Available online at www.sciencedirect.com

J. Math. Anal. Appl. 341 (2008) 1241-1252

brought to you by T CORE provided by Elsevier - Publisher Connector

www.elsevier.com/locate/jmaa

ANALYSIS AND APPLICATIONS

Journal of MATHEMATICAL

Fixed point theorems for generalized contractions in ordered metric spaces

Donal O'Regan^a, Adrian Petruşel^{b,*}

^a Department of Mathematics, National University of Ireland, Galway, Ireland ^b Department of Applied Mathematics, Babeş-Bolyai University Cluj-Napoca, Kogălniceanu 1, 400084 Cluj-Napoca, Romania

Received 30 June 2007

Available online 21 November 2007

Submitted by J.J. Nieto

Abstract

The purpose of this paper is to present some fixed point results for self-generalized contractions in ordered metric spaces. Our results generalize and extend some recent results of A.C.M. Ran, M.C. Reurings [A.C.M. Ran, M.C. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435–1443], J.J. Nieto, R. Rodríguez-López [J.J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005) 223–239; J.J. Nieto, R. Rodríguez-López, Existence and uniqueness of fixed points in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.) 23 (2007) 2205–2212], J.J. Nieto, R.L. Pouso, R. Rodríguez-López [J.J. Nieto, R.L. Pouso, R. Rodríguez-López, Fixed point theorem theorems in ordered abstract sets, Proc. Amer. Math. Soc. 135 (2007) 2505–2517], A. Petruşel, I.A. Rus [A. Petruşel, I.A. Rus, Fixed point theorems in ordered *L*-spaces, Proc. Amer. Math. Soc. 134 (2006) 411–418] and R.P. Agarwal, M.A. El-Gebeily, D. O'Regan [R.P. Agarwal, M.A. El-Gebeily, D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., in press]. As applications, existence and uniqueness results for Fredholm and Volterra type integral equations are given.

Keywords: Fixed point; Monotone operator; Ordered metric space; Generalized contraction; Integral equation

1. Introduction

Recently, Ran and Reurings [11] proved the following Banach-Caccioppoli type principle in ordered metric spaces.

Theorem 1.1. (See Ran and Reurings [11].) Let X be a partially ordered set such that every pair $x, y \in X$ has a lower and an upper bound. Let d be a metric on X such that the metric space (X, d) is complete. Let $f : X \to X$ be a continuous and monotone (i.e., either decreasing or increasing) operator. Suppose that the following two assertions hold:

* Corresponding author.

0022-247X/\$ – see front matter $\, @$ 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2007.11.026

E-mail addresses: donal.oregan@nuigalway.ie (D. O'Regan), petrusel@math.ubbcluj.ro (A. Petruşel).

(1) there exists $a \in [0, 1[$ such that $d(f(x), f(y)) \leq a \cdot d(x, y)$, for each $x, y \in X$ with $x \geq y$;

(2) there exists $x_0 \in X$ such that $x_0 \leq f(x_0)$ or $x_0 \geq f(x_0)$.

Then f has an unique fixed point $x^* \in X$, i.e. $f(x^*) = x^*$, and for each $x \in X$ the sequence $(f^n(x))_{n \in \mathbb{N}}$ of successive approximations of f starting from x converges to $x^* \in X$.

Since then several authors considered the problem of existence (and uniqueness) of a fixed point for contractiontype operators on partially ordered sets.

In 2005 J.J. Nieto and R. Rodríguez-López proved a modified variant of Theorem 1.1, by removing the continuity of f. Their result (see [7, Theorem 2.3]) is the following.

Theorem 1.2. (See Nieto and Rodríguez-López [7].) Let X be a partially ordered set such that every pair $x, y \in X$ has a lower or an upper bound. Let d be a metric on X such that the metric space (X, d) is complete. Let $f : X \to X$ be an increasing operator. Suppose that the following three assertions hold:

(1) there exists $a \in [0, 1[$ such that $d(f(x), f(y)) \leq a \cdot d(x, y)$, for each $x, y \in X$ with $x \geq y$;

(2) there exists $x_0 \in X$ such that $x_0 \leq f(x_0)$;

(3) *if an increasing sequence* (x_n) *converges to x in X, then* $x_n \leq x$ *for all* $n \in \mathbb{N}$.

