zero element and hence 
a core, 

Remark  that  the residue of a cohesive prefix code can be strictly contained in the left 
residue. This is the case for P = b*a over X = {a, b}. 

Proposition 3.4. A monoid M is isomorphic to the syntactic monoid Syn(L) of a cohesive 

prefix code L i[ and only if the following conditions are satisfied: 
(1) l i e  is the identity element of M, then M\{e}  is a subsemigroup of M. 
(2) M has a zero element O. 

(3) M has a disjunctive element c such that c(~{e, 0} and c=xcy  implies y=e.  

Proof.  ( ~ ) Since L is a cohesive prefix code, L is a PL-Class and the PL-class of 1 is 
trivial. Hence, (1) holds for Syn(L) and thus also for M. By Fact  3.3, the residue W(L) is 
not empty.  Hence Syn(L) has a zero and (2) holds. Let c be the image of L is Syn(L). 
Since L _  X +, by hypothesis,  we have c # e, and since L ~  W(L)= 0, we also have c # 0. 
It  follows easily that  c is disjunctive. For  any w~X*,  let [w] be its image in Syn(L), and 
let ueL. Assume that  for x, y ~ X *  we have c=[x]c[y] .  Then u, xuycL  implies that  
y = 1 whence [y] = e. Therefore,  M satisfies (3) as well. 

( ~ )  Let X - M  ~ _  ,t~ ssot and define a mapp ing  q~ on the free mono id  X*  by 

q):x1x2. . .  Xn--+XIX2.. .X,,eM\{e} 

if  x , ,  x~ . . . . .  x . e M \ { e }  and 

q0 : 1--+e. 
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Then ~p is a homom orph i sm  of X*  onto  M such that w~p = e if and only if w = 1. 
Since c is a disjunctive element of M, for L =  c o - 1 ,  we have (? = PL where ~ is the 

equivalence defined on X*  by u--v((?) if and only if (p(u)=~p(b). Therefore, 

S y n ( L ) = X * / P L  is isomorphic  to M. Suppose that x L y n L : ~ O ,  i.e. x u y = v  for some 
u, ve L. Then q)(xuy) = (p(x) ~p(u)q~(y) = q~(v) and, since ~p(u) = ~o(v) = c, q)(x)cqo(y) = c 

and q~(y)= e. Therefore y = 1, x L  c_ L and L is a cohesive prefix code. 

The following lemma and its corollary will be used several times in the sequel. 

Lemma 3.5. Let L ~_ X + be a cohesive prefix code. Then L = S * T  where S is a suffix 

code over X or { 1 }, and T is an infix code over X.  

Proof. If L is an infix code, then take S = { 1 ] and T =  L. Assume now that L is not  an 

infix code. Let T =  { u e L I v ~ L ,  x, y e X * ,  u = x v y  ~ x = y =  1}. Then obviously T is an 
infix code. N o w  let U = { x ~ X *  [xL~_ L}. Since L is a cohesive prefix code, U is a left 

unitary submonoid  of X*  and hence its root  S is a suffix code. Thus U = S *  and 

L = S *  T. [] 

It can be easily verified that the above representation for a cohesive prefix code L is 

uniquely determined. 

Corollary 3.6. Let L c_X + be a cohesive prefix code with L = S * T  where S¢{1} ,  let 

s e S  + and let V be a suffix code with V~_L. Then s*V is a cohesive prefix code. 

Proof. Since s* V~_ L, x(s* V )y~s*  V # 0  implies that x e S *  and y = 1 for any x, y e X * .  

Let xsiv = sJv ' where i, j >~ 0 and v, v'e V. Since V is a suffix code, v = v' and xs ~ = s j. Thus 

x = s ~ - ~ e s  *. This completes the proof  of the corollary. [] 

4. Closure properties 

By C O H ( X )  we denote the family of all cohesive prefix codes over X. 
The proper ty  for a language to be a prefix code is preserved under the operat ion of 

taking a nonempty  subset. This is no more  true for cohesive prefix codes. 

Fact 4.1. Let  L e C O H ( X ) .  l f  L is infinite and not an infix code, then there exists  a subset 

L ' ~ L  such that L'q~COH(X).  

