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Abstract
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Alanguage L < X * is called a cohesive prefix code il xLynL#®implies that y=1 and xL < L for any
x, ye X*. An example of cohesive prefix codes is an infix code. We determine first the structure of
cohesive prefix codes and then we study several relationships between maximal infix codes and
maximal cohesive prefix codes. Finally, we determine the structure of a cohesive prefix code that is
a right semaphore code.

1. Introduction

Congruences occur naturally in the theory of languages and automata. With every
language L over an alphabet X is associated its syntactic congruence P, and the
corresponding syntactic monoid Syn(L). Several important classes of languages can be
characterized by the properties of their syntactic congruences and the connected
syntactic monoids. Also many interesting properties of codes are related to the
different types of congruences that can be associated with them. For example, infix
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codes and prefix codes are, respectively, classes of their syntactic and right syntactic
congruences.

In this paper, we consider properties of languages that are classes of congruences or
right congruences, especially in relation with codes. After establishing, in Section 2,
several general properties of languages that are classes of congruences, we introduce,
in Section 3, an important family of such languages, the family of cohesive prefix codes
which is a subfamily of the prefix codes. In particular, we give a characterization of the
syntactic monoid of these languages. Section 4 is devoted to the study of closure
properties of cohesive prefix codes as well as the properties of maximal cohesive prefix
codes. In the last section, we consider cohesive prefix codes that arc also right
semaphore codes and give some representations of them.

2. Congruences

Let X be a finite alphabet and let X * be the free monoid generated by X. An
equivalence relation p on X * is said to be right (left) compatible if u=v(p) implies
ux =uvx(p) (xu=xv(p)) for every xe X *. If p is right and left compatible, then p is said
to be compatible. Remark that an equivalence relation p is compatible if and only if
r=s(p) and u=uv(p) implies ru=sv(p). Using this property, the product of classes of
p can be defined naturally to obtain a new monoid X */p called the quotient monoid
of X* modulo p. Right (left) compatible and compatible equivalence relations are also
called, respectively, right (left) congruences and congruences. If L is a language over
X and il ueX*, then let L.” u={x|xeX* uxel}, L-.u={x|xeX* xuel} and
L..u={(x,y)|x, ye X* xuyel}

The relation R, defined by u=v(R,)if and only if L.-u= L. v is a right congruence
called the principal right congruence or the right syntactic congruence defined by L.
The principal left congruence ;R is defined symmetrically. The relation P, defined by
u=v(P;) if and only if L..u= L. v is a congruence called the principal congruence
or the syntactic congruence defined by L. The quotient monoid Syn(L)=X*/P, is
called the syntactic monoid of L. If not empty, the set W, ={ueX*|L. u=0}
(W={ueX*|L..u=0}), called the right (left) residue of L, and the set
W(Ly={ueX*|L..u=0}, called the residue of L, are classes of respectively R, (,R)
and P;. If the (right, left) residue of a language L is empty, then L is said to be (right,
left) dense. Remark that P, R, and that L is a union of classes of R, and P,.

Alanguage L< X *, L#0, is called rc-simple if L is a class of a right congruence and
c-simple if L is a class of a congruence. The following result is well known and easy to
prove.

Fact 2.1. For a language L, the following conditions are equivalent:
(1) L is rc-simple (c-simple);
(2) Lis a class of Ry (a class of Pyp);
(3) LxnL#Q (xLynL#0Q) implies Lx< L(xLy< L).
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Many examples of rc-simple or ¢-simple languages can be found in several families
of codes. Recall that a code C over X is a nonempty language C<X © such that
1y Cp=dydy--dy, ¢;, d;eC, implies that m=nand ¢, =d, ..., ¢p=dp. Let LEX "
be a nonempty language over X. If u, uxe L (u, xue L) implies x=1, then L is a code
called a prefix (suffix) code. If u, xuye L implies x =y =1, then L is a code called an infix
code. Tt is immediate that every prefix code is an rc-simple language and that every
infix code is a c-simple language.

Decompositions of regular rc-simple languages in connection with prefix codes
have been given in [6] where rc-simple languages are called right simple languages.
These decompositions can easily be extended to the general case in the following way.

Proposition 2.2. Let L be a nonempty rc-simple language. Then
(1) if lel, then L={1} or L=P* where P is a prefix code;
(2) if 1¢L, then either L is a prefix code or L= PQ* where P and Q are prefix codes.

Proof. (1) Clearly, L is a submonoid of X *. If u, uxe L, then from 1=u(R,) follows
x=ux(R;) and xeL. Therefore, L is right unitary and the conclusion follows.