Then f has a unique fixed point $x^* \in X$ and for each $x \in X$ the sequence $(f^n(x))_{n \in \mathbb{N}}$ of successive approximations of f starting from x converges to $x^* \in X$.

Notice that, the case of decreasing operators is treated in J.J. Nieto and R. Rodríguez-López [9], where some interesting applications to ordinary differential equations with periodic boundary conditions are also given.

Also, J.J. Nieto, R.L. Pouso and R. Rodríguez-López, in a very recent paper, improve some results given by A. Petruşel and I.A. Rus in [10] in the setting of abstract L-spaces in the sense of Fréchet, see for example Theorems 3.3 and 3.5 in [8].

On the other hand, very recently, R.P. Agarwal, M.A. El-Gebeily and D. O'Regan in [1] extended Ran and Reurings result for the case of generalized φ -contractions. The main result in [1] is the following theorem.

Theorem 1.3. (See Agarwal, El-Gebeily and O'Regan [1].) Let X be a partially ordered set and d be a metric on X such that the metric space (X, d) is complete. Let $f : X \to X$ be an increasing operator such that the following three assertions hold:

(1) there exists an increasing mapping $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ with $\lim_{n \to +\infty} \varphi^n(t) = 0$ for each t > 0, such that for each $x, y \in X$ with $x \ge y$ we have

$$d(f(x), f(y)) \leq \varphi \left(\max \left\{ d(x, y), d(x, f(x)), d(y, f(y)), \frac{1}{2} \left[d(x, f(y)) + d(y, f(x)) \right] \right\} \right);$$

(2) there exists $x_0 \in X$ such that $x_0 \leq f(x_0)$;

(3) [f is continuous] or [if an increasing sequence $(x_n) \subset X$ converges to x in X, then $x_n \leq x$ for all $n \in \mathbb{N}$].

Then f has at least one fixed point in X.

Finally, let us notice that, if X is a nonempty set endowed with a partial order \leq and a metric d, some fixed point results for operators $f : (C[a, b], X) \rightarrow X$ are given in Z. Drici, F.A. McRae, J. Vasundhara Devi [2].

The purpose of this paper is to generalize and extend Theorems 1.1–1.3. Some applications to integral equations are also given.

2. Notations and basic concepts

Let $f: X \to X$ be an operator. Then $f^0 := 1_X$, $f^1 := f, \dots, f^{n+1} = f \circ f^n$, $n \in \mathbb{N}$, denote the iterate operators of f. By I(f) we will denote the set of all nonempty invariant subsets of f, i.e. $I(f) := \{Y \subset X \mid f(Y) \subseteq Y\}$.

Also, by $F_f := \{x \in X \mid x = f(x)\}$ we will denote the fixed point set of the operator f, while $A_f(x^*) := \{x \in X \mid f^n(x) \to x^*, \text{ as } n \to +\infty\}$ denotes the attractor basin of f with respect to $x^* \in X$.

Let X be a nonempty set. Denote by $\Delta(X)$ the diagonal of $X \times X$. Also, let $s(X) := \{(x_n)_{n \in N} | x_n \in X, n \in N\}$. Let $c(X) \subset s(X)$ a subset of s(X) and Lim : $c(X) \to X$ an operator. By definition the triple (X, c(X), Lim) is called an *L*-space (Fréchet [3]) if the following conditions are satisfied:

- (i) If $x_n = x$, for all $n \in N$, then $(x_n)_{n \in N} \in c(X)$ and $\text{Lim}(x_n)_{n \in N} = x$.
- (ii) If $(x_n)_{n \in N} \in c(X)$ and $\lim_{n \in N} x_n = x$, then for all subsequences, $(x_{n_i})_{i \in N}$, of $(x_n)_{n \in N}$ we have that $(x_{n_i})_{i \in N} \in c(X)$ and $\lim_{n \in N} x_{n_i} = x$.

By definition an element of c(X) is a convergent sequence, $x := \text{Lim}(x_n)_{n \in N}$ is the limit of this sequence and we also write $x_n \to x$ as $n \to +\infty$.

In what follow we denote an *L*-space by (X, \rightarrow) .

