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Abstract

The purpose of this paper is to present some fixed point results for self-generalized contractions in ordered metric spaces. Our
results generalize and extend some recent results of A.C.M. Ran, M.C. Reurings [A.C.M. Ran, M.C. Reurings, A fixed point theo-
rem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435–1443], J.J. Nieto,
R. Rodríguez-López [J.J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to
ordinary differential equations, Order 22 (2005) 223–239; J.J. Nieto, R. Rodríguez-López, Existence and uniqueness of fixed points
in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.) 23 (2007) 2205–2212],
J.J. Nieto, R.L. Pouso, R. Rodríguez-López [J.J. Nieto, R.L. Pouso, R. Rodríguez-López, Fixed point theorem theorems in ordered
abstract sets, Proc. Amer. Math. Soc. 135 (2007) 2505–2517], A. Petruşel, I.A. Rus [A. Petruşel, I.A. Rus, Fixed point theorems in
ordered L-spaces, Proc. Amer. Math. Soc. 134 (2006) 411–418] and R.P. Agarwal, M.A. El-Gebeily, D. O’Regan [R.P. Agarwal,
M.A. El-Gebeily, D. O’Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., in press]. As applications,
existence and uniqueness results for Fredholm and Volterra type integral equations are given.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Recently, Ran and Reurings [11] proved the following Banach–Caccioppoli type principle in ordered metric spaces.

Theorem 1.1. (See Ran and Reurings [11].) Let X be a partially ordered set such that every pair x, y ∈ X has a
lower and an upper bound. Let d be a metric on X such that the metric space (X,d) is complete. Let f : X → X be
a continuous and monotone (i.e., either decreasing or increasing) operator. Suppose that the following two assertions
hold:
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(1) there exists a ∈ ]0,1[ such that d(f (x), f (y)) � a · d(x, y), for each x, y ∈ X with x � y;
(2) there exists x0 ∈ X such that x0 � f (x0) or x0 � f (x0).

Then f has an unique fixed point x∗ ∈ X, i.e. f (x∗) = x∗, and for each x ∈ X the sequence (f n(x))n∈N of successive
approximations of f starting from x converges to x∗ ∈ X.

Since then several authors considered the problem of existence (and uniqueness) of a fixed point for contraction-
type operators on partially ordered sets.

In 2005 J.J. Nieto and R. Rodríguez-López proved a modified variant of Theorem 1.1, by removing the continuity
of f . Their result (see [7, Theorem 2.3]) is the following.

Theorem 1.2. (See Nieto and Rodríguez-López [7].) Let X be a partially ordered set such that every pair x, y ∈ X

has a lower or an upper bound. Let d be a metric on X such that the metric space (X,d) is complete. Let f : X → X

be an increasing operator. Suppose that the following three assertions hold:

(1) there exists a ∈ ]0,1[ such that d(f (x), f (y)) � a · d(x, y), for each x, y ∈ X with x � y;
(2) there exists x0 ∈ X such that x0 � f (x0);
(3) if an increasing sequence (xn) converges to x in X, then xn � x for all n ∈ N.

Then f has a unique fixed point x∗ ∈ X and for each x ∈ X the sequence (f n(x))n∈N of successive approximations
of f starting from x converges to x∗ ∈ X.

Notice that, the case of decreasing operators is treated in J.J. Nieto and R. Rodríguez-López [9], where some
interesting applications to ordinary differential equations with periodic boundary conditions are also given.

Also, J.J. Nieto, R.L. Pouso and R. Rodríguez-López, in a very recent paper, improve some results given by
A. Petruşel and I.A. Rus in [10] in the setting of abstract L-spaces in the sense of Fréchet, see for example Theo-
rems 3.3 and 3.5 in [8].

On the other hand, very recently, R.P. Agarwal, M.A. El-Gebeily and D. O’Regan in [1] extended Ran and Reurings
result for the case of generalized ϕ-contractions. The main result in [1] is the following theorem.

Theorem 1.3. (See Agarwal, El-Gebeily and O’Regan [1].) Let X be a partially ordered set and d be a metric on X

such that the metric space (X,d) is complete. Let f : X → X be an increasing operator such that the following three
assertions hold:

(1) there exists an increasing mapping ϕ : R+ → R+ with limn→+∞ ϕn(t) = 0 for each t > 0, such that for each
x, y ∈ X with x � y we have

d
(
f (x), f (y)

)
� ϕ

(
max

{
d(x, y), d

(
x,f (x)

)
, d

(
y,f (y)

)
,

1

2

[
d
(
x,f (y)

) + d
(
y,f (x)

)]})
;

(2) there exists x0 ∈ X such that x0 � f (x0);
(3) [f is continuous] or [if an increasing sequence (xn) ⊂ X converges to x in X, then xn � x for all n ∈ N].

Then f has at least one fixed point in X.

