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Abstract

The purpose of this paper is to present some fixed point results for self-generalized contractions in ordered metric spaces. Our
results generalize and extend some recent results of A.C.M. Ran, M.C. Reurings [A.C.M. Ran, M.C. Reurings, A fixed point theo-
rem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435-1443], J.J. Nieto,
R. Rodriguez-Lépez [J.J. Nieto, R. Rodriguez-Lépez, Contractive mapping theorems in partially ordered sets and applications to
ordinary differential equations, Order 22 (2005) 223-239; J.J. Nieto, R. Rodriguez-Lépez, Existence and uniqueness of fixed points
in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.) 23 (2007) 2205-2212],
J.J. Nieto, R.L. Pouso, R. Rodriguez-Lépez [J.J. Nieto, R.L. Pouso, R. Rodriguez-Lépez, Fixed point theorem theorems in ordered
abstract sets, Proc. Amer. Math. Soc. 135 (2007) 2505-2517], A. Petrusel, I.A. Rus [A. Petrugel, .A. Rus, Fixed point theorems in
ordered L-spaces, Proc. Amer. Math. Soc. 134 (2006) 411-418] and R.P. Agarwal, M.A. El-Gebeily, D. O’Regan [R.P. Agarwal,
M.A. El-Gebeily, D. O’Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., in press]. As applications,
existence and uniqueness results for Fredholm and Volterra type integral equations are given.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction
Recently, Ran and Reurings [11] proved the following Banach—Caccioppoli type principle in ordered metric spaces.

Theorem 1.1. (See Ran and Reurings [11].) Let X be a partially ordered set such that every pair x,y € X has a
lower and an upper bound. Let d be a metric on X such that the metric space (X, d) is complete. Let f : X — X be

a continuous and monotone (i.e., either decreasing or increasing) operator. Suppose that the following two assertions
hold:
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(1) there exists a € 10, 1[ such that d(f (x), f(y)) <a-d(x,y), foreachx,y € X withx >y,
(2) there exists xo € X such that xo < f(xg) or x9 = f(x0).

Then f has an unique fixed point x* € X, i.e. f(x*) =x*, and for each x € X the sequence (f"(x)),eN of successive
approximations of f starting from x converges to x* € X.

Since then several authors considered the problem of existence (and uniqueness) of a fixed point for contraction-
type operators on partially ordered sets.

In 2005 J.J. Nieto and R. Rodriguez-Lépez proved a modified variant of Theorem 1.1, by removing the continuity
of f. Their result (see [7, Theorem 2.3]) is the following.

Theorem 1.2. (See Nieto and Rodriguez-Lopez [7].) Let X be a partially ordered set such that every pair x,y € X
has a lower or an upper bound. Let d be a metric on X such that the metric space (X, d) is complete. Let f : X — X
be an increasing operator. Suppose that the following three assertions hold:

(1) there exists a € 10, 1[ such that d(f (x), f(y)) <a-d(x,y), foreachx,y € X withx >y,
(2) there exists xog € X such that xo < f(x0);
(3) if an increasing sequence (x,) converges to x in X, then x, < x foralln € N.

Then f has a unique fixed point x* € X and for each x € X the sequence (f"(x))neN of successive approximations
of f starting from x converges to x* € X.

Notice that, the case of decreasing operators is treated in J.J. Nieto and R. Rodriguez-Lépez [9], where some
interesting applications to ordinary differential equations with periodic boundary conditions are also given.

Also, J.J. Nieto, R.L. Pouso and R. Rodriguez-Lépez, in a very recent paper, improve some results given by
A. Petrugel and I.A. Rus in [10] in the setting of abstract L-spaces in the sense of Fréchet, see for example Theo-
rems 3.3 and 3.5 in [8].

On the other hand, very recently, R.P. Agarwal, M.A. El-Gebeily and D. O’Regan in [1] extended Ran and Reurings
result for the case of generalized ¢-contractions. The main result in [1] is the following theorem.