(2) Suppose that L is not a prefix code and let P={uel|vel, xeX*,
u=vx=x=1}. Then Pis a prefix code and P# L. Let T={x| xe X *, Lx< L}. Clearly,
T is a nonempty submonoid of X * and, since L is not a prefix code, T#{1}. Let ve L.
Then v=uy for some ueP, ye X *. From uel, uyel follows Ly< L and hence yeT.
Therefore L=PT, Lett, tze T. Then Ltz < L with Lt < L. Hence, LznL#0, Lz< L and
zeT. The submonoid T is right unitary and therefore generated by a prefix code Q,
e. T=Q* [

Fact 2.3. Let L be a nonempty language with L<X . Then
(1) L is a prefix code if and only if every finite nonempty subset of L is rc-simple;
(2) L is an infix code if and only if every finite nonempty subset of L is c-simple.

Proof. (1) If L is a prefix code, then every nonempty subset of L is also a prefix code
and hence rc-simple. Conversely, suppose that u, uxe L. Then {u, ux} is re-simple and
hence a class of a right congruence. This implies that {u, ux, ux?, ...} is contained in
the same class as u. This is possible only if x=1. Therefore L is a prefix code.

(2) The proof is similar by replacing {u,ux} by {u,xuy;. [

If L is a prefix code, then, since L is a union of classes of P; and every nonempty
subset of a prefix code is also a prefix code, L is a union of classes that are prefix codes.
If | W is the left residue of L, then W(L) is contained in ¥ and, if not empty, ; W is
a union of classes of P,.

Proposition 2.4. Let L. be a prefix code. Then

(1) the Pi-class of 1is {1}:

(2) if Ais aclass of Py, with A#{1} and if A is not contained in W, then A is a prefix
code.
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Proof. (1) If u=1(P,) and if velL, then vu=v(P;.). Hence v, vuelL and u=1.

(2) Let u, ve A with v=uz. Then there exists xe X * such that xue L. From u=v(P;)
it follows that xu= xv(P,). Since xue L, xve L. Hence, xue L and xv=xuze L. Since L is
a prefix code, z=1, ie. 4 is a prefix code. O

Corollary 2.5. If L is a prefix code that is left dense, then every class#{1} of Py is
a prefix code and L is not a reqular language.

Corollary 2.6. If L is a prefix code that is left dense, then the syntactic monoid
M =Syn(L) of L has the following properties:

(a) For every ue M, ux=u implies x=1.

(b) M is infinite,

(c} No element u+#1 is periodic,

Proof. This follows from the fact that every class of the syntactic congruence not
containing the identity is a prefix code and that L is not regular. [J

3. Cohesive prefix codes

A nonempty language L= X * such that xLynL#0 implies y=1 and xL <L is
a prefix code and a class of its syntactic congruence. Such a prefix code is called
a cohesive prefix code.

Clearly, every infix code is a cohesive prefix code, but the converse is not true in
general. For example, P=a*b over X ={a, b} is a cohesive prefix code, but not an infix
code. This example is a special case of the following general class of prefix codes that
are cohesive prefix codes. Let X=YuZ with YnZ=0 and Y, Z not empty. Then
P=Y*Q, where Q is an infix code over the subalphabet Z, is a cohesive prefix code in
X*. Remark that these codes are not suffix and hence not infix.

Recall [3] that a nonempty language L =X ™ such that xLy~ L #0 implies y=1 is
a prefix code called a p-infix code. Clearly, every cohesive prefix code is p-infix, but the
converse is not true. For example, {a, ba} over X ={a, b} is a p-infix code, but not
a cohesive prefix code. A prefix code that is a class of its syntactic congruence is not
necessarily a cohesive prefix code. For example, take {a"h"|n=1} over X ={a, b}.

Fact3.1. Let L be a finite language. Then L is a cohesive prefix code if and only if L is an
infix code.

Proof. (<) Obvious.

(=) Suppose that L is not an infix code. Then there exist x, ve X * and ue L such
that | xy|>1 and xuye L. By definition, y=1and xL < L. Remark that | x|>1. For any
n>=1, x"L.c L. Hence, L is infinite, a contradiction. [
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A consequence of the above proposition is that every nonempty subset of a finite
cohesive prefix code is also a cohesive prefix code. However, this is no more the case in
general for infinite cohesive prefix codes. Take, for example, the cohesive prefix code
P=b*a over X ={a, b}. The subset b*a\{ba} is clearly not a cohesive prefix code.

Proposition 3.2. A nonempty language L= X" is an infix code if and only if every
nonempty finite subset of L is a cohesive prefix code.

Proof. (=) Obvious.

(<) Suppose that u, xuy=ve L with x, ye X *. Since the subset A= {u, v} is a finite
subset of L, A is a cohesive prefix code. Hence, y=1 and xA = {xu, x>u} = A. This
implies x=1. [

Fact 3.3. If L is a cohesive prefix code, then its residue W(L) is not empty.