Finally, let us notice that, if X is a nonempty set endowed with a partial order � and a metric d , some fixed point
results for operators f : (C[a, b],X) → X are given in Z. Drici, F.A. McRae, J. Vasundhara Devi [2].

The purpose of this paper is to generalize and extend Theorems 1.1–1.3. Some applications to integral equations
are also given.

2. Notations and basic concepts

Let f : X → X be an operator. Then f 0 := 1X , f 1 := f, . . . , f n+1 = f ◦ f n, n ∈ N, denote the iterate operators
of f . By I (f ) we will denote the set of all nonempty invariant subsets of f , i.e. I (f ) := {Y ⊂ X | f (Y ) ⊆ Y }.
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Also, by Ff := {x ∈ X | x = f (x)} we will denote the fixed point set of the operator f , while Af (x∗) := {x ∈ X |
f n(x) → x∗, as n → +∞} denotes the attractor basin of f with respect to x∗ ∈ X.

Let X be a nonempty set. Denote by Δ(X) the diagonal of X × X. Also, let s(X) := {(xn)n∈N | xn ∈ X, n ∈ N}.
Let c(X) ⊂ s(X) a subset of s(X) and Lim : c(X) → X an operator. By definition the triple (X, c(X),Lim) is

called an L-space (Fréchet [3]) if the following conditions are satisfied:

(i) If xn = x, for all n ∈ N , then (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x.
(ii) If (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x, then for all subsequences, (xni

)i∈N , of (xn)n∈N we have that (xni
)i∈N ∈

c(X) and Lim(xni
)i∈N = x.

By definition an element of c(X) is a convergent sequence, x := Lim(xn)n∈N is the limit of this sequence and we
also write xn → x as n → +∞.

In what follow we denote an L-space by (X,→).
In this setting, if U ⊂ X × X, then an operator f : X → X is called orbitally U -continuous (see [8]) if: [x ∈ X and

f n(i)(x) → a ∈ X, as i → +∞ and (f n(i)(x), a) ∈ U for any i ∈ N] imply [f n(i)+1(x) → f (a), as i → +∞].
Let (X,�) be a partially ordered set, i.e. X is a nonempty set and � is a reflexive, transitive and anti-symmetric

relation on X. Denote

X� := {
(x, y) ∈ X × X

∣∣ x � y or y � x
}
.

Also, if x, y ∈ X, with x � y, then by [x, y]� we will denote the ordered segment joining x and y, i.e. [x, y]� :=
{z ∈ X | x � z � y}. In the same setting, consider f : X → X. Then, (LF)f := {x ∈ X | x � f (x)} is the lower
fixed point set of f , while (UF)f := {x ∈ X | x � f (x)} is the upper fixed point set of f . Also, if f : X → X

and g : Y → Y , then the Cartesian product of f and g is denoted by f × g and it is defined in the following way:
f × g : X × Y → X × Y , (f × g)(x, y) := (f (x), g(y)).

Definition 2.1. Let X be a nonempty set. Then, by definition (X,→,�) is an ordered L-space if and only if:

(i) (X,→) is an L-space;
(ii) (X,�) is a partially ordered set;

(iii) (xn)n∈N → x, (yn)n∈N → y and xn � yn, for each n ∈ N ⇒ x � y.

Throughout this paper we suppose that (X,→,�) is an ordered L-space. If (X,d) is a metric space, then the
convergence structure is given by the metric and the triple (X,d,�) will be called an ordered metric space.

We will also consider in this paper the following assertions:

(∗) if (xn)n∈N → x, (zn)n∈N → x and xn � yn � zn, for each n ∈ N, then yn → x.
(∗∗) if (yi)i∈N and (zi)i∈N are subsequences of (xn)n∈N such that {yi : i ∈ N} ∪ {zi : i ∈ N} = {xn: n ∈ N} and

(yi)i∈N, (zi)i∈N ∈ c(X) with Lim(yi)i∈N = x and Lim(zi)i∈N = x, then (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x.

Recall now the following important abstract concept.

Definition 2.2. (See Rus [13].) Let (X,→) be an L-space. An operator f : X → X is, by definition, a Picard operator
(briefly PO) if:

(i) Ff = {x∗};
(ii) (f n(x))n∈N → x∗ as n → ∞, for all x ∈ X.

Several classical results in fixed point theory can be easily transcribed in terms of the Picard operators, see [10,12,
14]. In I.A. Rus [13] the basic theory of Picard operators is presented.
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3. Fixed point results

Our starting result is a slight modified version of the main abstract result in [8] (see Theorem 3.5) and in [10] (see
Lemma 4.1). For the sake of completeness we present it here.

Lemma 3.1. Let (X,→) be an L-space and U a symmetric subset of X × X such that Δ(X) ⊂ U . Let f : X → X be
an operator. Suppose that:

(i) for each x, y ∈ X with (x, y) /∈ U there exists z ∈ X such that (x, z) ∈ U and (y, z) ∈ U ;
(ii) there exist x0, x

∗ ∈ X such that x0 ∈ Af (x∗);
(iii) (x, y) ∈ U and x ∈ Af (x∗) implies y ∈ Af (x∗).