In this setting, if $U \subset X \times X$, then an operator $f: X \to X$ is called orbitally U-continuous (see [8]) if: $[x \in X \text{ and } f^{n(i)}(x) \to a \in X$, as $i \to +\infty$ and $(f^{n(i)}(x), a) \in U$ for any $i \in \mathbb{N}$] imply $[f^{n(i)+1}(x) \to f(a)$, as $i \to +\infty$].

Let (X, \leq) be a partially ordered set, i.e. X is a nonempty set and \leq is a reflexive, transitive and anti-symmetric relation on X. Denote

$$X_{\leq} := \{ (x, y) \in X \times X \mid x \leq y \text{ or } y \leq x \}.$$

Also, if $x, y \in X$, with $x \leq y$, then by $[x, y] \leq$ we will denote the ordered segment joining x and y, i.e. $[x, y] \leq := \{z \in X \mid x \leq z \leq y\}$. In the same setting, consider $f : X \to X$. Then, $(LF)_f := \{x \in X \mid x \leq f(x)\}$ is the lower fixed point set of f, while $(UF)_f := \{x \in X \mid x \geq f(x)\}$ is the upper fixed point set of f. Also, if $f : X \to X$ and $g : Y \to Y$, then the Cartesian product of f and g is denoted by $f \times g$ and it is defined in the following way: $f \times g : X \times Y \to X \times Y$, $(f \times g)(x, y) := (f(x), g(y))$.

Definition 2.1. Let X be a nonempty set. Then, by definition (X, \rightarrow, \leq) is an ordered L-space if and only if:

- (i) (X, \rightarrow) is an *L*-space;
- (ii) (X, \leq) is a partially ordered set;
- (iii) $(x_n)_{n\in\mathbb{N}} \to x, (y_n)_{n\in\mathbb{N}} \to y \text{ and } x_n \leq y_n, \text{ for each } n\in\mathbb{N} \Rightarrow x \leq y.$

Throughout this paper we suppose that (X, \rightarrow, \leq) is an ordered *L*-space. If (X, d) is a metric space, then the convergence structure is given by the metric and the triple (X, d, \leq) will be called an ordered metric space.

We will also consider in this paper the following assertions:

- (*) if $(x_n)_{n \in \mathbb{N}} \to x$, $(z_n)_{n \in \mathbb{N}} \to x$ and $x_n \leq y_n \leq z_n$, for each $n \in \mathbb{N}$, then $y_n \to x$.
- (**) if $(y_i)_{i\in N}$ and $(z_i)_{i\in N}$ are subsequences of $(x_n)_{n\in N}$ such that $\{y_i: i\in \mathbb{N}\} \cup \{z_i: i\in \mathbb{N}\} = \{x_n: n\in \mathbb{N}\}$ and $(y_i)_{i\in N}, (z_i)_{i\in N} \in c(X)$ with $\operatorname{Lim}(y_i)_{i\in N} = x$ and $\operatorname{Lim}(z_i)_{i\in N} = x$, then $(x_n)_{n\in N} \in c(X)$ and $\operatorname{Lim}(x_n)_{n\in N} = x$.

Recall now the following important abstract concept.

Definition 2.2. (See Rus [13].) Let (X, \rightarrow) be an *L*-space. An operator $f : X \rightarrow X$ is, by definition, a Picard operator (briefly PO) if:

- (i) $F_f = \{x^*\};$
- (ii) $(f^n(x))_{n \in \mathbb{N}} \to x^*$ as $n \to \infty$, for all $x \in X$.

Several classical results in fixed point theory can be easily transcribed in terms of the Picard operators, see [10,12, 14]. In I.A. Rus [13] the basic theory of Picard operators is presented.

3. Fixed point results

Our starting result is a slight modified version of the main abstract result in [8] (see Theorem 3.5) and in [10] (see Lemma 4.1). For the sake of completeness we present it here.

Lemma 3.1. Let (X, \rightarrow) be an L-space and U a symmetric subset of $X \times X$ such that $\Delta(X) \subset U$. Let $f : X \rightarrow X$ be an operator. Suppose that:

- (i) for each $x, y \in X$ with $(x, y) \notin U$ there exists $z \in X$ such that $(x, z) \in U$ and $(y, z) \in U$;
- (ii) there exist $x_0, x^* \in X$ such that $x_0 \in A_f(x^*)$;
- (iii) $(x, y) \in U$ and $x \in A_f(x^*)$ implies $y \in A_f(x^*)$.