Theorem 1.3. (See Agarwal, El-Gebeily and O’Regan [1].) Let X be a partially ordered set and d be a metric on X
such that the metric space (X, d) is complete. Let f : X — X be an increasing operator such that the following three
assertions hold:

(1) there exists an increasing mapping ¢ : Ry — Ry with lim,— 400 ¢" (t) = 0 for each t > 0, such that for each
x,y € X withx >y we have

1
d(fx), f(») < w(maX{d(x, Wsd(x, f0).d(y, f (), 5[dx f () +d(y, f(x))]});

(2) there exists xog € X such that xo < f(x0);
(3) [f is continuous] or [if an increasing sequence (x,) C X converges to x in X, then x, < x for all n € NJ].

Then f has at least one fixed point in X.
Finally, let us notice that, if X is a nonempty set endowed with a partial order < and a metric d, some fixed point
results for operators f : (C[a, b], X) — X are given in Z. Drici, F.A. McRae, J. Vasundhara Devi [2].

The purpose of this paper is to generalize and extend Theorems 1.1-1.3. Some applications to integral equations
are also given.

2. Notations and basic concepts

Let f: X — X be an operator. Then f0:=1yx, fl:=f,..., "' = f o ", n € N, denote the iterate operators
of f. By I(f) we will denote the set of all nonempty invariant subsets of f,ie. [(f):={Y C X | f(Y)ZY}.
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Also, by Fr:={x € X | x = f(x)} we will denote the fixed point set of the operator f, while A r(x*) :={x € X |
f"(x) > x*, as n — +o00} denotes the attractor basin of f with respect to x* € X.

Let X be a nonempty set. Denote by A(X) the diagonal of X x X. Also, let s(X) := {(xy)nen | Xxn € X, n € N}.

Let c¢(X) C s(X) a subset of s(X) and Lim : ¢(X) — X an operator. By definition the triple (X, ¢(X), Lim) is
called an L-space (Fréchet [3]) if the following conditions are satisfied:

(i) If x, =x,foralln € N, then (x;)neny € c(X) and Lim(x,)peny = X.
(i) If (xy)nen € c(X) and Lim(x,),en = x, then for all subsequences, (xp,);en, of (x,)neny We have that (x,,)ien €
c(X) and Lim(x,,; )ieny = X.

By definition an element of c(X) is a convergent sequence, x := Lim(x,),cy is the limit of this sequence and we
also write x, — x as n — —+o0.

In what follow we denote an L-space by (X, —).

In this setting, if U C X x X, then an operator f : X — X is called orbitally U -continuous (see [8]) if: [x € X and
f1O(x) > aeX,asi — +oo and (f*D(x),a) € U forany i € N]imply [ /"1 (x) - f(a), as i — +o0].

Let (X, <) be a partially ordered set, i.e. X is a nonempty set and < is a reflexive, transitive and anti-symmetric
relation on X. Denote

X< ={(x,y)eXxX|x<yory<x}

Also, if x,y € X, with x <y, then by [x, y]< we will denote the ordered segment joining x and y, i.e. [x, y]< =
{z € X | x <z <y} In the same setting, consider f : X — X. Then, (LF)s :={x € X | x < f(x)} is the lower
fixed point set of f, while (UF); :={x € X | x > f(x)} is the upper fixed point set of f. Also, if f: X — X
and g : Y — Y, then the Cartesian product of f and g is denoted by f x g and it is defined in the following way:
fxgiXxY—>XxY,(f xg)x,y):=(f(x),8().

Definition 2.1. Let X be a nonempty set. Then, by definition (X, —, <) is an ordered L-space if and only if:
(1) (X,—) is an L-space;
(i) (X, <) is a partially ordered set;

(iil) (xp)neN —> X, (Vn)nen — y and x, < y,, foreachn e N= x < y.

Throughout this paper we suppose that (X, —, <) is an ordered L-space. If (X, d) is a metric space, then the
convergence structure is given by the metric and the triple (X, d, <) will be called an ordered metric space.

We will also consider in this paper the following assertions:
() if (Xp)neN = X, (Zn)neNny — x and x,, < y, < z,, for each n € N, then y, — x.
(xx) if (¥;)ien and (z;)ien are subsequences of (x;,),eny such that {y;: i e N} U {z;: i € N} ={x,: n € N} and

(yi)ien, (zi)ien € c(X) with Lim(y;);eny = x and Lim(z;);jeny = x, then (x,)neny € ¢(X) and Lim(x,),eny = x.