Proof. Suppose that W(L)is empty. Let ac X, ue L and let xuaye L for some x, ye X *,
Then ay=1, a contradiction.

If L is a cohesive prefix code, then, since L is a class of P, L is a disjunctive element
of Syn(L). Since the residue of L is not empty, Syn(L) has a zero element and hence
a core.

Remark that the residue of a cohesive prefix code can be strictly contained in the left
residue. This is the case for P=b*a over X ={a, b}.

Proposition 3.4. A monoid M is isomorphic to the syntactic monoid Syn(L) of a cohesive
prefix code L if and only if the following conditions are satisfied:

(1) If e is the identity element of M, then M\{e} is a subsemigroup of M.

(2) M has a zero element 0.

(3) M has a disjunctive element ¢ such that c¢{e,0} and ¢c=xcy implies y=e.

Proof. (=) Since L is a cohesive prefix code, L is a P,-class and the P,-class of | is
trivial. Hence, (1) holds for Syn(L) and thus also for M. By Fact 3.3, the residue W(L)is
not empty. Hence Syn(L) has a zero and (2) holds. Let ¢ be the image of L is Syn(L).
Since L= X ', by hypothesis, we have ¢ #e, and since LnW(L)=§, we also have ¢ #0.
It follows easily that ¢ is disjunctive. For any we X *, let [w] be its image in Syn(L), and
let ue L. Assume that for x, ye X * we have c=[x]c[y]. Then u, xuye L implies that
y=1 whence [y]=e. Therefore, M satisfies (3) as well.
(=) Let X=M\{e} and define a mapping ¢ on the free monoid X * by

PIX1Xz... X, XXy, X, €M\ {e}
if xy,x,,..., x,eM\{e} and

@:1-e.
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Then ¢ is a homomorphism of X* onto M such that wo=e if and only if w=1.
Since ¢ is a disjunctive element of M, for L=c¢ !, we have » =P, where @ is the
equivalence defined on X* by u=uv(¢) if and only if @(u)=¢(b). Therefore,
Syn(L)=X*/P, is isomorphic to M. Suppose that xLynL#0, ie. xuy=v for some
u, veL. Then @(xuy)=o(x) p(u)@(y)=@(v) and, since @p(u)=0p{v)=c, p(x)cp(y)=c
and ¢(y)=e. Therefore y=1, xL <L and L is a cohesive prefix code. [

The following lemma and its corollary will be used several times in the sequel.

Lemma 3.5. Let LS X" be a cohesive prefix code. Then L=S*T where S is a suffix
code over X or {1}, and T is an infix code over X.

Proof. If L is an infix code, then take S={1} and T'= L. Assume now that L is not an
infix code. Let T={ueL|vel, x, ye X *, u=xvy = x=y=1}. Then obviously 7' is an
infix code. Now let U={xeX*|xL< L}. Since L is a cohesive prefix code, U is a left
unitary submonoid of X* and hence its root S is a suffix code. Thus U=S8* and
L=S8S*T. I

It can be easily verified that the above representation for a cohesive prefix code L is
uniquely determined.

Corollary 3.6. Let LS X ™ be a cohesive prefix code with L=S*T where S# {1}, let
seS™ and let V be a suffix code with V= L. Then s*V is a cohesive prefix code.

Proof. Since s*V < L, x(s*V)yns*V #( implies that xeS* and y=1 for any x, ye X *.
Let xs'v=s/v’ where i, j>>0 and v, v’ V. Since V is a suffix code, v=0' and xs'=s’. Thus
x=s7"es* This completes the proof of the corollary. [

4. Closure properties

By COH(X) we denote the family of all cohesive prefix codes over X.
The property for a language to be a prefix code is preserved under the operation of
taking a nonempty subset. This is no more true for cohesive prefix codes.

Fact4.1. Let LeCOH(X). If L is infinite and not an infix code, then there exists a subset
L' L such that L'¢ COH(X).

Proof. Since L is not an infix code, there exist ucZ and x, ye X *, xy# 1, such that
xuy=vel. Since LeCOH(X), y=1and x"ueL for any n>0.If L' ={u, v=xu}, then L’
is a subset of L that is not a cohesive prefix code. [
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Fact 4.2. (i) COH(X) is not closed under union.

(i) COH(X) is closed under intersection. More precisely, let {L;};c; be a family of
elements of COH(X). Then, if not empty, (\; ;L€ COH(X).

(i) COH(X) is not closed under catenation.

(iv) COH(X) is not closed under +. More precisely, for any LeCOH(X),
L*¢COH(X).

Proof. (i) Let X={ab,...}, L={a} and L'={ab}. Then L,L'eCOH(X) but
LuL'¢COH(X).