Then Af (x∗) = X.
Moreover, if

(a) f is orbitally continuous

or

(b) f is orbitally U -continuous and there exists a subsequence (f nk (x0))k∈N of (f n(x0))n∈N such that
(f nk (x0), x

∗) ∈ U for each k ∈ N,

then Ff = {x∗} and thus f is a PO.

A natural consequence of the above result follows by choosing U := X�.

Lemma 3.2. (See [8, Theorem 3.3].) Let (X,→,�) be an ordered L-space and f : X → X be an operator. Suppose
that:

(i) for each x, y ∈ X with (x, y) /∈ X� there exists z ∈ X such that (x, z) ∈ X� and (y, z) ∈ X�;
(ii) there exist x0, x

∗ ∈ X such that x0 ∈ Af (x∗);
(iii) (x, y) ∈ X� and x ∈ Af (x∗) implies y ∈ Af (x∗);

(iv)a f is orbitally continuous

or

(iv)b f is orbitally X�-continuous and there exists a subsequence (f nk (x0))k∈N of (f n(x0))n∈N such that
(f nk (x0), x

∗) ∈ X�, for each k ∈ N.

Then f is a PO.

Recall that ϕ : R+ → R+ is said to be a comparison function if it is increasing and ϕk(t) → 0, as k → +∞. As a
consequence, we also have ϕ(t) < t , for each t > 0, ϕ(0) = 0 and ϕ is right continuous at 0. For example, ϕ(t) = at

(where a ∈ [0,1[), ϕ(t) = t
1+t

and ϕ(t) = ln(1 + t), t ∈ R+, are comparison functions.
If (X,d) is a metric space, then an operator f : X → X is said to be a ϕ-contraction if ϕ : R+ → R+ is a comparison

function and d(f (x), f (y)) � ϕ(d(x, y)), for all x, y ∈ X. We refer to Jachymski and Jóźwik [6] and I.A. Rus [12]
for a detailed study of ϕ-contractions.

The first main result of this section is a fixed point theorem for a ϕ-contraction on an ordered complete metric
space.

Theorem 3.3. Let (X,d,�) be an ordered metric space and f : X → X be an operator. We suppose that:

(i) for each x, y ∈ X with (x, y) /∈ X� there exists c(x, y) ∈ X such that (x, c(x, y)) ∈ X� and (y, c(x, y)) ∈ X�;
(ii) X� ∈ I (f × f );

(iii) if (x, y) ∈ X� and (y, z) ∈ X�, then (x, z) ∈ X�;
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(iv) there exists x0 ∈ X such that (x0, f (x0)) ∈ X�;
(v)a f is orbitally continuous

or

(v)b f is orbitally X�-continuous and there exists a subsequence (f nk (x0))k∈N of (f n(x0))n∈N such that
(f nk (x0), x

∗) ∈ X� for each k ∈ N;
(vi) there exists a comparison function ϕ : R+ → R+ such that d(f (x), f (y)) � ϕ(d(x, y)), for each (x, y) ∈ X�;

(vii) the metric d is complete.

Then f is a PO.

Proof. Let x0 ∈ X be such that (x0, f (x0)) ∈ X�. Suppose first that x0 �= f (x0). Then, from (ii) we obtain(
f (x0), f

2(x0)
)
,
(
f 2(x0), f

3(x0)
)
, . . . ,

(
f n(x0), f

n+1(x0)
)
, . . . ∈ X�.

From (vi) we get, by induction, that d(f n(x0), f
n+1(x0)) � ϕn(d(x0, f (x0)), for each n ∈ N. Since ϕn(d(x0,

f (x0)) → 0 as n → +∞, for an arbitrary ε > 0 we can choose N ∈ N
∗ such that d(f n(x0), f

n+1(x0)) < ε − ϕ(ε),
for each n � N . Since (f n(x0), f

n+1(x0)) ∈ X� for all n ∈ N, we have for all n � N that

d
(
f n(x0), f

n+2(x0)
)
� d

(
f n(x0), f

n+1(x0)
) + d

(
f n+1(x0), f

n+2(x0)
)

< ε − ϕ(ε) + ϕ
(
d
(
f n(x0), f

n+1(x0)
))

� ε.

Now since (f n(x0), f
n+2(x0)) ∈ X� (see (iii)) we have for any n � N that

d
(
f n(x0), f

n+3(x0)
)
� d

(
f n(x0), f

n+1(x0)
) + d

(
f n+1(x0), f

n+3(x0)
)

< ε − ϕ(ε) + ϕ
(
d
(
f n(x0), f

n+2(x0)
))

� ε.

By induction we have

d
(
f n(x0), f

n+k(x0)
)
< ε, for any k ∈ N

∗ and n � N.