Recall now the following important abstract concept.

Definition 2.2. (See Rus [13].) Let (X, —) be an L-space. An operator f : X — X is, by definition, a Picard operator
(briefly PO) if:

(i) Fr={x*}
(i) (f"(x))peny — x* asn — oo, forall x € X.

Several classical results in fixed point theory can be easily transcribed in terms of the Picard operators, see [10,12,
14]. In I.A. Rus [13] the basic theory of Picard operators is presented.
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3. Fixed point results

Our starting result is a slight modified version of the main abstract result in [8] (see Theorem 3.5) and in [10] (see
Lemma 4.1). For the sake of completeness we present it here.

Lemma 3.1. Let (X, —) be an L-space and U a symmetric subset of X x X such that A(X) CU. Let f : X — X be
an operator. Suppose that:

(1) for each x,y € X with (x,y) & U there exists z € X such that (x,z) € U and (y,z) € U;
(ii) there exist xo, x* € X such that xo € A r(x*);
(iii) (x,y)eU and x € Ap(x*) implies 'y € A r(x™).

Then Ay(x*) =X.
Moreover, if

(a) f is orbitally continuous
or

(b) f is orbitally U-continuous and there exists a subsequence (" (x0))keN of (f"(x0))neN such that
(f™(xq), x*) € U for each k €N,

then Fy = {x*} and thus f is a PO.
A natural consequence of the above result follows by choosing U := X ¢.

Lemma 3.2. (See [8, Theorem 3.3].) Let (X, —, <) be an ordered L-space and f : X — X be an operator. Suppose
that:

(i) foreach x,y € X with (x,y) ¢ X there exists z € X such that (x,z) € Xg and (y,z) € X;
(ii) there exist xo, x* € X such that xo € Ay(x*);
(iii) (x,y) € Xg and x € Ay (x*) implies y € A r(x*);
(iv)a f is orbitally continuous
or

(iv)o f is orbitally X-continuous and there exists a subsequence (f™(xo))ken of (f"(x0))nen such that
(f"™* (x0),x*) € Xg, foreach k € N.

Then f is a PO.

Recall that ¢ : R, — R is said to be a comparison function if it is increasing and ¢* (1) — 0, as k — +00. As a
consequence, we also have ¢(¢) < t, for each t > 0, ¢(0) = 0 and ¢ is right continuous at 0. For example, ¢(t) = at
(where a € [0, 1]), ¢(¢) = 1L+t and ¢(t) =In(1 4+ 1), t € Ry, are comparison functions.

If (X, d) is a metric space, then an operator f : X — X is said to be a ¢-contraction if ¢ : R4 — R is a comparison
function and d(f (x), f(y)) < ¢(d(x,y)), for all x,y € X. We refer to Jachymski and J6Zwik [6] and [.A. Rus [12]
for a detailed study of p-contractions.

The first main result of this section is a fixed point theorem for a ¢-contraction on an ordered complete metric
space.

Theorem 3.3. Let (X, d, <) be an ordered metric space and f : X — X be an operator. We suppose that:
(i) foreach x,y € X with (x,y) ¢ X there exists c(x,y) € X such that (x,c(x,y)) € Xg and (y,c(x,y)) € X;

(i) X< el(fx[f);
(i) if (x,y) € X< and (y,z) € X, then (x,2) € Xg;
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(iv) there exists xo € X such that (xo, f(x0)) € X
(V)a f is orbitally continuous

or

WMo f is orbitally X -continuous and there exists a subsequence (f"*(x0))ken of (f"(x0))nen such that
(f"™ (x0),x*) € X< for each k e N;

(vi) there exists a comparison function ¢ : Ry — Ry such that d(f (x), f(y)) < @(d(x,y)), foreach (x,y) € X;

(vii) the metric d is complete.

Then f is a PO.

Proof. Let xo € X be such that (xg, f(x0)) € X<. Suppose first that xo # f (xp). Then, from (ii) we obtain

(f(x0), f2(x0)), (F2(x0), £ (x0))s .-, (f"(x0), £ (x0)), ... € X<.