(ii) Let {L;};e; where L;eCOH(X) for any i€l and consider (), ,L;. Assume
X(Nier L)y  Li)#0. Then there exist x, yeX* and wue();;L; such that
xuye(;., Li. Let iel. Then u, xuye L;. Since L, COH(X), y=1 and xL; < L;. There-
fore

N (xLl-)=x(ﬂ Li)g N Li.
iel iel iel
This means that (;_;L;e COH(X).

(iii) Let X=1{a, b,...), L=b*a and let L'=a*b. Then L, L'e COH(X). Consider
LL'=b*a*h. Suppose LL'eCOH(X). Since ab, (ha)(ab)e LL', (ba)" abeLL’ for any
n>0. However this is a contradiction. Therefore LL'¢ COH(X).

(iv) Immediate, [J

Proposition 4.3. Let Le COH(X). Then there exists a maximal element L'e COH(X)
such that LS L.

Proof. Let {L;},.; be an ascending chain in COH(X) such that L< L, for any iel and
let L'=1{),_,L;. Suppose that xL'ynL #0. Then there exist x, ye X * and ueL’ such
that xuyeL’. Since {L;};.; is an ascending chain, there exists an element L, of this
chain such that u, xuyeL, and hence xL,ynL,#0. Since L,eCOH(X), y=1 and
xS L.

Now we prove that xL'cL’. Remark that if k<i, then xL,=L; because
u, xuye L, < L;. Furthermore,

U (XLi)=X<U Ll>g U Lia le xngL,.
iel iel iel

Therefore {L;};c;eCOH(X). Using the Zorn’s lemma, it follows then that L is
contained in a maximal cohesive prefix code. [

Fact 4.4. If L is a finite maximal infix code, then L is a maximal cohesive prefix code.
Proof. Suppose that L is not a maximal cohesive prefix code. Then there exists

a maximal cohesive prefix code L such that L< L. Since L is a maximal infix code,
there exist u, xuye L where x, ye X * and xy # 1. Since L is a cohesive prefix code, y=1,
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x#1 and x"uel for any n>0. Let m=max{|v||vel} and let n>m. Since |x"|>m
and L is a maximal infix code, there exist r, se X* and veL such that rs#1 and
rvs=x". Consequently, x"u=rv(su)e L. This contradicts the fact that L is a cohesive
prefix code because v, rv(su)ei and su#1. Hence, L must be a maximal cohesive
prefix code.

Corollary 4.5, Let L < X * be a finite language. Then L is maximal cohesive prefix code
if and only if L is a maximal infix code.

The following example shows the existence of an infinite maximal infix code that is
a maximal cohesive prefix code.

Example 4.6. Let X={q,b,...} and L=ab*aubabua® (X \{a, b}). Then it is casy to
sec that L is a maximal infix code. Now suppose L is not a maximal cohesive prefix
code. Let L be a maximal cohesive prefix code with L< L. Since L# L, there exist
u, xue X * such that uelL, xuel, x*L <[ and xeX*. If x=x'a, then xa?=x"a’®=
x'(a®)ael, a contradiction. If x=x'b, then xaba=x'(bab)ae L, a contradiction. If
x=x'c where ce X\\[a, b}, then xa? = x'(c)a®e L, a contradiction. Therefore, L. must be
a maximal cohesive prefix code.

In the above example, L is a regular language. This suggests the following result
that is a generalization of Fact 4.4.

Proposition 4.7. Let | X |>2 and let LS X* be a regular language. If L is a maximal
infix code, then L is a maximal cohesive prefix code.

Proof. Suppose that L is not a maximal cohesive prefix code. Then, by Corollary 3.6,
there exists se X * such that s*L is a cohesive prefix code.

First we prove the existence of e X * satisfying the following condition: For any
I,i=1 there exists f; X * such that asif;eL.

Let k> 1. Since L is a maximal infix code, we have u<(;s**2 or s
ue L where u <;v means that v=xuy for some x, ye X *.

If u <;s**2, then we have a contradiction with the assumption that s*L is a cohe-
sive prefix code. If s**2 <, u, then there exist «, fre X * such that os**2p,e L. Now
let o =05 and B, =sf;. Then oys*Br el and a, e X T. Since L is a regular language,
we can assume that |« | < N for some positive integer N (for instance, we can take for
N the number of states of an automaton accepting L), without loss of generality.
Remark that we can take infinitely many numbers as k. Moreover, because of the
restriction of the length of x,, we can see the following: There exist aeX* with
lo| <N, an infinite sequence of positive integers k; <k, <-.-<k,<.-- and
Br.€X ™, r>=1 such that as* B, eL.