Proof. Since L is not an infix code, there exist u e L  and x, y ~ X * ,  x y #  1, such that 
x u y =  w L .  Since L ~ C O H ( X ) ,  y =  1 and x " u e L  for any n~>0. If U =  {u, v = x u } ,  then L' 

is a subset of L that is not  a cohesive prefix code. 
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Fact 4.2. (i) COH(X) is not closed under union. 
(ii) COH(X) is closed under intersection. More precisely, let {Li}i~1 be a family (if" 

elements of COH(X). Then, if not empty, N ~ I L ~ C O H ( X ) .  
(iii) COH(X) is not closed under catenation. 
(iv) COH(X) is not closed under +. More precisely, ./or any LeCOH(X) ,  

L + q~COH(X). 

Proof. ( i )Le t  X = { a , b  . . . .  }, L={a}  and L'={ab}. Then L,L 'eCOH(X)  but 

LwL'gfiCOH(X). 
(ii) Let {Li}i~l where LieCOH(X)  for any i e l  and consider Oi~lLi. Assume 

x((~i~rLi)y~((~i~tLi)#O. Then there exist x, yeX*  and u¢~i~lLi  such that 
xuye~i~lLi .  Let iel. Then u, xuyeLi. Since LieCOH(X),  y =  1 and xLi~_Li. There- 
fore 

= x  

i~ l  i~1 iEl  

This means that Oi~tLieCOH(X). 
(iii) Let X = { a ,  b . . . .  ), L=b*a and let L'=a*b. Then L, L'ECOH(X). Consider 

LL'=b*a+b. Suppose LL'~COH(X).  Since ab, (ba)(ab)~LL', (ba) ~ abeLL' for any 
n ~>0. However this is a contradiction. Therefore LL'(~COH(X). 

(iv) Immediate. [] 

Proposition 4.3. Let LECOH(X).  Then there exists a maximal element L' eCOH(X) 
such that L ~_ L'. 

Proof. Let {Li}i~l be an ascending chain in COH(X) such that L~_Li for any i e l  and 

let L ' = U I ~ L  i. Suppose that xL'yc~L'#O. Then there exist x, y e X *  and ueL' such 
that xuyeL'. Since {Li}i~1 is an ascending chain, there exists an element Lk of this 

chain such that u, xuyeLk and hence XLkymLk~:O. Since Lk~COH(X), y = l  and 

x L  k ~ L k. 

Now we prove that xL'~_L'. Remark that if k<.i, then x L i ~ L  i because 
u, xuy@L k ~_ Li. Furthermore, 

x U Li _ U Li, i.e. xL'c_L'. 
i~I  i e l  i e l  

Therefore {L~}~EIeCOH(X). Using the Zorn's  lemma, it follows then that L is 
contained in a maximal cohesive prefix code. [] 

Fact 4.4. I f  L is a finite maximal infix code, then L is a maximal cohesive prefix code. 

Proof. Suppose that L is not a maximal cohesive prefix code. Then there exists 
a maximal cohesive prefix code /~ such that L a/~. Since L is a maximal infix code, 
there exist u, xuye L, where x, y e X  * and xy # 1. Since/~ is a cohesive prefix code, y = 1, 
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x ¢ l  and x " u e L  for any n>~0. Let m = m a x { l v l  IveL)  and let n>m.  Since Ix"J>m 
and L is a maximal  infix code, there exist r, s e X *  and v e L  such that r s ¢ l  and 

rvs = x". Consequently,  x"u = rv(su)eE. This contradicts the fact that  /~ is a cohesive 

prefix code because v, rv(su)eL and s u ¢ l .  Hence, L must  be a maximal cohesive 
prefix code. 7- 

Corollary 4.5. Let L ~_ X *  be a finite language. Then L is maximal cohesive prefix code 
if and only !f L is a maximal infix code. 

The following example shows the existence of an infinite maximal  infix code that  is 
a maximal cohesive prefix code. 

Example 4.6. Let X = {a, b, ... } and L = a b + a w b a b u a 2 w ( X \ , { a ,  b}). Then it is easy to 

see that L is a maximal infix code. N o w  suppose L is not a maximal cohesive prefix 
code. Let /~ be a maximal cohesive prefix code with L c/~.  Since L :~/~, there exist 
u, x u e X  + such that ueL,  xuef~, x * L ~ L  and x e X  +. If x = x ' a ,  then x a  2 = x t a  3 = 

x'(a2)a~E, a contradiction. If x = x ' b ,  then xaba=x ' (bab)aeL ,  a contradiction.  If 
x = x'c where ceX' \{a ,  b}, then xa 2 = x'(c)aZG/~, a contradiction. Therefore, L must  be 

a maximal cohesive prefix code, 

In the above example, L is a regular language. This suggests the following result 
that  is a generalization of Fact 4.4. 