From (vi) we get, by induction, that d(f"(xo), f"*(x0)) < ¢"(d(xo, f(x0)), for each n € N. Since ¢"(d(xo,
f(x0)) = 0 as n — o0, for an arbitrary ¢ > 0 we can choose N € N* such that d(f"(xo), f"T!(x0)) < & — ¢(¢),
for each n > N. Since (f"(xo), f"(x0)) € X« forall n e N, we have for all n > N that

d(f"(xo0), " 2 (x0)) <d(f"(x0), f"T (x0)) +d (" (x0), £1 T2 (x0))
<e—g@e)+e(d(f"(xo), " (x0))) <e.

Now since (f" (x0), f"12(xg)) € X < (see (iii)) we have for any n > N that

d(f"(x0), £ (x0)) <d(f" (o). £ (x0)) +d (" (o). £ (x0))
<e—g(e) +o(d(f"(x0). " (x0))) <e.
By induction we have
d(f"(xo), f"**(x0)) <e, foranykeN*andn > N.

Hence (f"(x0))nen is a Cauchy sequence in (X, d). From (vii) we have (f"(x())neny — x*, as n — +o00.

Let x € X be arbitrarily chosen. Then:

(D If (x, x0) € X, then (f"(x), f"(x0)) € X and thus d(f"(x), f"(x0)) < ¢"(d(x, x0)), for each n € N. Letting
n — 400 we obtain that (" (x)),eny — x™.

(2) If (x, x0) ¢ X, then, from (i), there exists c(x, xo) € X such that (x, c(x, xo)) € X< and (xo, c(x, x0)) € X<.
From the second relation, as before, we get d(f"(xp), f"(c(x, x9))) < ¢"(d(x9, c(x, xp))), for each n € N and
hence (f"(c(x,x0)))neN — X*, as n — +o00. Then, using the first relation we infer that d(f"(x), f"(c(x, x0))) <
@™ (d(x, c(x,x0))), for each n € N and so, by letting again n — 400, we conclude (" (x)),eny — X*.

Now we will prove that x* € Fy. If (v), holds, then clearly x* € Fr. If we suppose that (v);, takes place, then
since (f"*(x0))ken — x* and (™ (x0), x*) € X< for all kK € N we obtain, from the orbitally X -continuity of f,
that f*+1(xg) - f(x*) as k — +o00. Thus x* = f(x*). If we have f(y) =y for some y € X, then from above, we
must have f"(y) — x*,s0 y =x*.

If f(x0) = xo, then xq plays the role of x*. O

Remark 3.4. Equivalent representation of condition (iv) are

(iv)" there exists xg € X such that xo < f(xg) or xg > f(x0);
(v)" (LF) ;U (UF); #0.

Remark 3.5. Condition (ii) can be replaced by each of the following assertions:

(i) f:(X, <) — (X, <) is increasing;
)" f: (X, <) — (X, X) is decreasing.

However, it is easy to see that assertion (ii) in Theorem 3.3 is more general, see [10] for example.
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Notice that with the above remarks and with the g-contraction condition, Theorem 3.3 generalizes Theorem 2.1
in [1], Theorems 2.2-2.3 in [7] and Theorem 2.1 in [11].
In certain situations, the condition:

(iii) if (x,y) € Xg and (y,z) € X then (x,2) € X,

can be removed.
For example, as a consequence of Theorem 3.3, we have the following result. For the sake of completeness, we
will sketch here a direct proof of it.

Theorem 3.6. Let (X, d, <) be an ordered metric space and f : X — X be an operator. We suppose that:

(i) foreach x,y € X with (x,y) ¢ X< there exists c(x,y) € X such that (x,c(x,y)) € Xg and (y,c(x,y)) € X<;
G) f:(X,<) — (X, <) is increasing;
(iii) there exists xo € X such that xo < f(x0);
(iv)a f is orbitally continuous
or
(iv)o f is orbitally X -continuous and there exists a subsequence (f™(xo))ken of (f"(x0))nen such that
(f"™(x0),x*) € X< foreach k €N,
or
(iv)c if an increasing sequence (x,) converges to x in X, then x, < x foralln e N;
(V) there exists a comparison function ¢ : Ry — Ry such that d(f (x), f(y)) <e(d(x, y)), foreach (x,y) € X;
(vi) the metric d is complete.

Then f is a PO.