Now let i,i>1. Take any k, with k,>i. Then as* B, =us'(s* f,)eL. Put
Bi=s*""'B, . Hence we have os'f;e L.

k+2
<;u for some
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Let p be a positive integer. Assume now that, for n, 1 <n<p, we have a sequence
Gy, 2a, ..., o, Of elements in X * satisfying the following condition:

Vi, i=1,3p;, e X " such that oo, 1...002%5'B; L.
Let k> 1. Consider sa 0, _y---2;;5*¢ X *. Then there exists u,e L such that
k - k <
Up SiSUplp—1°--030018"  OF SO0, g+ 0p%yS Kyly.
Ifuy <, 500,00, - 0tp00 85, then o ff = so,0, — 1 - <2221 8* for some o, fe X *. Remark that

(aukﬁ)ﬁkp: sy, g - 0627-1Skﬁkp)5514~

Since | fi;,| =1, this contradicts the assumption that s*L is a cohesive prefix code.
Therefore so,0, 1 - 000s* <;up. In this case, o (sayo,— 1 2y085) fi=weL for
some oy, fre X *. For any n, | <n<p, we can assume that |a,| <N, without loss of
generality. By the above remark, there exist 2,,;€X * with |o,, ;| <N, an infinite
sequence of positive integers ky <k, <:--<k,<--- and f; €X* r>1 such that
Ay 10y a0y S B €L, Let i>1 and k,>i. Then o, %, - o208 (s* B )e L. Put
Bip+1=5""B;, . Then B;,. €X " and a,. 2, - 2,0 5'B;,+ 1€ L. By induction, we have
the following result.

There exists an infinite sequence oy, t,, ..., %,, ... of elements in X * such that
Oplip_ 1 - 03008 Bme L for any i, j, i, j =1 where f;,,€ X . As a special case, we consider
the case i=1. Then we have

O(ISB“EL, O(ZO(IS,BIZEL, [ Ay S Oczfxlsﬁl,,eL,

Since we can assume that each f,, satisfies the condition |,,| <N, thereexist p, ¢ =1,

p#q, such that B,,=f,=pecX”. In this case, 2x,0,_;---c0;sfcl and

%% -1 - u2%ysfe L. This contradicts the assumption that L is an infix code.
Therefore, L must be a maximal cohesive prefix code. [

Unlike the case of finite maximal infix codes, the converse of the above proposition
does not hold true. Let X ={a, b} and let L=a*h. Then L is a regular language that is
a maximal cohesive prefix code, but it is not an infix code. [

Proposition 4.8. Let L= X * be a finite infix code. Then there exists a finite maximal
infix code L such that L< L.

Proof. Let n=max{|u| |uel} and let X,={veX*||v| <n}. Since X, is finite, there
exists an infix code I with L=l X, such that, for any ueX,, u <;d or ii <;u for
some i€l

We show that L is a maximal infix code. Let we X *. If |w| <n, then by the definition
of L there exists we L such that w <;wor w<;w. Now let |w|>n. Then w=wwn"
where [w'|=n and w’eX". Since weX,, there exists wel such that w <;w or
W <;w. However, by |w'|=n, W <;w. Hence W <;w <;ww’'=w. Both cases
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indicate that w <; W or w <; w for some we L. This means that £ is a finite maximal
infix code such that L L. U

Corollary 4.9. If L is a finite cohesive prefix code, then there exists a finite maximal
cohesive prefix code L such that Lel.

Remark. If L is a finite prefix code over an alphabet X with | X|>2 and if L is not
a maximal prefix code, then there exist both a finite and an infinite maximal prefix
code containing L. However, this is no more the case for infix codes and hence
for cohesive prefix codes. For example, let X={a,, dz. a, ) and let L=
{aa;|i#j, 1<i,j <nJ Then L is an infix code. Moreover, if L is a maximal infix code
such that L<F, then L is represented as L=1uU{ {a¥|n; =22, 1<i<r}. Hence
L] =|L|+r.

From the preceding results, one may guess that every maximal infix code is
a maximal cohesive prefix code. However, this is not the case in general.

Proposition 4.10. Let | X | = 2. Then there exists a maximal infix code L= X * such that
L is not a maximal cohesive prefix code.

Proof. First we consider the case |X|=2 Let X " =|w;,wy,...}] and let
L’—Jd'w*‘“a“""+1d-w,~b_,-bi‘w"“5i'wi'“ li=1} where a;,beX, weEaqX*nX*h;,
a;}=X\{a;}, {b;} = X\{b;} for iz 1. We prove that L’ contains a maximal infix code.
Let {L;} ;e; be an ascending chain of infix codes such that ;< L’ for every jeJ. Let
=J esL;- Then Lis an infix code and L < L. Therefore, by the Zorn’s lemma, there
exists an infix code L < L’ satisfying the following condition:

(*) For any ues L'\ L, Lu{u} is not an infix code.

Now we show that L is a maximal infix code. Let we X *. Then there exists p>1
such that w=w,. Consider the word s,=al*»!**a*»' " taw,b, bl * b+ el If
a,€L, then w=w, <;o,eL. Let a,¢ L. There are two cases.