Hence (f n(x0))n∈N is a Cauchy sequence in (X,d). From (vii) we have (f n(x0))n∈N → x∗, as n → +∞.
Let x ∈ X be arbitrarily chosen. Then:
(1) If (x, x0) ∈ X�, then (f n(x), f n(x0)) ∈ X� and thus d(f n(x), f n(x0)) � ϕn(d(x, x0)), for each n ∈ N. Letting

n → +∞ we obtain that (f n(x))n∈N → x∗.
(2) If (x, x0) /∈ X�, then, from (i), there exists c(x, x0) ∈ X such that (x, c(x, x0)) ∈ X� and (x0, c(x, x0)) ∈ X�.

From the second relation, as before, we get d(f n(x0), f
n(c(x, x0))) � ϕn(d(x0, c(x, x0))), for each n ∈ N and

hence (f n(c(x, x0)))n∈N → x∗, as n → +∞. Then, using the first relation we infer that d(f n(x), f n(c(x, x0))) �
ϕn(d(x, c(x, x0))), for each n ∈ N and so, by letting again n → +∞, we conclude (f n(x))n∈N → x∗.

Now we will prove that x∗ ∈ Ff . If (v)a holds, then clearly x∗ ∈ Ff . If we suppose that (v)b takes place, then
since (f nk (x0))k∈N → x∗ and (f nk (x0), x

∗) ∈ X� for all k ∈ N we obtain, from the orbitally X�-continuity of f ,
that f nk+1(x0) → f (x∗) as k → +∞. Thus x∗ = f (x∗). If we have f (y) = y for some y ∈ X, then from above, we
must have f n(y) → x∗, so y = x∗.

If f (x0) = x0, then x0 plays the role of x∗. �
Remark 3.4. Equivalent representation of condition (iv) are

(iv)′ there exists x0 ∈ X such that x0 � f (x0) or x0 � f (x0);
(iv)′′ (LF)f ∪ (UF)f �= ∅.

Remark 3.5. Condition (ii) can be replaced by each of the following assertions:

(ii)′ f : (X,�) → (X,�) is increasing;
(ii)′′ f : (X,�) → (X,�) is decreasing.

However, it is easy to see that assertion (ii) in Theorem 3.3 is more general, see [10] for example.
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Notice that with the above remarks and with the ϕ-contraction condition, Theorem 3.3 generalizes Theorem 2.1
in [1], Theorems 2.2–2.3 in [7] and Theorem 2.1 in [11].

In certain situations, the condition:

(iii) if (x, y) ∈ X� and (y, z) ∈ X� then (x, z) ∈ X�,

can be removed.
For example, as a consequence of Theorem 3.3, we have the following result. For the sake of completeness, we

will sketch here a direct proof of it.

Theorem 3.6. Let (X,d,�) be an ordered metric space and f : X → X be an operator. We suppose that:

(i) for each x, y ∈ X with (x, y) /∈ X� there exists c(x, y) ∈ X such that (x, c(x, y)) ∈ X� and (y, c(x, y)) ∈ X�;
(ii) f : (X,�) → (X,�) is increasing;

(iii) there exists x0 ∈ X such that x0 � f (x0);
(iv)a f is orbitally continuous

or

(iv)b f is orbitally X�-continuous and there exists a subsequence (f nk (x0))k∈N of (f n(x0))n∈N such that
(f nk (x0), x

∗) ∈ X� for each k ∈ N,

or

(iv)c if an increasing sequence (xn) converges to x in X, then xn � x for all n ∈ N;
(v) there exists a comparison function ϕ : R+ → R+ such that d(f (x), f (y)) � ϕ(d(x, y)), for each (x, y) ∈ X�;

(vi) the metric d is complete.

Then f is a PO.

Proof. Since f : (X,�) → (X,�) is increasing and x0 � f (x0) we immediately have x0 � f (x0) � f 2(x0) � · · · �
f n(x0) � · · · . Hence from (v) we obtain d(f n(x0), f

n+1(x0)) � ϕn(d(x0, f (x0))), for each n ∈ N. By a similar
approach as in the proof of Theorem 3.3 we obtain

d
(
f n(x0), f

n+k(x0)
)
< ε, for any k ∈ N

∗ and n � N.

Hence (f n(x0))n∈N is a Cauchy sequence in (X,d). From (vi) we have (f n(x0))n∈N → x∗, as n → +∞.
Now we will prove that x∗ ∈ Ff . For the cases (iii)a and (iii)b the conclusion follows in a similar way to Theo-

rem 3.3. If (iii)c takes place, then, since (f n(x0))n∈N → x∗, given any ε > 0 there exists Nε ∈ N
∗ such that for each

n � Nε we have d(f n(x0), x
∗) < ε. On the other hand, for each n � Nε , since f n(x0) � x∗, we get

d
(
x∗, f

(
x∗)) � d

(
x∗, f n+1(x0)

) + d
(
f

(
f n(x0)

)
, f

(
x∗)) � d

(
x∗, f n+1(x0)

) + ϕ
(
d
(
f n(x0), x

∗)) < 2ε.