Proposition 4.7. Let [ X [ >~2 and let L~_X*  be a regular language, l f  L is a maximal 
infix code, then L is a maximal cohesive prefix code. 

Proof. Suppose that L is not  a maximal cohesive prefix code. Then, by Corol lary  3.6, 
there exists s e X  + such that s*L is a cohesive prefix code. 

First we prove the existence of ~ e X  + satisfying the following condition: For  any 
i, i~> 1 there exists f l i6X + such that asif3icL. 

Let k~> 1. Since L is a maximal infix code, we have u<~is k+2 or s k+2 <~iu for some 

u e L  where u ~<~v means that v = x u y  for some x, y e X * .  
If u <~s k+2, then we have a contradict ion with the assumption that s*L is a cohe- 

sive prefix code. If s k+2 ~<iu, then there exist ~,, fll, e X *  such that ~'ksk+2fl'kffL. NOW 

let ~k = ~ , s  and flk=Sfl'k. Then ~kskflk6L and ~k, fik ~X+.  Since L is a regular language, 
we can assume that [~k I ~< N for some positive integer N (for instance, we can take for 

N the number  of states of an au tomaton  accepting L), without  loss of generality. 
Remark that we can take infinitely many  numbers  as k. Moreover ,  because of the 
restriction of the length of :~k, we can see the following: There exist ~ e X  + with 

J~I~<N, an infinite sequence of positive integers k l < k z < . . . < k r < . . ,  and 
flkreX +, r~> 1 such that ~skr~l,,.~L. 

Now let i,i>~l. Take any kr with k ,>i .  Then o ( s k ~ f l k = ~ S i ( s k ' - i f l k ~ ) @ L .  Put 

f l i=sk"-iflk.  Hence we have ~siflieL. 
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Let p be a positive integer. Assume now that, for n, 1 <~n<~p, we have a sequence 

cq, c~2 . . . .  , ~, of elements in X + satisfying the following condition: 

Vi, i>~ 1, 3fli, e X  + such that ~.c(._ 1 ...O~2:~l Si fli,, ~L .  

Let k>~ 1. Consider Sap~p I" 'C(2cqskeX +. Then there exists ukeL  such that 

ld k ~iS:XpO~p 1"..~(2~1Sk or  SO~p~p 1...~2~1 sk ~ i U k  . 

If Uk ~ i s % % -  ~'"eZel  s k, then :~Ukfl = S % % _  1"" "~ 2~1S k for some a, f l e X  *. Remark that 

(~u~fl) f i~= s( ~ . ~ _  1"'" ~ ~.l s%~)~ s L. 

Since ]fikp] ~> 1, this contradicts  the assumption that  s*L is a cohesive prefix code. 

Therefore sctpep 1...a2~1 sk <~iUk. In this case, C(k(SCtpC~p_l""~2Ctlsk)fi'k=Uk~L for 
some e~,, fi'k~X*. For  any n, 1 <~n<~p, we can assume that [c~,l ~<N, without  loss of 

generality. By the above remark, there exist ~p+l~X + with lap+ll ~<N, an infinite 

sequence of positive integers k l < k 2 < . . . < k , < . . ,  and f i~,~X*, r~>l such that 
9 ~ p + l ~ p ' " ~ 2 ~ l s k ~ f l ' k G . . L .  Let  i>~l and kr>i.  T h e n  O~p+l~p'"~29~lSi(sk'-iffk~)~L. Put  

flip+ 1 = fl"-ifi'kr" Then fllp+ I ~ X  + and ~p+ 1%"" ~2:xl sifiip+ I~L. By induction, we have 
the following result. 

There exists an infinite sequence ~1, az . . . . .  :~ . . . . .  of  elements in X + such that 

~nO(n - 1 "'" O~2~lSifli. ~ L  for any i,j, i,j>~ 1 where fli,,~X +. As a special case, we consider 
the case i =  1. Then we have 

cqsf l l~eL,  O ( 2 ~ l s f i 1 2 ~ L  . . . . .  O~,,:Xn 1 "'" ~2~XlSfi ln ~ L  . . . .  