Case 1: a, <; o, where ay=a %! " ta)*e' " gw b bl *1p ¥4 "1 ¢ L. Then obvious-
ly w=w, <;a,eL.

Case 2: azel and o, <;2,. We will show that o, <;w,=w. Since %, <;a,, 2,=X%,p
for some x, ye X *. Suppose that | y|<2|w,|+3. If | y|=0, then p=gq. This contradicts
the assumption that «,¢ L. Therefore | y|#0.

Case (iy. 1<|y|<|w,|+1. In this case

d}pr\ + 1a1|]wp\ +1 dpw,pb_pb’lwpi + IEILWP\ +1-1|y| —.. Eqbq\wq\ + 1b—q|wq\ +1‘
where b,=b,, b,=b, and |w,|<|w,|. a contradiction.

Case (ii): |w,|+1<]|y|<2|w,|+2. In this case

2wl +2 =1yl . plwal F 1wl +1
aw b b [wpl Iyl_...bqbqlM I quWq\ )

—lw,,}+la|wp{+1

where b,=b,, b,=b,, w,e X *b, and |w,|+ 1> 1, a contradiction.
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Case (iii): |y|=2|wp|+2. In this case
Flwpl +1 jwp|+1 > b h Blwal F1 wgl+1
a"' " hatr T aw,b, = by b T T

where b,=b,, b,=b,, w,e X *b, and |w,|+ 1> 1, a contradiction.

Consequently |y|=2|w,|+3. By symmetry, |x|>2|wp,|+3. This means that
o, <iwy=w with a,e L.

Hence, all cases indicate that for any ue X * there exists veL such that u <;v or
v <;u. This means that L is a maximal infix code.

Let L=(ab)*L where X={a,b}. Obviously Lcl. We show that L is a
cohesive prefix code. If not, then there exist xeX*, yeX ', o, %, L such that
(ab)o,=xo,y where ap=abrr!t aye G w b blyet 1 et and
gg=ayr a1 w b b ¥ 1h *1*1 Suppose y # 1. By the same considerations as
above, we have o, <;w, <;a,. However, this contradicts the fact that L is an infix
code. Hence

xLynL#0 < xe(aby*, y=1

and L is a cohesive prefix code. This completes the proof of the proposition for the
case | X |=2.

Now let | X |>2. Let X = YUZ where | Y|=2and YnZ =0. Let Ly = Y* be a maxi-
mal infix code over Y that is not a maximal cohesive prefix code over Y. Moreover, let
Ly be a maximal cohesive prefix code over Y such that Ly Ly. Let L=LyUZ. It is
easy to see that L is a maximal infix code over X. Let L= Eyu{xe Y+ |xL~Y§£Y} Z.
Then L is a cohesive prefix code, in fact, a maximal cohesive prefix code over X.
Obviously L> L. This completes the proof of the proposition. [J

In the above proposition, we established the existence of an infinite maximal infix
code that is not a maximal cohesive prefix code. As it has already been shown, all
regular maximal infix codes are maximal cohesive prefix codes.

Now we want to know whether there exists a nonregular maximal infix code that is
a maximal cohesive prefix code. In order to do that, we will need to establish some
properties of reflective codes and maximal reflective codes.

Definition. For every ue X* and L= X *, let

Ref (u)={wov|v,we X *, u=ovw} and Ref(L)= ] Ref(u).

uel

Alanguage L < X * is said to be reflective if L= Ref (L). A code is called reflective if it is
a reflective language. By [4], every reflective code is an infix code.

Lemma 4.11. Let LS X* be a reflective code. Then there exists a maximal reflective
code L with L< L.

Proof. Immediate by the Zorn’s lemma. [
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Proposition 4.12. Let L= X * be a maximal reflective code and let L' be a cohesive prefix
code with LS L. Then L' is an infix code.

Proof. Let L'=S*7 where S={1} or is a suffix code and T is an infix code. Suppose
that S# {1} and let s€S. Since L’ is a cohesive prefix code and L is an infix code with
L= L', by Corollary 3.6, s*L is a cohesive prefix code. First, notice that Ref (s)nL =,
It is obvious that LURef (s) is a reflective language. Since L is a maximal reflective
code, LURef(s) is not an infix code. Hence, for some uel, u <;5"s’ or s”’s'#u and
s"s' <;u where s=¢'s", 5, 5" X * If u <;s"s, then s2=5(s"s')s” contains u as a sub-
word, a contradiction. If s”"s’#u and s"s’ <;u, then there exist x, ye X * such that
xyeX " and xs"s'y=u. Since L is reflective, s"s'yxeL and s'yxs’el. Consider
s(s'yxs")esL. Then s(s'yxs")=5'(s"s'yx)s". If s"e X *, then s'Ls"nsL#9, a contradic-
tion. If s"=1, then s"s'=s and xsy=u. Moreover, yxseL and syxel. Hence,
s{ yxs)=(syx)s, i.e. sLnLs #0, a contradiction. Consequently, S={1} and L'=T. This
completes the proof of the proposition. [

Corollary 4.13. Let L < X * be a reflective code. Then there exists a maximal infix code
LeX* with L= L that is a maximal cohesive prefix code.