Proof. Since f: (X, <) — (X, <) is increasing and xo < f(xo) we immediately have xo < f(x0) < f2(x0) < --- <
f™(x0) < ---. Hence from (v) we obtain d(f"(xo), /"' (x0)) < ¢"(d(x0, f(x0))), for each n € N. By a similar
approach as in the proof of Theorem 3.3 we obtain

d(f"(xo), f"**(x0)) <e, foranykeN*andn>N.

Hence (f"(x0))nen is a Cauchy sequence in (X, d). From (vi) we have (f" (x())neNy — x™*, as n — +00.

Now we will prove that x* € Fr. For the cases (iii), and (iii), the conclusion follows in a similar way to Theo-
rem 3.3. If (iii). takes place, then, since (f"(xg))neNy — x*, given any € > O there exists N € N* such that for each
n > N¢ we have d(f"(xg), x*) < €. On the other hand, for each n > N¢, since f"(xg) < x*, we get

d(x*, f(x)) <d(x*, f" @) +d(f (" x0)), f(x%) <A™, £ (x0)) + @ (d(f" (x0), x¥)) < 2€.

Thus x* € Fy.

The uniqueness of the fixed point follows by contradiction. Suppose there exists y* € Fy, with x* # y*. There are
two possible cases:

(a) if (x*, y*) € X, then 0 <d(y*, x*) =d(f" (y"), " (x*)) < ¢"(d(y*,x*)) — 0 as n — 400, which is a con-
tradiction. Hence x* = y*;

(b) if (x*, y*) ¢ X, then there exists ¢* € X such that (x*, ¢*) € X< and (y*, ¢*) € X<. The monotonicity
condition implies that f”(x*) and f"(c*) are comparable, as well as, f"(c*) and f"(y*). Hence

0<d(y*,x") =d(f"(y*), f" (")) <d(f"(57), £(c7) +d(f"(c7), £ (7))
<¢"(d(y" ")) +¢"(d(c"x7)) = 0
as n — +o00, which is again a contradiction. Thus x* = y*. 0O

Remark 3.7. It is easy to see that a dual result to Theorem 3.6 can be proved. More precisely, Theorem 3.6 holds if
we replace condition (iii) by
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(iii)’ there exists xo € X such that xg > f(x0);
and condition (iv). by
(iv), if a decreasing sequence (x,) converges to x in X, then x, > x for alln e N.

Remark 3.8. Other results of the above type can be obtained by putting instead of a complete ordered metric space
one of the following ordered L-structures (see also [4,5,8,10,14]):

(a) (X,d, <) an ordered complete generalized metric space (i.e., d(x, y) € R, );
(b) (X, F,T) acomplete Menger space.

Another result of this type is:

Theorem 3.9. Let (X, —, <) be an ordered L-space such that (X, —, <) satisfy the condition (x) in Section 2 and
f : X — X be an operator. We suppose that:

(1) foreach x,y € X with (x,y) ¢ X there exist m(x,y), M(x,y) € X such that x,y € [m(x,y), M(x, y)1<;
(i) [f is increasing] or | f is decreasing and (X, —, <) has the property (k%) in Section 2],
(iii) there exist xo, x* € X such that xo € A r(x*);
(iv)a f is orbitally continuous
or

(iv)o f is orbitally X-continuous and there exists a subsequence (f™(xo))ken of (f"(x0))nen such that
(f™(x0),x*) € X for each k e N;
(V) if (x,x0) € Xg, then x € Ar(x™).

Then f is a PO.

Proof. From (iii) and (iv) we have that x* € F.

Let x € X be arbitrarily chosen.

(1) If (x, xp) € X<, then from (v) we obtain (" (x)),eny — x*, as n — 400.

(2) If (x, x0) ¢ X<, then by (i) we have that x, xg € [m(x, x9), M (x, x0)1<. Since xg € [m(x, xo), M (x, xo)]< and
taking into account (v) it follows that

(f"(m(x.x0))), oy = x* and  (f"(M(x,x0))),.y— X", asn—+o0.