Since we can assume that each ill.  satisfies the condit ion ]ill. I ~ N, there exist p, q ~> 1, 

p # q ,  such that f l l p= f l~q=f i~X  +. In this c a s e ,  X p ~ p _ l . . - ~ z ~ l s f i f f L  and 
OCqy.q_ 1 "" 9~29~lSflffL. This contradicts  the assumption that  L is an infix code. 

Therefore, L must  be a maximal cohesive prefix code. 

Unlike the case of finite maximal infix codes, the converse of the above proposi t ion 
does not  hold true. Let X = {a, b} and let L=a*b .  Then L is a regular language that is 

a maximal cohesive prefix code, but it is not  an infix code. [] 

Proposition 4.8. Let L ~ X *  be a finite infix code. Then there exists a finite maximal 
infix code L, such that L ~_ L. 

Proof. Let n = m a x { l u  I l u l L }  and let X , , = { t ; ~ X *  I Ivl ~n}.  Since X,  is finite, there 
exists an infix code /~  with L~_F.cX , ,  such that, for any u~X,, ,  u <~if~ or ~ ~<iu for 
some ~el~. 

We show that /~is  a maximal infix code. Let w e X * .  If I wl ~< n, then by the definition 
o f /~  there exists ~'c/~ such that  w<~iw or ~;'-..<iw. N o w  let Iwl >n.  Then w = w ' w "  

where Iw ' l=n  and w ' e X  +. Since w'eX, , ,  there exists # '~/~ such that w' <~iw' or 

# '  ~<i w'. However,  by [ w't = n, '#' <~i w'. Hence f~,' <~ i w' ~ i w'w" = w. Both cases 
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indicate that w ~<~ ~;' or ~' ~<~ w for some ~;,~/~. This means that/7, is a finite maximal 

infix code such that  L_ /~ .  [2 

Corollary 4.9. I f  L is a finite cohesive prefix code, then there exists a finite maximal 
cohesive prefix code L such that L ~_ [,. 

Remark.  If L is a finite prefix code over an alphabet  X with ] X ] >~ 2 and if L is not 
a maximal prefix code, then there exist both a finite and an infinite maximal prefix 

code containing L. However,  this is no more the case for infix codes and hence 

for cohesive prefix codes. For  example, let X = { a l , a 2  . . . . .  a,} and let L =  

{aiaj]i C j, 1 <~ i, j ~ n}. Then L is an infix code. Moreover ,  if/7, is a maximal infix code 

such that L___/~, then /~ is represented as L=Lw{a'f]n~>~2, l<~i<~r}. Hence 

1/21 = ILl + r .  

F rom the preceding results, one may guess that every maximal infix code is 

a maximal cohesive prefix code. However,  this is not  the case in general. 

Proposition 4.10. Let [ X I ~ 2. Then there exists a maximal infix code L ~_ X*  such that 
L is not a maximal cohesive prefix code. 

Proof. First we consider the case ] X ] = 2 ,  Let X + = [ W 1 , W 2  .... ) and let 
L'=-{difwd+lailW'l+ldiwibibilw'l+lbilwil+l 1i~>l} where ai, bieX, wi~aiX*c~X*bi, 
{di} = X \,{ai}, {b-/} =Xk{bi}  for if> 1. We prove that L' contains a maximal infix code. 

Let {Lj}j~j be an ascending chain of infix codes such that Lj~_ L' for e v e r y j e J .  Let 
£ =  0 ~ j L j .  Then i is an infix code and £_~ L'. Therefore, by the Zorn 's  lemma, there 

exists an infix code L _  L satisfying the following condition: 

(*) For  any u~L",L. Lw{u} is not  an infix code. 