Then $A_f(x^*) = X$. Moreover, if

(a) f is orbitally continuous

or

(b) f is orbitally U-continuous and there exists a subsequence $(f^{n_k}(x_0))_{k\in\mathbb{N}}$ of $(f^n(x_0))_{n\in\mathbb{N}}$ such that $(f^{n_k}(x_0), x^*) \in U$ for each $k \in \mathbb{N}$,

then $F_f = \{x^*\}$ and thus f is a PO.

A natural consequence of the above result follows by choosing $U := X_{\leq}$.

Lemma 3.2. (See [8, Theorem 3.3].) Let (X, \rightarrow, \leq) be an ordered L-space and $f : X \rightarrow X$ be an operator. Suppose that:

- (i) for each x, $y \in X$ with $(x, y) \notin X_{\leq}$ there exists $z \in X$ such that $(x, z) \in X_{\leq}$ and $(y, z) \in X_{\leq}$;
- (ii) there exist $x_0, x^* \in X$ such that $x_0 \in A_f(x^*)$;
- (iii) $(x, y) \in X_{\leq}$ and $x \in A_f(x^*)$ implies $y \in A_f(x^*)$;
- (iv)_a f is orbitally continuous

or

(iv)_b f is orbitally X_{\leq} -continuous and there exists a subsequence $(f^{n_k}(x_0))_{k\in\mathbb{N}}$ of $(f^n(x_0))_{n\in\mathbb{N}}$ such that $(f^{n_k}(x_0), x^*) \in X_{\leq}$, for each $k \in \mathbb{N}$.

Then f is a PO.

Recall that $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is said to be a comparison function if it is increasing and $\varphi^k(t) \to 0$, as $k \to +\infty$. As a consequence, we also have $\varphi(t) < t$, for each t > 0, $\varphi(0) = 0$ and φ is right continuous at 0. For example, $\varphi(t) = at$ (where $a \in [0, 1[), \varphi(t) = \frac{t}{1+t}$ and $\varphi(t) = \ln(1+t), t \in \mathbb{R}_+$, are comparison functions.

If (X, d) is a metric space, then an operator $f : X \to X$ is said to be a φ -contraction if $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is a comparison function and $d(f(x), f(y)) \leq \varphi(d(x, y))$, for all $x, y \in X$. We refer to Jachymski and Jóźwik [6] and I.A. Rus [12] for a detailed study of φ -contractions.

The first main result of this section is a fixed point theorem for a φ -contraction on an ordered complete metric space.

Theorem 3.3. Let (X, d, \leq) be an ordered metric space and $f: X \to X$ be an operator. We suppose that:

- (i) for each $x, y \in X$ with $(x, y) \notin X_{\leq}$ there exists $c(x, y) \in X$ such that $(x, c(x, y)) \in X_{\leq}$ and $(y, c(x, y)) \in X_{\leq}$;
- (ii) $X_{\leq} \in I(f \times f)$;
- (iii) if $(x, y) \in X_{\leq}$ and $(y, z) \in X_{\leq}$, then $(x, z) \in X_{\leq}$;

- (iv) there exists $x_0 \in X$ such that $(x_0, f(x_0)) \in X_{\leq}$;
- $(v)_a$ f is orbitally continuous

or

- $(v)_b$ f is orbitally X_{\leq} -continuous and there exists a subsequence $(f^{n_k}(x_0))_{k\in\mathbb{N}}$ of $(f^n(x_0))_{n\in\mathbb{N}}$ such that $(f^{n_k}(x_0), x^*) \in X_{\leq}$ for each $k \in \mathbb{N}$;
- (vi) there exists a comparison function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ such that $d(f(x), f(y)) \leq \varphi(d(x, y))$, for each $(x, y) \in X_{\leq}$;
- (vii) the metric d is complete.

Then f is a PO.