Thus x∗ ∈ Ff .
The uniqueness of the fixed point follows by contradiction. Suppose there exists y∗ ∈ Ff , with x∗ �= y∗. There are

two possible cases:
(a) if (x∗, y∗) ∈ X�, then 0 < d(y∗, x∗) = d(f n(y∗), f n(x∗)) � ϕn(d(y∗, x∗)) → 0 as n → +∞, which is a con-

tradiction. Hence x∗ = y∗;
(b) if (x∗, y∗) /∈ X�, then there exists c∗ ∈ X such that (x∗, c∗) ∈ X� and (y∗, c∗) ∈ X�. The monotonicity

condition implies that f n(x∗) and f n(c∗) are comparable, as well as, f n(c∗) and f n(y∗). Hence

0 < d
(
y∗, x∗) = d

(
f n

(
y∗), f n

(
x∗)) � d

(
f n

(
y∗), f n

(
c∗)) + d

(
f n

(
c∗), f n

(
x∗))

� ϕn
(
d
(
y∗, c∗)) + ϕn

(
d
(
c∗, x∗)) → 0

as n → +∞, which is again a contradiction. Thus x∗ = y∗. �
Remark 3.7. It is easy to see that a dual result to Theorem 3.6 can be proved. More precisely, Theorem 3.6 holds if
we replace condition (iii) by
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(iii)′ there exists x0 ∈ X such that x0 � f (x0);

and condition (iv)c by

(iv)′c if a decreasing sequence (xn) converges to x in X, then xn � x for all n ∈ N.

Remark 3.8. Other results of the above type can be obtained by putting instead of a complete ordered metric space
one of the following ordered L-structures (see also [4,5,8,10,14]):

(a) (X,d,�) an ordered complete generalized metric space (i.e., d(x, y) ∈ R
n+);

(b) (X,F , T ) a complete Menger space.

Another result of this type is:

Theorem 3.9. Let (X,→,�) be an ordered L-space such that (X,→,�) satisfy the condition (∗) in Section 2 and
f : X → X be an operator. We suppose that:

(i) for each x, y ∈ X with (x, y) /∈ X� there exist m(x,y),M(x, y) ∈ X such that x, y ∈ [m(x,y),M(x, y)]�;
(ii) [f is increasing] or [f is decreasing and (X,→,�) has the property (∗∗) in Section 2];

(iii) there exist x0, x
∗ ∈ X such that x0 ∈ Af (x∗);

(iv)a f is orbitally continuous

or

(iv)b f is orbitally X�-continuous and there exists a subsequence (f nk (x0))k∈N of (f n(x0))n∈N such that
(f nk (x0), x

∗) ∈ X� for each k ∈ N;
(v) if (x, x0) ∈ X�, then x ∈ Af (x∗).

Then f is a PO.

Proof. From (iii) and (iv) we have that x∗ ∈ Ff .
Let x ∈ X be arbitrarily chosen.
(1) If (x, x0) ∈ X�, then from (v) we obtain (f n(x))n∈N → x∗, as n → +∞.
(2) If (x, x0) /∈ X�, then by (i) we have that x, x0 ∈ [m(x,x0),M(x, x0)]�. Since x0 ∈ [m(x,x0),M(x, x0)]� and

taking into account (v) it follows that(
f n

(
m(x,x0)

))
n∈N

→ x∗ and
(
f n

(
M(x,x0)

))
n∈N

→ x∗, as n → +∞.

If f is increasing, then from m(x,x0) � x � M(x,x0) and hypothesis (∗) we obtain (f n(x))n∈N → x∗, as n → +∞.

If f is decreasing, then m(x,x0) � x � M(x,x0) implies that f 2k(x) → x∗ and f 2k+1(x) → x∗, as k → +∞. From
(∗∗) we get that f n(x) → x∗, as n → +∞. Hence, f is a PO. �

A consequence of the above theorem is:

Theorem 3.10. Let (X,d,�) be an ordered metric space satisfying the condition (∗) in Section 2 and f : X → X be
an operator. We suppose that:

(i) for each x, y ∈ X with (x, y) /∈ X� there exist m(x,y),M(x, y) ∈ X such that x, y ∈ [m(x,y),M(x, y)]�;
(ii) if (x, y) ∈ X� and (y, z) ∈ X�, then (x, z) ∈ X�;

(iii) f is increasing or decreasing;
(iv) there exists x0 ∈ X such that (x0, f (x0)) ∈ X�;
(v)a f is orbitally continuous

or
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(v)b f is orbitally X�-continuous and there exists a subsequence (f nk (x0))k∈N of (f n(x0))n∈N such that, if
f nk (x0) → x∗ as k → ∞, then (f nk (x0), x

∗) ∈ X� for each k ∈ N;
(vi) the metric d is complete;
(vii) there exists a comparison function ϕ : R+ → R+ such that d(f (x), f (y)) � ϕ(d(x, y)), for each (x, y) ∈ X�.