Now we show that  L is a maximal infix code. Let w~X ÷. Then there exists p>~ 1 
such that W=Wp. Consider  the word ~.p= d~w, I + 1 c i r ,  I + a apWp- opt ,,ffl~Pl+lblpwPl+lGL' " p  If 

ep~L, then W=Wp <~i~peL. Let O~pddL. There are two cases. 
Case 1: ap ~<i ~q where ~q=a Iwql + la~W,l + ldqwqbqb~ wql+ 1 ~-qlwql + I G L  ' Then obvious- 

ly w = w p  ~i(~qeL. 
Case 2: ~q~ L and ~q ~< ~'~e- We will show that % ~< ~ Wp= w. Since ~q ~< i,:~p, ~.p = x%v 

for some x, y~X* .  Suppose that ]y ] < 2 ] Wp] + 3. If lY ] = 0, then p = q. This contradicts 

the assumption that  :~p~L. Therefore ]y] ¢0 .  

Case (i): l ~ < ] y l < l W p [ + l .  In this case 

gllpwp,+ l..,wpl+ldpwp~bl,,.,,r~t+ 1/~plw,, + 1-,y, .b--qbl,,vq,+ l~-]wq, + 1 

where br,= bq, be= bq and Iw~l <lw~l, a contradiction.  

Case (ii): Iw~l + 1 ~ ly  I < 2 I Wpl + 2. In this case 

- l w p l + l a ] w v l + l  - , -- 2 [ w p l + 2 - l y ]  -- +l/.~q[Wq[+l ap ~,p apu, pbpbp . . . .  bqblq w~l 

where bp=bq, bp=bq, WpffX*bp and ]Wq] + 1 > 1, a contradiction. 
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Case (iii): l y l = 2 l w p l + 2 .  In this case 

(~;wp [ + 1 _  Iwp[ +1 ~lpWpbp . . . .  b-qb lqW, l +, g lwql +1 Up L,q , 

where bq=bq, @--bq, wp~X*bp and Iwql + 1 ) 1, a contradict ion.  
Consequent ly  [y[~>2]wp]+3. By symmetry ,  ]x]>~2]wp]+3.  This means  that  

~q <<,iwp=w with ~q~L. 
Hence, all cases indicate that  for any u 6 X  + there exists vEL such that  u ~<~v or 

v ~<~u. This means  that  L is a maximal  infix code. 
Let L=(ab)*L where X = { a , b } .  Obvious ly  L c / ~ .  We show that  /~ is a 

cohesive prefix code. If not, then there exist xEX*,  y ~ X  +, ctp,~qeL such that  
(ab)r~p=x~qy where ctp=dbpw'l+lalpW"l+1@wpbpblW'l+lS~w"l+1 and 

eq = d~w, I+ ~ a~W, I+ ~ aqWq bq b~ w" '+ a ~qg'w~ ,+ ~ . Suppose y ¢ 1. By the same considerat ion s as 

above,  we have eq ~<~wp ~<~p. However ,  this contradicts  the fact that  L is an infix 
code. Hence 

xLyc~L,¢O ~ xe(ab)*, y = l  

and /~ is a cohesive prefix code. This completes  the p roof  of the propos i t ion  for the 
case I X l = 2 .  

N o w  let I X I > 2 .  Let X =  Y u Z  where I YI = 2  and Y~Z=O.  Let Lr_~ Y* be a maxi-  
mal  infix code over  Y that  is not a maximal  cohesive prefix code over  Y. Moreover ,  let 
/Zr be a maximal  cohesive prefix code over  Y such that  Lr  ~ /~r .  Let L =  Ly~Z.  It is 
easy to see that  L is a maximal  infix code over  X. L e t / ~ = / ~ r ~ { X ~  Y+ [X/~r ~-/~r} Z. 
Then /S is a cohesive prefix code, in fact, a maximal  cohesive prefix code over  X. 
O b v i o u s l y / ~ L .  This completes  the p roof  of the proposi t ion.  [] 

In the above proposi t ion,  we established the existence of an infinite maximal  infix 
code that  is not  a maximal  cohesive prefix code. As it has already been shown, all 
regular  maximal  infix codes are maximal  cohesive prefix codes. 

N o w  we want  to know whether  there exists a nonregular  maximal  infix code that  is 
a maximal  cohesive prefix code. In order  to do that,  we will need to establish some 
propert ies  of reflective codes and maximal  reflective codes. 

Definition. For  every u~X* and L~_X*, let 

Ref(u)={wv[v, w~X*,  u-=my} and Ref(L)= U Ref(u). 
uaL 

A language L _~ X * is said to be reflective if L = Ref(L). A code is called reflective if it is 
a reflective language. By [43, every reflective code is an infix code. 