Proof. Let $x_0 \in X$ be such that $(x_0, f(x_0)) \in X_{\leq}$. Suppose first that $x_0 \neq f(x_0)$. Then, from (ii) we obtain

$$(f(x_0), f^2(x_0)), (f^2(x_0), f^3(x_0)), \dots, (f^n(x_0), f^{n+1}(x_0)), \dots \in X_{\leq}.$$

From (vi) we get, by induction, that $d(f^n(x_0), f^{n+1}(x_0)) \leq \varphi^n(d(x_0, f(x_0)))$, for each $n \in \mathbb{N}$. Since $\varphi^n(d(x_0, f(x_0))) \rightarrow 0$ as $n \rightarrow +\infty$, for an arbitrary $\varepsilon > 0$ we can choose $N \in \mathbb{N}^*$ such that $d(f^n(x_0), f^{n+1}(x_0)) < \varepsilon - \varphi(\varepsilon)$, for each $n \geq N$. Since $(f^n(x_0), f^{n+1}(x_0)) \in X_{\leq}$ for all $n \in \mathbb{N}$, we have for all $n \geq N$ that

$$d(f^{n}(x_{0}), f^{n+2}(x_{0})) \leq d(f^{n}(x_{0}), f^{n+1}(x_{0})) + d(f^{n+1}(x_{0}), f^{n+2}(x_{0}))$$

$$< \varepsilon - \varphi(\varepsilon) + \varphi(d(f^{n}(x_{0}), f^{n+1}(x_{0}))) \leq \varepsilon.$$

Now since $(f^n(x_0), f^{n+2}(x_0)) \in X_{\leq}$ (see (iii)) we have for any $n \geq N$ that

$$d(f^{n}(x_{0}), f^{n+3}(x_{0})) \leq d(f^{n}(x_{0}), f^{n+1}(x_{0})) + d(f^{n+1}(x_{0}), f^{n+3}(x_{0}))$$

$$< \varepsilon - \varphi(\varepsilon) + \varphi(d(f^{n}(x_{0}), f^{n+2}(x_{0}))) \leq \varepsilon.$$

By induction we have

 $d(f^n(x_0), f^{n+k}(x_0)) < \varepsilon$, for any $k \in \mathbb{N}^*$ and $n \ge N$.

Hence $(f^n(x_0))_{n \in \mathbb{N}}$ is a Cauchy sequence in (X, d). From (vii) we have $(f^n(x_0))_{n \in \mathbb{N}} \to x^*$, as $n \to +\infty$. Let $x \in X$ be arbitrarily chosen. Then:

(1) If $(x, x_0) \in X_{\leq}$, then $(f^n(x), f^n(x_0)) \in X_{\leq}$ and thus $d(f^n(x), f^n(x_0)) \leq \varphi^n(d(x, x_0))$, for each $n \in \mathbb{N}$. Letting $n \to +\infty$ we obtain that $(f^n(x))_{n \in \mathbb{N}} \to x^*$.

(2) If $(x, x_0) \notin X_{\leq}$, then, from (i), there exists $c(x, x_0) \in X$ such that $(x, c(x, x_0)) \in X_{\leq}$ and $(x_0, c(x, x_0)) \in X_{\leq}$. From the second relation, as before, we get $d(f^n(x_0), f^n(c(x, x_0))) \leq \varphi^n(d(x_0, c(x, x_0)))$, for each $n \in \mathbb{N}$ and hence $(f^n(c(x, x_0)))_{n \in \mathbb{N}} \to x^*$, as $n \to +\infty$. Then, using the first relation we infer that $d(f^n(x), f^n(c(x, x_0))) \leq \varphi^n(d(x, c(x, x_0)))$, for each $n \in \mathbb{N}$ and so, by letting again $n \to +\infty$, we conclude $(f^n(x))_{n \in \mathbb{N}} \to x^*$.

Now we will prove that $x^* \in F_f$. If $(v)_a$ holds, then clearly $x^* \in F_f$. If we suppose that $(v)_b$ takes place, then since $(f^{n_k}(x_0))_{k \in \mathbb{N}} \to x^*$ and $(f^{n_k}(x_0), x^*) \in X_{\leq}$ for all $k \in \mathbb{N}$ we obtain, from the orbitally X_{\leq} -continuity of f, that $f^{n_k+1}(x_0) \to f(x^*)$ as $k \to +\infty$. Thus $x^* = f(x^*)$. If we have f(y) = y for some $y \in X$, then from above, we must have $f^n(y) \to x^*$, so $y = x^*$.