Proof. By Lemma 4.11, there exists a maximal reflective code L such that L.< L. Let
L be a maximal cohesive prefix code with L< L., By the proposition, £ is an infix code.
The maximality of  as a cohesive prefix code implies that £ is a maximal infix code.
This completes the proof of the corollary. [

Proposition 4.14. Let | X|>=2. Then there exists a maximal infix code that is not
a regular language, but a maximal cohesive prefix code.

Proof. Let X={q,b, ...} and let L=Ref({ab"ab"|n=1}). Then L is an infinite reflec-
tive code. By the above corollary, there exists a maximal infix code L such that L&
and I is a maximal cohesive prefix code. To complete the proof of the proposition, we
must show that I is not regular. Suppose that L is regular. Since ab”ab"e L for n>1, by
a pumping lemma for regular languages, follows the existence of k, k=1 such that
ab"ab"**e [ for any i, i > 1. This contradicts the fact that I is an infix code. Hence, L is
not regular. [J

5. Relations between right semaphore codes and cohesive prefix codes

Recall [1, 2] that a right semaphore code P is a prefix code such that for every ueP,
xe X * there exist ve P, ye X * such that xu=vy. Let | X | = 2. By RSC(X) we denote the
class of all right semaphore codes over X. In general, there is no inclusion relation
between COH(X) and RSC(X).
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Example 5.1. Let X={a,b,...}] and let L={aaa, bbb,aab,bba,ab, ba}uw
(X\{a, b})u{a, b} (X\{a, b}). Then L is a right semaphore code, but not a cohesive
prefix code, i.e. RSC(X)\COH(X) #0.

Example 5.2. Let X={a, b, ...} and let L={a, bb}. Since L is an infix code, L is
a cohesive prefix code. However, L is not a right semaphore code, ie.
COH(X)\RSC(X)#0.

We are now interested in the class RSC(X)nCOH(X). First consider the case where
L is an infix code.

Fact 53. Let | X|>=2 and let 1.< X* be an infix code. Then LeRSC(X)nCOH(X) if
and only if L=X" for some n=1.

Proof. This follows immediately from the fact that if B is a right semaphore code that
is a biprefix code, i.e. prefix and suffix code, then B=X" for some n>1[1]. [

Now let L < X * be a language that is not an infix code. If Le COH(X) then L=S*T
where S is a suffix code and T is an infix code. Let Y=XnS and let Z=X\Y.

Lemma 54. Let L= X* be a language such that Le COH(X)nRSC(X) and assume
that L is not an infix code. Then
(i) 9#Y#X.
(i1) There exists nz 1 such that for any be Z we have b"cT.
(in) S
)

(iv) T YX* .

Proof. (i) If Y=0, then a¢S for any ac X. Let ie L with |#|=min{|u| |ueL}. LetaeX
and let iei’X. Since atical. and Le RSC(X), aie LX *. From the minimality of | ], it
follows that aid'el or afeL. If aiicel, then acS, a contradiction. Hence aiel.
Consequently, Xii' = L. Applying the same process to elements of X' and by induc-
tion we have L=X'%. This contradicts the assumption that L is not an infix code.
Therefore # Y.

Now suppose Y=X. Let ueS*T and let teT. Then uteuT<S*T=1L, i.e. u,utelL.
This contradicts the assumption that L is a cohesive prefix code. Thus Y #X.

(1) Let del with |d|=n=min{|u||uel}. Since bidebL<=LX* b¢S and
LeRSC(X), bit' e L where iied’ X. Now we apply the same procedure for bii’c L and get
b*i"e L where d'eii”X. Continuing this process, we have b"e L. Moreover, by the
minimality of ||, b"eT.

(iii) Suppose that there exists se$ such that |s|>2.

Case 1: s=5'b, beY. Since beS§ and S is a suffix code, this case does not occur.

Case 2: s=s'b,beZ. Since b"eT, sh"eT,sb"eST<L. On the other hand,
sb"=s'b""1 =5 (b")be L. Together with b"c L, this yields a contradiction because L is
a cohesive prefix code. Therefore S=Y.
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(iv) Suppose there exists yeY such that yueT for some ueX*. Let teT. Since
uteuT SuS*T=ul € LX*, ut=uvt'x for some veS* t'eT and xeX*. We have the
following three cases.