L e m m a  4.11. Let L~_X* be a reflective code. Then there exists a maximal reflective 
code [, with L ~_ L. 

Proof.  Immedia te  by the Zorn ' s  lemma.  



482 M. lto, G. Thierrin 

Proposition 4.12. Let L ~_ X *  be a maximal reflective code and let L' be a cohesive prefix 

code with L c L'. Then L' is an infix code. 

Proof. Let L ' = S * T w h e r e  S={1} or is a suffix code and Tis an infix code. Suppose 
that S :¢ { 1 } and let s~S. Since L' is a cohesive prefix code and L is an infix code with 
L c_ L', by Corollary 3.6, s*L is a cohesive prefix code. First, notice that Ref(s)c~L = O. 

It is obvious that L w R e f ( s )  is a reflective language. Since L is a maximal reflective 
code, L w R e f ( s )  is not an infix code. Hence, for some ueL ,  u <<,is"s' or s"s':/=u and 
s"s' <~u where s=s's" ,  s', s" e X * .  If u <<.~s"s', then s2=s'(s"s ' )s  " contains u as a sub- 
word, a contradiction. If s"s' # u  and s"s' <~iu, then there exist x, y e X *  such that 
x y e X  + and x s ' s ' y = u .  Since L is reflective, s " s ' y xeL  and s ' yxs"eL .  Consider 
s(s 'yxs")esL.  Then s(s 'yxs")=s ' (s ' s 'yx)s" .  If s " e X  +, then s'Ls"c~sLvaO, a contradic- 
tion. If s " = l ,  then s"s '=s  and x s y = u .  Moreover, y x s ~ L  and syx~L .  Hence, 
s(yxs)  -= (syx)s, i.e. sLc~ Ls # 0, a contradiction. Consequently, S = { 1 } and L' = T. This 
completes the proof of the proposition. [] 

Corollary 4.13. Let L ~ X *  be a reflective code. Then there exists a maximal infix code 
L c _ X *  with L~_ L that is a maximal cohesive prefix code. 

Proofi By Lemma 4.11, there exists a maximal reflective code £ such that L_~ £. Let 
/~ be a maximal cohesive prefix code with L c L. By the proposition,/~ is an infix code. 
The maximality of/7 as a cohesive prefix code implies that/~ is a maximal infix code. 
This completes the proof of the corollary. [] 

Proposition 4.14. Let ]X]~>2. Then there exists a maximal infix code that is not 

a regular language, but a maximal cohesive prefix code. 

Proof. Let X =  {a, b . . . .  } and let L = R e f ( { a b ~ a b " l n ~  1}). Then L is an infinite reflec- 
tive code. By the above corollary, there exists a maximal infix code/~ such that L _ / 7  
and/7 is a maximal cohesive prefix code. To complete the proof of the proposition, we 
must show that/7 is not regular. Suppose that/7 is regular. Since ab~ab%[, for n >~ 1, by 
a pumping lemma for regular languages, follows the existence of k, k ~> 1 such that 
ab"ab" + kit if, for any i, i ~> 1. This contradicts the fact that/7 is an infix code. Hence,/7 is 
not regular. [~ 

5. Relations between right semaphore codes and cohesive prefix codes 

Recall [1, 2] that a right semaphore code P is a prefix code such that for every u~P, 

x 6 X *  there exist w P ,  y ~ X *  such that xu = vy. Let ] X] ~> 2. By R S C ( X )  we denote the 
class of all right semaphore codes over X. In general, there is no inclusion relation 
between C O H ( X )  and RSC(X) .  
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Example 5.1. Let X = { a , b  . . . .  } and let L={aaa,  bbb, aab, bba, ab, baIw 
(X'\{a, b})u{a,  b} (X\{a,  b}). Then L is a right semaphore  code, but not  a cohesive 
prefix code, i.e. R S C ( X ) \ C O H ( X ) # 0 .  

Example  5.2. Let X =  {a, b . . . .  } and let L =  {a, bb}. Since L is an infix code, L is 
a cohesive prefix code. However ,  L is not a right semaphore  code, i.e. 
COH(X) \RSC (X)#O.  

We are now interested in the class RSC(X)~COH(X) .  First consider the case where 
L is an infix code. 