If f is increasing, then from m(x, xp) < x < M (x, x¢) and hypothesis (x) we obtain ( f"(x))yen — x*, as n — +00.
If f is decreasing, then m(x, x9) < x < M (x, xo) implies that f2(x) — x* and f2**+1(x) - x*, as k - +o0. From
(x*) we get that f"(x) — x*, as n — +o00. Hence, f isaPO. O

A consequence of the above theorem is:

Theorem 3.10. Let (X, d, <) be an ordered metric space satisfying the condition (x) in Section 2 and f : X — X be
an operator. We suppose that:

(i) foreach x,y € X with (x,y) ¢ X< there exist m(x, y), M(x,y) € X such that x,y € [m(x,y), M(x, y)]<;
(i) if (x,y) € Xg and (y,z) € X, then (x,z) € X,

(iii) f is increasing or decreasing;

(iv) there exists xo € X such that (xq, f(x0)) € X<;

(V)a f is orbitally continuous

or
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(Vv f is orbitally X ¢-continuous and there exists a subsequence (™ (x0))keNn of (f"(x0))nen such that, if
[ (x0) = x* as k — oo, then (f™ (xo), x*) € X for each k e N;

(vi) the metric d is complete;

(vii) there exists a comparison function ¢ : Ry — Ry such that d(f(x), f(y)) < @(d(x,y)), foreach (x,y) € X<.

Then f :(X,d) — (X,d) is a PO.

Proof. Let xo € X be such that (xo, f (x0)) € X<. Then from (iii) it follows ( f(x0), f(x0)), (f*(x0), f3(x0)), - .-,
(f"(x0), [ (x0)),... € X <. From (vii) we get that d(f" (xo), £ (x0)) < @"(d(x0, f(x0))), for each n € N. As
in the proof of Theorem 3.3, we obtain that ( f"(x9))neny — x™*, as n — +00.

Let x € X be arbitrary. Then:

(1) If (x, x0) € X<, then (f"(x), f*(x0)) € X< and so d(f"(x), f"(x0)) < ¢"(d(x, x0)), for each n € N. Letting
n — 400 we obtain that (f"(x)),eny — x*.

(2) If (x, xp) ¢ X, then, from (i), there exist m(x, xo), M (x, x9) € X such that x,xp € [m(x, xo), M (x, x0)]<.
From m(x, xg) < xo < M(x, x9) we get that (f"(m(x, x0)))neny — x* and (f" (M (x, x0)))neny — X*, as n — +00.
From the relation m(x, xg) < x < M (x, xg), condition (iii) and the above convergence we infer that ( /" (x)),en — x™.
The rest of the proof, namely the fact x* € F, runs identically as before. O

For the case of a generalized g-contraction an existence result for the fixed point can also be established.
Theorem 3.11. Let (X, d, <) be an ordered metric space and f : X — X be an operator. We suppose that:

(1) X<el(f x[f)

(i) if (x,y) € X and (y,z) € X, then (x,z) € Xg;
(iii) there exists xo € X such that (xo, f(x0)) € X
(iv)a f is orbitally continuous

or

(iv)o f is orbitally X-continuous and there exists a subsequence (f™(xo))ken of (f"(x0))nen such that
(f"™(x0), x*) € X< for each k € N;
(V) there exists a comparison function ¢ : Ry — R such that

1
(700 7)< o max{ e, .. @), £0). Sl £+ 7))

foreach (x,y) € X;
(vi) the metric d is complete.

Then Fy #1.

Proof. Let xo € X be such that (xg, f(x0)) € X<. Suppose first that xo # f (x¢). Then, from (i) we obtain

(f(x0), F2(x0)), (F2(x0), £2(x0))s -, (f"(x0), £ (x0)), ... € X<.
We claim that

(k) d(f"(x0), " (x0)) < @(d(f" ' (x0), f"(x0))), foreachn eN.