Case 1. |t'x|<|t]. Then t£t" and ¢’ <;t. This contradicts the fact that 7 is an infix
code.

Case 2: |x|<|t|<|'x]. Let u=ovv,t'=0vf and t=ix. Then yui=(y)(v'i)=
(yr)t'eS*T=L. On the other hand, yuie Tf< Li. Since L is a cohesive prefix code,
f=1. Therefore, yue T and u=vt'evT. This contradicts the fact that T is an infix code.

Case 3: |x|>|t|. In this case, vt’ <, u and yut’ <,yu, ie. vt’z=u and yvt'z=yueT
for some ze X *. However, this case yield a contradiction because T is an infix code.

Therefore TnYX*=0 0O

Proposition 5.5. Let | X |=2 and let L= X * be a language that is not an infix code. Then
LeCOH(X)nRSC(X) if and only if L can be represented in the following way:

L=Y*T where Y,Z<X, Y, Z#0, YNnZ=0,X=YUZ,

with T an infix code such that T=\),_,zT, and T, either {1} or a maximal prefix code.

Proof. (=) Let Y, Z, T be the sets defined in the previous lemma. From S=Y, it
follows then that L= Y*7 with T an infix code. Since Tn YX * =0, we can express T as
T'=),.,zT,. We prove now that T, is either {1} or a maximal prefix code. First
suppose that 7, is neither a prefix code nor {1}. Then there exist u uxe 7, with x# 1. In
this case, zu, zux,ezT, <= T. This contradicts the fact that T is an infix code. Now we
show that 7, is a maximal prefix code if 7,#{1}. Let we X *. Then zwL <zT,X* and
wLc T, X* Hence, wX*nT,X*#@ and T, is a maximal prefix code.

(<) Let L=Y*T. First we prove that L is a cohesive prefix code. Assume
YiVa o Ymt=ay1ys - yat'p for some o, fe X*, y;, yie Y, 0<i<m, 0<j<nand 1,t'eT.
If e Y*, then t=¢'f. Since T is an infix code, f=1. If a= yzr with ye Y*, zeZ and
reX*, then in this case, t=zryys--- y;t'f and again B=1. Now it is obvious that
ae Y* and that L = L for any we Y*. Therefore, L is a cohesive prefix code.

Now we prove that L is a right semaphore code. Let aeX. If aeV, then
al=aY*T< Y*T=L. If a=zeZ, then for any ye Y* and teT we have tez' T, with
z'eZ and ayt=zyz't’ where t'e T, and z't'eT. Since T, is a maximal prefix code, there
exists yeT, such that y <,yz't" or yz't’ <,j. However, yz't' <,j cannot occur
because in this case zyz't’ <,zyeT and T>3z't’ <,zy(z't') <;zjeT, a contradiction.
Consequently, we have §<,yzt. In this case, zy<,zyzt' and ayt=
zyz't'ezfX* < TX*< LX* In any case, we have proved that LX < LX *. This means
that L is a right semaphore code.

Hence LeCOH(X)nRSC(X). O

Corollary 5.6. Let | X |=2.1f L= X * is not an infix code, then LeCOH(X)nRSC(X) if
and only if L=a*bT" where a,be X, a#b, T' is a maximal prefix code or T'= {1} and
bT" is an infix code.
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Example 5.7. Let X={a, b, c}. Then L=a*{bh,c}{a, b, ¢}’ COH(X)nRSC(X). For,
in this case, Y=1{a}, Z={b, ¢}, T={b, ¢} X ? and T, = T,= X ? satisfy the conditions of
Proposition 5.5.

Example 5.8. Let X ={a, b,c} and let L=a*(h, ¢} (X *ucX?). Then L¢COH(X)n
RSC(X) because T=1{b, ¢}(bX *ucX?3) is not an infix code.

Example 5.9. Let X = {a, b} and let L=a*ba*b. Then Le COH(X)nRSC(X) because
T'=a*b is a maximal prefix code and bT'=ba*b is an infix code.

By MPC(X) we denote the class of all maximal prefix codes over X.
Propeosition 5.10. RSC(X)nCOH(X)=MPC(X)nCOH(X).

Proof. Since RSC(X) = MPC(X),
RSC(X)nCOH(X)=MPC(X)nCOH(X).

Let LeMPC(X)nCOH(X), let xe X* and let ue L. Since Le MPC(X), there exists
ve L such that xu < v or v <, xu. If xu <, v, then there exists ye X * such that xuy=v.
This means that xLynL#@. Hence y=1. Therefore xueL. On the other hand, if
v < ,xu, then obviously xue LX*. In any case, xue LX ¥, i.e. xL.< LX*. This means
that LeRSC(X), ie. MPC(X)nCOH(X)=RSC(X)nCOH(X). This completes the
proof of the proposition. O
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