Then f : (X,d) → (X,d) is a PO.

Proof. Let x0 ∈ X be such that (x0, f (x0)) ∈ X�. Then from (iii) it follows (f (x0), f
2(x0)), (f

2(x0), f
3(x0)), . . . ,

(f n(x0), f
n+1(x0)), . . . ∈ X�. From (vii) we get that d(f n(x0), f

n+1(x0)) � ϕn(d(x0, f (x0))), for each n ∈ N. As
in the proof of Theorem 3.3, we obtain that (f n(x0))n∈N → x∗, as n → +∞.

Let x ∈ X be arbitrary. Then:
(1) If (x, x0) ∈ X�, then (f n(x), f n(x0)) ∈ X� and so d(f n(x), f n(x0)) � ϕn(d(x, x0)), for each n ∈ N. Letting

n → +∞ we obtain that (f n(x))n∈N → x∗.
(2) If (x, x0) /∈ X�, then, from (i), there exist m(x,x0),M(x, x0) ∈ X such that x, x0 ∈ [m(x,x0),M(x, x0)]�.

From m(x,x0) � x0 � M(x,x0) we get that (f n(m(x, x0)))n∈N → x∗ and (f n(M(x, x0)))n∈N → x∗, as n → +∞.
From the relation m(x,x0) � x � M(x,x0), condition (iii) and the above convergence we infer that (f n(x))n∈N → x∗.
The rest of the proof, namely the fact x∗ ∈ Ff , runs identically as before. �

For the case of a generalized ϕ-contraction an existence result for the fixed point can also be established.

Theorem 3.11. Let (X,d,�) be an ordered metric space and f : X → X be an operator. We suppose that:

(i) X� ∈ I (f × f );
(ii) if (x, y) ∈ X� and (y, z) ∈ X�, then (x, z) ∈ X�;

(iii) there exists x0 ∈ X such that (x0, f (x0)) ∈ X�;
(iv)a f is orbitally continuous

or

(iv)b f is orbitally X�-continuous and there exists a subsequence (f nk (x0))k∈N of (f n(x0))n∈N such that
(f nk (x0), x

∗) ∈ X� for each k ∈ N;
(v) there exists a comparison function ϕ : R+ → R+ such that

d
(
f (x), f (y)

)
� ϕ

(
max

{
d(x, y), d

(
x,f (x)

)
, d

(
y,f (y)

)
,

1

2

[
d
(
x,f (y)

) + d
(
y,f (x)

)]})
,

for each (x, y) ∈ X�;
(vi) the metric d is complete.

Then Ff �= ∅.

Proof. Let x0 ∈ X be such that (x0, f (x0)) ∈ X�. Suppose first that x0 �= f (x0). Then, from (i) we obtain
(
f (x0), f

2(x0)
)
,
(
f 2(x0), f

3(x0)
)
, . . . ,

(
f n(x0), f

n+1(x0)
)
, . . . ∈ X�.

We claim that

(∗∗∗) d
(
f n(x0), f

n+1(x0)
)
� ϕ

(
d
(
f n−1(x0), f

n(x0)
))

, for each n ∈ N.

To see (∗∗∗) we consider

d
(
f n(x0), f

n+1(x0)
)
� ϕ

(
max

{
d
(
f n−1(x0), f

n(x0)
)
, d

(
f n(x0), f

n+1(x0)
)
, d

(
f n(x0), f

n−1(x0)
)
,

1 [
d
(
f n(x0), f

n(x0)
) + d

(
f n−1(x0), f

n+1(x0)
)]})

� ϕ(Mn),

2
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where

Mn := max

{
d
(
f n−1(x0), f

n(x0)
)
, d

(
f n(x0), f

n+1(x0)
)
,

1

2

[
d
(
f n−1(x0), f

n(x0)
) + d

(
f n(x0), f

n+1(x0)
)]}

.

(1) If Mn = d(f n−1(x0), f
n(x0)) we are done.

(2) If Mn = d(f n(x0), f
n+1(x0)), then d(f n(x0), f

n+1(x0)) = 0. Since if not, then

d
(
f n(x0), f

n+1(x0)
)
� ϕ

(
d
(
f n(x0), f

n+1(x0)
))

< d
(
f n(x0), f

n+1(x0)
)
,

which is a contradiction. Thus (∗∗) follows again.
(3) If Mn = 1

2 [d(f n−1(x0), f
n(x0))+d(f n(x0), f

n+1(x0))], then if Mn = 0 we have that d(f n(x0), f
n+1(x0)) = 0

and (∗∗) holds. If Mn �= 0, then

d
(
f n(x0), f

n+1(x0)
)
� ϕ

(
1

2

[
d
(
f n−1(x0), f

n(x0)
) + d

(
f n(x0), f

n+1(x0)
)])

<
1

2

[
d
(
f n−1(x0), f

n(x0)
) + d

(
f n(x0), f

n+1(x0)
)]

.