To see (x%x*) we consider
d(f" (xo), " (x0)) < w(maX{d(f”‘l (x0), " (x0)), d(f" (x0), f" ! (x0)), d (" (x0), "~ (x0)),

[d(f"(x0), f™(x0)) +d (" (x0), f"“(xo))]}) <p(My),

N =
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where

[d( "~ (x0), £ (x0)) +d(f" (x0), £ (x0))] }

| =

M, = max{d(f"—locw, f(x0)). d(f"(x0), "1 (x0)).
(D If M, =d(f" " (x0), f™(x0)) we are done.
Q) If My, =d(f"(x0), [ (x0)), then d(f" (x0), f"+'(x0)) = 0. Since if not, then
d(f"(xo), " (x0)) < @(d(f"(x0). [ (x0))) <d(f"(x0). [ (x0)),

which is a contradiction. Thus (xx) follows again.
G If My, = 3[d(f" (x0), £ (x0)+d(f" (x0), f"H (x0))], then if M,, = 0 we have that d(f" (xo), f"+!(x0)) =0
and (k) holds. If M,, # 0, then

1
d(f"(xo), f" ' (x0)) < w(i[d(f"l(m), f™(x0)) +d(f"(x0), f"H(XO))])

1
< 5[a(r" =" 0oy, 17 o)) +d( 1" o), S (x0)]

Hence d(f™(xo), f" 1 (x0)) <d(f* ' (x0), f"(x0)). In this case

1
M, = E[d(f”" (x0), f"(x0)) +d(f"(x0), £ (x0))] < d(f* (x0), f™(x0)),

which contradicts the definition of M,,.
Thus in all cases (%) holds.
From (xx**) we immediately have

d(f"(xo), f" T (x0)) < ¢"(d(x0, f(x0))), foreachn eN.
Since ¢" (d(xg, f(x9)) — 0 as n — 400, for an arbitrary ¢ > 0 we can choose N € N* such that
d(f"(xo), f”+1(xo)) <¢—¢(e), foreachn> N.
As in the proof of Theorem 3.3 we have first that
d(f"(x0), f"2(x0)) <d(f"(x0), £ (x0)) +d (" (x0), " (x0))
<& —g@) +(d(f"(x0), [ (x0))) <.
Now since (f" (xo), f"2(x0)) € X« (see (i1)) we have for any n > N that
d(f" (x0), " (x0))
<d(f"(x0), [T (x0)) +d (£ (x0), £ (x0))

<e—g(e)+ so(maX{d(f” (x0), "2 (x0)), d(f"(x0), £ (x0)), d(f" 2 (x0), £ (x0)),

[d(f" (x0), "2 (x0)) +d(f" (x0). [ (x0))] })

N =

1
<e—g(e)+ w(maX{E, e — (&), p*(e), §[¢(8) +d(f"(x0). f"+3(XO))]}) <e— &) +9(Sn),
where

1
Sy = max{ [90(8) + d(f"(xo), fn+3(x0))] }

g, =
2
We will prove that S, = ¢. If not, then S, = %[@(8) +d(f"(x0), f"3(x0))]. Since S, > 0 we have

1
d(f"(xo), f"(x0)) <& —g(e) + 5[40(8) +d(f"(x0), f"(x0))]
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and thus
d(f"(xo0), f" 2 (x0)) <2[e —p(&)] + ¢(e).

As a consequence S, < %(p(s) +[e —@(e)] + %(p(e) = ¢, which contradicts the definition of §,,.

Hence S, = ¢ and thus d(f"(xo), "3 (x0)) < & — @(e) + ¢(e) =&.

Next, by induction, we obtain that d( f" (xq), F1 K (x0)) < e, for any ke N“andn > N.

Hence (f"(x0))nen is a Cauchy sequence in (X, d). From (vi) we have (" (xg))neny — X*, as n — 4-00.

Now we prove that x* € Fy. If (iv), holds, then clearly x* € F. If we suppose that (iv)y takes place, then since
(f"™ (x0))nen — x* and (f™ (xp),x™) € X for all k € N we obtain, from the orbitally X -continuity of f, that
Futl(xg) = f(x*) as k — +o00. Thus x* = f(x*).

If f(x0) = x0, then xg is a fixed point. O

4. Applications

Consider the integral equations

b
x(t)=/K(t,s,x(s))ds+g(t), tela,bl, (1)
and
t
x(t):/K(t,s,x(s))ds+g(t), t €la,bl. 2)

a

The purpose of this section is to give existence results for Egs. (1) and (2) using Theorem 3.6.