If $f(x_0) = x_0$, then x_0 plays the role of x^* . \Box

Remark 3.4. Equivalent representation of condition (iv) are

(iv)' there exists $x_0 \in X$ such that $x_0 \leq f(x_0)$ or $x_0 \geq f(x_0)$; (iv)'' $(LF)_f \cup (UF)_f \neq \emptyset$.

Remark 3.5. Condition (ii) can be replaced by each of the following assertions:

(ii)' $f: (X, \leq) \to (X, \leq)$ is increasing; (ii)'' $f: (X, \leq) \to (X, \leq)$ is decreasing.

However, it is easy to see that assertion (ii) in Theorem 3.3 is more general, see [10] for example.

Notice that with the above remarks and with the φ -contraction condition, Theorem 3.3 generalizes Theorem 2.1 in [1], Theorems 2.2–2.3 in [7] and Theorem 2.1 in [11].

In certain situations, the condition:

(iii) if $(x, y) \in X_{\leq}$ and $(y, z) \in X_{\leq}$ then $(x, z) \in X_{\leq}$,

can be removed.

For example, as a consequence of Theorem 3.3, we have the following result. For the sake of completeness, we will sketch here a direct proof of it.

Theorem 3.6. Let (X, d, \leq) be an ordered metric space and $f: X \to X$ be an operator. We suppose that:

- (i) for each $x, y \in X$ with $(x, y) \notin X_{\leq}$ there exists $c(x, y) \in X$ such that $(x, c(x, y)) \in X_{\leq}$ and $(y, c(x, y)) \in X_{\leq}$;
- (ii) $f: (X, \leq) \to (X, \leq)$ is increasing;
- (iii) there exists $x_0 \in X$ such that $x_0 \leq f(x_0)$;
- (iv)_a f is orbitally continuous

or

(iv)_b f is orbitally X_{\leq} -continuous and there exists a subsequence $(f^{n_k}(x_0))_{k\in\mathbb{N}}$ of $(f^n(x_0))_{n\in\mathbb{N}}$ such that $(f^{n_k}(x_0), x^*) \in X_{\leq}$ for each $k \in \mathbb{N}$,

or

- (iv)_c if an increasing sequence (x_n) converges to x in X, then $x_n \leq x$ for all $n \in \mathbb{N}$;
- (v) there exists a comparison function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ such that $d(f(x), f(y)) \leq \varphi(d(x, y))$, for each $(x, y) \in X_{\leq}$;
- (vi) the metric d is complete.

Then f is a PO.

Proof. Since $f: (X, \leq) \to (X, \leq)$ is increasing and $x_0 \leq f(x_0)$ we immediately have $x_0 \leq f(x_0) \leq f^2(x_0) \leq \cdots \leq f^n(x_0) \leq \cdots$. Hence from (v) we obtain $d(f^n(x_0), f^{n+1}(x_0)) \leq \varphi^n(d(x_0, f(x_0)))$, for each $n \in \mathbb{N}$. By a similar approach as in the proof of Theorem 3.3 we obtain

 $d(f^n(x_0), f^{n+k}(x_0)) < \varepsilon$, for any $k \in \mathbb{N}^*$ and $n \ge N$.

Hence $(f^n(x_0))_{n \in \mathbb{N}}$ is a Cauchy sequence in (X, d). From (vi) we have $(f^n(x_0))_{n \in \mathbb{N}} \to x^*$, as $n \to +\infty$.

Now we will prove that $x^* \in F_f$. For the cases (iii)_a and (iii)_b the conclusion follows in a similar way to Theorem 3.3. If (iii)_c takes place, then, since $(f^n(x_0))_{n \in \mathbb{N}} \to x^*$, given any $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}^*$ such that for each $n \ge N_{\epsilon}$ we have $d(f^n(x_0), x^*) < \epsilon$. On the other hand, for each $n \ge N_{\epsilon}$, since $f^n(x_0) \le x^*$, we get

$$d(x^*, f(x^*)) \leq d(x^*, f^{n+1}(x_0)) + d(f(f^n(x_0)), f(x^*)) \leq d(x^*, f^{n+1}(x_0)) + \varphi(d(f^n(x_0), x^*)) < 2\epsilon.$$

Thus $x^* \in F_f$.