Hence d(f n(x0), f
n+1(x0)) < d(f n−1(x0), f

n(x0)). In this case

Mn = 1

2

[
d
(
f n−1(x0), f

n(x0)
) + d

(
f n(x0), f

n+1(x0)
)]

< d
(
f n−1(x0), f

n(x0)
)
,

which contradicts the definition of Mn.
Thus in all cases (∗∗∗) holds.
From (∗∗∗) we immediately have

d
(
f n(x0), f

n+1(x0)
)
� ϕn

(
d
(
x0, f (x0)

))
, for each n ∈ N.

Since ϕn(d(x0, f (x0)) → 0 as n → +∞, for an arbitrary ε > 0 we can choose N ∈ N
∗ such that

d
(
f n(x0), f

n+1(x0)
)
< ε − ϕ(ε), for each n � N.

As in the proof of Theorem 3.3 we have first that

d
(
f n(x0), f

n+2(x0)
)
� d

(
f n(x0), f

n+1(x0)
) + d

(
f n+1(x0), f

n+2(x0)
)

< ε − ϕ(ε) + ϕ
(
d
(
f n(x0), f

n+1(x0)
))

� ε.

Now since (f n(x0), f
n+2(x0)) ∈ X� (see (ii)) we have for any n � N that

d
(
f n(x0), f

n+3(x0)
)

� d
(
f n(x0), f

n+1(x0)
) + d

(
f n+1(x0), f

n+3(x0)
)

< ε − ϕ(ε) + ϕ

(
max

{
d
(
f n(x0), f

n+2(x0)
)
, d

(
f n(x0), f

n+1(x0)
)
, d

(
f n+2(x0), f

n+3(x0)
)
,

1

2

[
d
(
f n+1(x0), f

n+2(x0)
) + d

(
f n(x0), f

n+3(x0)
)]})

< ε − ϕ(ε) + ϕ

(
max

{
ε, ε − ϕ(ε),ϕ2(ε),

1

2

[
ϕ(ε) + d

(
f n(x0), f

n+3(x0)
)]})

� ε − ϕ(ε) + ϕ(Sn),

where

Sn := max

{
ε,

1

2

[
ϕ(ε) + d

(
f n(x0), f

n+3(x0)
)]}

.

We will prove that Sn = ε. If not, then Sn = 1
2 [ϕ(ε) + d(f n(x0), f

n+3(x0))]. Since Sn > 0 we have

d
(
f n(x0), f

n+3(x0)
)
< ε − ϕ(ε) + 1 [

ϕ(ε) + d
(
f n(x0), f

n+3(x0)
)]
2
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and thus

d
(
f n(x0), f

n+3(x0)
)
< 2

[
ε − ϕ(ε)

] + ϕ(ε).

As a consequence Sn < 1
2ϕ(ε) + [ε − ϕ(ε)] + 1

2ϕ(ε) = ε, which contradicts the definition of Sn.
Hence Sn = ε and thus d(f n(x0), f

n+3(x0)) < ε − ϕ(ε) + ϕ(ε) = ε.
Next, by induction, we obtain that d(f n(x0), f

n+k(x0)) < ε, for any k ∈ N
∗ and n � N .

Hence (f n(x0))n∈N is a Cauchy sequence in (X,d). From (vi) we have (f n(x0))n∈N → x∗, as n → +∞.
Now we prove that x∗ ∈ Ff . If (iv)a holds, then clearly x∗ ∈ Ff . If we suppose that (iv)b takes place, then since

(f nk (x0))n∈N → x∗ and (f nk (x0), x
∗) ∈ X� for all k ∈ N we obtain, from the orbitally X�-continuity of f , that

f nk+1(x0) → f (x∗) as k → +∞. Thus x∗ = f (x∗).
If f (x0) = x0, then x0 is a fixed point. �

4. Applications

Consider the integral equations

x(t) =
b∫

a

K
(
t, s, x(s)

)
ds + g(t), t ∈ [a, b], (1)

and

x(t) =
t∫

a

K
(
t, s, x(s)

)
ds + g(t), t ∈ [a, b]. (2)

The purpose of this section is to give existence results for Eqs. (1) and (2) using Theorem 3.6.

Theorem 4.1. Consider Eq. (1). Suppose

(i) K : [a, b] × [a, b] × R
n → R

n and g : [a, b] → R
n are continuous;

(ii) K(t, s, ·) : R
n → R

n is increasing for each t, s ∈ [a, b];
(iii) there exist a continuous function p : [a, b] × [a, b] → R+ and a comparison function ϕ : R+ → R+, such that∣∣K(t, s, u) − K(t, s, v)

∣∣ � p(t, s)ϕ
(|u − v|), for each t, s ∈ [a, b], u, v ∈ R

n, u � v;
(iv) supt∈[a,b]

∫ b

a
p(t, s) ds � 1;

(v) there exists x0 ∈ C([a, b],R
n) such that x0(t) �

∫ b

a
K(t, s, x0(s)) ds + g(t), for any t ∈ [a, b].