Theorem 4.1. Consider Eq. (1). Suppose

(i) K :[a,b] x [a,b] x R" - R" and g : [a, b] — R" are continuous,
(i) K(t,s,-):R" — R" is increasing for each t,s € [a, b];
(iii) there exist a continuous function p : [a, b] X [a, b] — Ry and a comparison function ¢ : Ry — R, such that

|K(t,s,u) — K(,s, v)| < p(t,s)(p(|u — v|), foreacht,s €la,b], u,veR", u<v;

(iV) Sup;era.p] fabp(t, s)ds < 1;
(V) there exists xo € C([a, b], R") such that x¢(t) < f: K(t,s,x0(s))ds + g(t), forany t € [a, b].

Then the integral equation (1) has a unique solution x* in C([a, b], R™).

Proof. Let X := C([a, b], R") with the usual supremum norm, i.e., ||x|| := max;¢[q,p] |X ()], for x € C([a, b], R").
Consider on X the partial order defined by

x,y€C(la,b],R"), x<y ifandonlyif x(t)<y(r) forany?e€[a,b].

Then (X, || - ||, <) is an ordered and complete metric space. Moreover for any increasing sequence (x;),eN in X
converging to a certain x* € X we have x,(t) < x*(¢), for any 7 € [a, b]. Also, for every x,y € X there exists
c(x,y) € X which is comparable to x and y.

Define A : C([a, b], R") — C([a, b], R"), by the formula

b
Ax(t) :=[K(t,s,x(s))ds+g(t), t €la,b].

a



D. O’Regan, A. Petrugel / J. Math. Anal. Appl. 341 (2008) 1241-1252 1251

First observe that from (ii) A is increasing. Also, for each x, y € X with x < y we have
b

b
|Ax(t) — Ay(D)| </|K(t,s,x(s))—K(t,s,y(s))|ds</p(t,s)(p(|x(s)—y(s)|)ds
b

<o(llx =yl - / p(t,8)ds <g(llx —yll), foranyt € l[a,b].
a
Hence ||Ax — Ay|| < ¢(J]x — y|), foreach x, y € X with x < y.
From (v) we have that xo < Axp.
The conclusion follows now from Theorem 3.6. O

Theorem 4.2. Consider Eq. (2). Suppose

(i) K :[a,b] x[a,b] x R" - R" and g : [a, b] — R" are continuous,
(i) K(t,s,-):R" — R" is increasing for each t, s € [a, b];
(iii) there exists a comparison function ¢ : Ry — R4 with o(At) < Ap(2), for each t € Ry and each ) > 1, such that
|K(t,s,u) — K(t,s, v)| < (p(lu — v|), foreacht,s €la,b], u,veR", u<v;

(iv) there exists xo € C([a, b], R") such that xo(t) < fal K(t,s,x0(s))ds + g(t), forany t € [a, b].
Then the integral equation (2) has a unique solution x* in C([a, b], R™).

Proof. Let X := C([a, b], R") be endowed with a Bielecki-type norm, i.e., ||x||p := maX;c[q,5(|x ()] - e TI=a)) for
x € C([a, b], R") (where T > 0 is arbitrarily chosen). Consider on X the same partial order defined before (see the
proof of Theorem 4.1).

Then (X, | - ||g, <) is an ordered and complete metric space. Moreover for any increasing sequence (x;),cN in
X converging to a certain x* € X we have x,(t) < x*(¢), for any ¢ € [a, b]. Also, for every x,y € X there exists
c(x,y) € X which is comparable to x and y.

Define A : C([a, b], R") — C([a, b], R"), by the formula

t

Ax(t) :=/K(t,s,x(s))ds+g(t), t€la,bl.

a

From (ii) we have that A is increasing. Also, for each x, y € X with x < y we have

t t
|Ax(t) — Ay(t)| < /|K(t, s,x(s)) — K(t, s, y(s))|ds < /(p(|x(s) — y(s)|)ds

a
t t

= / g0(|x(s) — y(s)|e—r(s—a)er(s—a))ds < /er(s—a)(p(|x(s) _ y(s)|e—r(s—a))ds

a a
t

) 1
<o(lx—yls) / e ds < —g(llx —ylig)e™ ™, foranyt € [a,bl.
T

a
Hence, for t > 1 we obtain ||Ax — Ay|p < ¢(|lx — y|lB), foreach x, y € X with x < y.
From (iv) we have that xo < Axg.
The conclusion follows now from Theorem 3.6. O
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