The uniqueness of the fixed point follows by contradiction. Suppose there exists $y^* \in F_f$, with $x^* \neq y^*$. There are two possible cases:

(a) if $(x^*, y^*) \in X_{\leq}$, then $0 < d(y^*, x^*) = d(f^n(y^*), f^n(x^*)) \leq \varphi^n(d(y^*, x^*)) \rightarrow 0$ as $n \rightarrow +\infty$, which is a contradiction. Hence $x^* = y^*$;

(b) if $(x^*, y^*) \notin X_{\leq}$, then there exists $c^* \in X$ such that $(x^*, c^*) \in X_{\leq}$ and $(y^*, c^*) \in X_{\leq}$. The monotonicity condition implies that $f^n(x^*)$ and $f^n(c^*)$ are comparable, as well as, $f^n(c^*)$ and $f^n(y^*)$. Hence

$$0 < d(y^*, x^*) = d(f^n(y^*), f^n(x^*)) \le d(f^n(y^*), f^n(c^*)) + d(f^n(c^*), f^n(x^*)) \le \varphi^n(d(y^*, c^*)) + \varphi^n(d(c^*, x^*)) \to 0$$

as $n \to +\infty$, which is again a contradiction. Thus $x^* = y^*$. \Box

Remark 3.7. It is easy to see that a dual result to Theorem 3.6 can be proved. More precisely, Theorem 3.6 holds if we replace condition (iii) by

(iii)' there exists $x_0 \in X$ such that $x_0 \ge f(x_0)$;

and condition (iv)c by

 $(iv)'_{c}$ if a decreasing sequence (x_n) converges to x in X, then $x_n \ge x$ for all $n \in \mathbb{N}$.

Remark 3.8. Other results of the above type can be obtained by putting instead of a complete ordered metric space one of the following ordered *L*-structures (see also [4,5,8,10,14]):

- (a) (X, d, \leq) an ordered complete generalized metric space (i.e., $d(x, y) \in \mathbb{R}^{n}_{+}$);
- (b) (X, \mathcal{F}, T) a complete Menger space.

Another result of this type is:

Theorem 3.9. Let (X, \rightarrow, \leq) be an ordered *L*-space such that (X, \rightarrow, \leq) satisfy the condition (*) in Section 2 and $f: X \rightarrow X$ be an operator. We suppose that:

- (i) for each x, $y \in X$ with $(x, y) \notin X \leq there exist m(x, y), M(x, y) \in X$ such that $x, y \in [m(x, y), M(x, y)] \leq t$
- (ii) [f is increasing] or [f is decreasing and (X, \rightarrow, \leq) has the property (**) in Section 2];
- (iii) there exist $x_0, x^* \in X$ such that $x_0 \in A_f(x^*)$;
- $(iv)_a$ f is orbitally continuous

or

(iv) f is orbitally X_{\leq} -continuous and there exists a subsequence $(f^{n_k}(x_0))_{k\in\mathbb{N}}$ of $(f^n(x_0))_{n\in\mathbb{N}}$ such that $(f^{n_k}(x_0), x^*) \in X_{\leq}$ for each $k \in \mathbb{N}$; (i) if $(x_0, x_0) \in Y_{\leq}$ there $x \in A_{\leq}(x^*)$

(v) if $(x, x_0) \in X_{\leq}$, then $x \in A_f(x^*)$.

Then f is a PO.

Proof. From (iii) and (iv) we have that $x^* \in F_f$.

Let $x \in X$ be arbitrarily chosen.

(1) If $(x, x_0) \in X_{\leq}$, then from (v) we obtain $(f^n(x))_{n \in \mathbb{N}} \to x^*$, as $n \to +\infty$.