Then the integral equation (1) has a unique solution x∗ in C([a, b],R
n).

Proof. Let X := C([a, b],R
n) with the usual supremum norm, i.e., ‖x‖ := maxt∈[a,b] |x(t)|, for x ∈ C([a, b],R

n).
Consider on X the partial order defined by

x, y ∈ C
([a, b],R

n
)
, x � y if and only if x(t) � y(t) for any t ∈ [a, b].

Then (X,‖ · ‖,�) is an ordered and complete metric space. Moreover for any increasing sequence (xn)n∈N in X

converging to a certain x∗ ∈ X we have xn(t) � x∗(t), for any t ∈ [a, b]. Also, for every x, y ∈ X there exists
c(x, y) ∈ X which is comparable to x and y.

Define A : C([a, b],R
n) → C([a, b],R

n), by the formula

Ax(t) :=
b∫
K

(
t, s, x(s)

)
ds + g(t), t ∈ [a, b].
a
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First observe that from (ii) A is increasing. Also, for each x, y ∈ X with x � y we have

∣∣Ax(t) − Ay(t)
∣∣ �

b∫
a

∣∣K(
t, s, x(s)

) − K
(
t, s, y(s)

)∣∣ds �
b∫

a

p(t, s)ϕ
(∣∣x(s) − y(s)

∣∣)ds

� ϕ
(‖x − y‖) ·

b∫
a

p(t, s) ds � ϕ
(‖x − y‖), for any t ∈ [a, b].

Hence ‖Ax − Ay‖ � ϕ(‖x − y‖), for each x, y ∈ X with x � y.
From (v) we have that x0 � Ax0.
The conclusion follows now from Theorem 3.6. �

Theorem 4.2. Consider Eq. (2). Suppose

(i) K : [a, b] × [a, b] × R
n → R

n and g : [a, b] → R
n are continuous;

(ii) K(t, s, ·) : R
n → R

n is increasing for each t, s ∈ [a, b];
(iii) there exists a comparison function ϕ : R+ → R+ with ϕ(λt) � λϕ(t), for each t ∈ R+ and each λ � 1, such that∣∣K(t, s, u) − K(t, s, v)

∣∣ � ϕ
(|u − v|), for each t, s ∈ [a, b], u, v ∈ R

n, u � v;
(iv) there exists x0 ∈ C([a, b],R

n) such that x0(t) �
∫ t

a
K(t, s, x0(s)) ds + g(t), for any t ∈ [a, b].

Then the integral equation (2) has a unique solution x∗ in C([a, b],R
n).

Proof. Let X := C([a, b],R
n) be endowed with a Bielecki-type norm, i.e., ‖x‖B := maxt∈[a,b](|x(t)| · e−τ(t−a)), for

x ∈ C([a, b],R
n) (where τ > 0 is arbitrarily chosen). Consider on X the same partial order defined before (see the

proof of Theorem 4.1).
Then (X,‖ · ‖B,�) is an ordered and complete metric space. Moreover for any increasing sequence (xn)n∈N in

X converging to a certain x∗ ∈ X we have xn(t) � x∗(t), for any t ∈ [a, b]. Also, for every x, y ∈ X there exists
c(x, y) ∈ X which is comparable to x and y.

Define A : C([a, b],R
n) → C([a, b],R

n), by the formula

Ax(t) :=
t∫

a

K
(
t, s, x(s)

)
ds + g(t), t ∈ [a, b].

From (ii) we have that A is increasing. Also, for each x, y ∈ X with x � y we have

∣∣Ax(t) − Ay(t)
∣∣ �

t∫
a

∣∣K(
t, s, x(s)

) − K
(
t, s, y(s)

)∣∣ds �
t∫

a

ϕ
(∣∣x(s) − y(s)

∣∣)ds

=
t∫

a

ϕ
(∣∣x(s) − y(s)

∣∣e−τ(s−a)eτ(s−a)
)
ds �

t∫
a

eτ(s−a)ϕ
(∣∣x(s) − y(s)

∣∣e−τ(s−a)
)
ds

� ϕ
(‖x − y‖B

) t∫
a

eτ(s−a) ds � 1

τ
ϕ
(‖x − y‖B

)
eτ(t−a), for any t ∈ [a, b].

Hence, for τ � 1 we obtain ‖Ax − Ay‖B � ϕ(‖x − y‖B), for each x, y ∈ X with x � y.
From (iv) we have that x0 � Ax0.
The conclusion follows now from Theorem 3.6. �
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