Fac t  5.3. Let I X [ ~ 2  and let L c  X*  be an infix code. Then LeRSC(X)c~COH(X) if 
and only if L = X"  jor some n >~ 1. 

Proof.  This follows immediate ly  f rom the fact that  if B is a right semaphore  code that  
is a biprefix code, i.e. prefix and suffix code, then B =  X"  for some n ~> 1 [1]. [] 

N o w  let L~_X* be a language that  is not  an infix code. I f L e C O H ( X )  then L = S * T  
where S is a suffix code and T i s  an infix code. Let Y=Xc~S and let Z = X \ Y .  

Lemma 5.4. Let L~_X* be a language such that L~COH(X)c~RSC(X)  and assume 
that L is not an infix code. Then 

(i) O# Y # X .  
(ii) There exists n>~ 1 such that for any b~Z we have b"~T. 

(iii) S =  Y. 
(iv) Tr~ YX*=O. 

Proof.  (i) If  Y= O, then a¢S for any aeX.  Let f e L  with I u l = min { I u I I ueL}. Let a e X  
and let f e f ' X .  Since afieaL and L e R S C ( X ) ,  a f ~ L X * .  F r o m  the minimal i ty  of  I f l ,  it 
follows that  aft'eL or arieL. If arieL, then aeS, a contradict ion.  Hence aft'eL. 
Consequently,  Xf'~_ L. Applying the same process to elements of  Xfi' and by induc- 
tion we have L = X  lai. This contradicts  the assumpt ion  that  L is not an infix code. 
Therefore  0 # Y. 

N o w  suppose Y = X .  Let u e S * T  and let teT. Then u teuTc_S*T=L,  i.e. u, uteL. 
This contradicts  the assumpt ion  that  L is a cohesive prefix code. Thus Y # X .  

(ii) Let f e L  with I f l = n = m i n { ] u l l u e L } .  Since b f e b L c _ L X * ,  b6S and 
L6RSC(X) ,  b f '~L  where f e f ' X .  N o w  we apply  the same procedure  for bf feL  and get 
b Z f " E L  where f '@f"X .  Cont inuing this process, we have b"eL. Moreover ,  by the 
minimal i ty  of I l l ,  b"eT. 

(iii) Suppose that  there exists seS  such that  I sl~> 2. 
Case 1: s=s'b, beY.  Since b~S and S is a suffix code, this case does not occur. 
Case 2: s=s 'b ,b~Z.  Since b"~T, sb"eT, sb"eSTc_L. On the other  hand, 

sb" = s'b" + 1 = s'(b") b e L. Together  with b" ~ L, this yields a contradict ion because L is 
a cohesive prefix code. Therefore  S = Y. 
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(iv) Suppose there exists y e Y  such that y u e T  for some ueX*.  Let teT.  Since 

u t ~ u T ~ _ u S * T = u L ~ L X * ,  u t=vt ' x  for some yeS*, t ' e T  and x e X * .  We have the 
following three cases. 

Case 1: I t ' x l<l t  1. Then t ~ t' and t'<<.~t. This contradicts the fact that  T is an infix 
code. 

Case2: Ixl<~ltl<~lt'x]. Let u=vv' , t '=v'~ and t=~x. Then yu~=(yv)(v'~)= 
(yv ) t ' eS*T=L.  On the other  hand, yufeT~_L~.  Since L is a cohesive prefix code, 

~= 1. Therefore, yu e T and u = vt' e v T. This contradicts the fact that  T is an infix code. 

Case 3: [ x [ > l t ] .  In this case, vt' <~pu and yut' <~pyu, i.e. vt 'z=u and y v t ' z = y u e T  
for some z e X * .  However,  this case yield a contradict ion because T is an infix code. 

Therefore Tc~ YX * = 0 [~ 

Proposition 5.5. Let I X [ >~ 2 and let L ~_ X*  be a language that is not an i@x code. Then 
L e C O H ( X ) ~ R S C ( X )  if and only if L can be represented in the following way: 

L= Y*T  where Y ,Z  ~_X, Y,Z:~O, Yc~Z=O, X = Y u Z ,  

with Tan  infix code such that T= I .J~zzT ~ and T~ either {1} or a maximal prefix code. 

Proof. ( ~ )  Let K Z, T be the sets defined in the previous lemma. F r o m  S = Y, it 
follows then that  L = Y*Twi th  T a n  infix code. Since Tea YX* =0,  we can express Tas  

T=Uz~zzT~. We prove now that Tz is either {1} or  a maximal prefix code, First 

suppose that Tz is neither a prefix code nor  {1}. Then there exist u uxeTz  with x ¢ 1. In 

this case, zu, zux, ezT~_ T. This contradicts the fact that  T is an infix code. N o w  we 

show that T~ is a maximal prefix code if T z ¢ {  1}. Let weX* .  Then z w L ~ z T z X *  and 

wL~_ TzX*. Hence, w X * ~ T ~ X * ¢ O  and T~ is a maximal prefix code. 

( ~ )  Let L =  Y*T. First we prove that  L is a cohesive prefix code. Assume 

Y xY2"" y,,t = ~Y'xY'z"" y£t'[3 for some c~, f leX*,  y~, y~c Y, 0 ~<i~< m, 0 ~<j ~ n and t, t ' e  T. 
If c~s Y*, then t=t'[~. Since T is an infix code, /3= 1. If c~=yzr with ye Y*, z e Z  and 

'7 ! ~! reX* ,  then in this case, t=.ry~)2 ... y',t'[J and again f i=  1. N o w  it is obvious that 

c~e Y* and that c~L~_L for any ~e Y*. Therefore, L is a cohesive prefix code. 

Now we prove that  L is a right semaphore  code. Let aeX.  If aeY,  then 

aL=aY*T~_ Y * T =  L. If a = z e Z ,  then for any ye Y* and t e T  we have tez'T~, with 
z ' eZ  and ayt =zyz't '  where t'eT~, and z't 'eT. Since T~ is a maximal  prefix code, there 

exists ) ~ T ,  such that ~ <<.vyz't' or yz't' <<-vY. However,  yz't' <~p~ cannot  occur 

because in this case zyz't' <~vzfeT and T~z't' <<.~zy(z't') <<.gz~eT, a contradiction. 

Consequently,  we have ~ <~vyz't'. In this case, z f  <<.pzyz't' and ayt= 

zyz't' Ez~X* ~_ TX * ~_ LX*.  In any case, we have proved that L X  ~ LX*.  This means 
that L is a right semaphore  code. 

Hence LeCOH(X)r~RSC(X) .  [] 

Corollary 5.6. Let I X I : 2. If L ~_ X*  is not an infix code, then Le  COH(X) ~ R S C ( X )  if 
and only if L=a*bT '  where a, b e X ,  a # b ,  T' is a maximal prefix code or T '= {1} and 
b T' is an infix code. 
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Example 5.7. Let X={a,  b, c}. Then L=a*{b, c} {a, b, c}26COH(X)oRSC(X). For, 
in this case, Y= {a}, Z =  {b, c}, T=  {b, c}X 2 and Tb= T~=X 2 satisfy the conditions of 
Proposition 5.5. 

Example 5.8. Let X = {a, b, c} and let L=a*(b, c} ( b X Z ~ c X 3 ) .  Then Lq~COH(X)~ 
RSC(X) because T =  {b, c } ( b X Z ~ c X  3) is not an infix code. 

Example 5.9. Let X =  {a, b} and let L=a*ba*b. Then L~COH(X)c~RSC(X) because 
T'=a*b is a maximal prefix code and bT'=ba*b is an infix code. 

By MPC(X) we denote the class of all maximal prefix codes over X. 

Proposition 5.10. RSC(X) c~COH(X) = MPC(X)c~COH(X). 

Proofi Since RSC(X) c MPC(X), 

RSC(X) mCOH(X) c_ MPC(X)c~ COH(X). 

Let L~MPC(X)c~COH(X), let x~X* and let u~L. Since LGMPC(X), there exists 
v~L such that xu ~<pv or v <~pxu. l fxu <~pv, then there exists y~X* such that xuy-=v. 
This means that xLymL#O. Hence y =  1. Therefore xu~L. On the other hand, if 
v <~vxu, then obviously xueLX*.  In any case, xuELX*, i.e. x L ~ L X * .  This means 
that L~RSC(X), i.e. MPC(X)mCOH(X)~RSC(X)c~COH(X).  This completes the 
proof of the proposition. [] 
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