(2) If $(x, x_0) \notin X_{\leq}$, then by (i) we have that $x, x_0 \in [m(x, x_0), M(x, x_0)]_{\leq}$. Since $x_0 \in [m(x, x_0), M(x, x_0)]_{\leq}$ and taking into account (v) it follows that

 $(f^n(m(x,x_0)))_{n\in\mathbb{N}} \to x^*$ and $(f^n(M(x,x_0)))_{n\in\mathbb{N}} \to x^*$, as $n \to +\infty$.

If f is increasing, then from $m(x, x_0) \le x \le M(x, x_0)$ and hypothesis (*) we obtain $(f^n(x))_{n \in \mathbb{N}} \to x^*$, as $n \to +\infty$. If f is decreasing, then $m(x, x_0) \le x \le M(x, x_0)$ implies that $f^{2k}(x) \to x^*$ and $f^{2k+1}(x) \to x^*$, as $k \to +\infty$. From (**) we get that $f^n(x) \to x^*$, as $n \to +\infty$. Hence, f is a PO. \Box

A consequence of the above theorem is:

Theorem 3.10. Let (X, d, \leq) be an ordered metric space satisfying the condition (*) in Section 2 and $f : X \to X$ be an operator. We suppose that:

- (i) for each x, $y \in X$ with $(x, y) \notin X_{\leq}$ there exist $m(x, y), M(x, y) \in X$ such that $x, y \in [m(x, y), M(x, y)]_{\leq}$;
- (ii) if $(x, y) \in X_{\leq}$ and $(y, z) \in X_{\leq}$, then $(x, z) \in X_{\leq}$;
- (iii) f is increasing or decreasing;
- (iv) there exists $x_0 \in X$ such that $(x_0, f(x_0)) \in X_{\leq}$;
- $(v)_a$ f is orbitally continuous

or

- $(v)_b$ f is orbitally X_{\leq} -continuous and there exists a subsequence $(f^{n_k}(x_0))_{k\in\mathbb{N}}$ of $(f^n(x_0))_{n\in\mathbb{N}}$ such that, if $f^{n_k}(x_0) \to x^*$ as $k \to \infty$, then $(f^{n_k}(x_0), x^*) \in X_{\leq}$ for each $k \in \mathbb{N}$;
- (vi) the metric d is complete;
- (vii) there exists a comparison function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ such that $d(f(x), f(y)) \leq \varphi(d(x, y))$, for each $(x, y) \in X_{\leq 0}$.

Then $f: (X, d) \rightarrow (X, d)$ is a PO.

Proof. Let $x_0 \in X$ be such that $(x_0, f(x_0)) \in X_{\leq}$. Then from (iii) it follows $(f(x_0), f^2(x_0)), (f^2(x_0), f^3(x_0)), \ldots, (f^n(x_0), f^{n+1}(x_0)), \ldots \in X_{\leq}$. From (vii) we get that $d(f^n(x_0), f^{n+1}(x_0)) \leq \varphi^n(d(x_0, f(x_0)))$, for each $n \in \mathbb{N}$. As in the proof of Theorem 3.3, we obtain that $(f^n(x_0))_{n \in \mathbb{N}} \to x^*$, as $n \to +\infty$.

Let $x \in X$ be arbitrary. Then:

(1) If $(x, x_0) \in X_{\leq}$, then $(f^n(x), f^n(x_0)) \in X_{\leq}$ and so $d(f^n(x), f^n(x_0)) \leq \varphi^n(d(x, x_0))$, for each $n \in \mathbb{N}$. Letting $n \to +\infty$ we obtain that $(f^n(x))_{n \in \mathbb{N}} \to x^*$.

(2) If $(x, x_0) \notin X_{\leq}$, then, from (i), there exist $m(x, x_0), M(x, x_0) \in X$ such that $x, x_0 \in [m(x, x_0), M(x, x_0)]_{\leq}$. From $m(x, x_0) \leq x_0 \leq M(x, x_0)$ we get that $(f^n(m(x, x_0)))_{n \in \mathbb{N}} \to x^*$ and $(f^n(M(x, x_0)))_{n \in \mathbb{N}} \to x^*$, as $n \to +\infty$. From the relation $m(x, x_0) \leq x \leq M(x, x_0)$, condition (iii) and the above convergence we infer that $(f^n(x))_{n \in \mathbb{N}} \to x^*$. The rest of the proof, namely the fact $x^* \in F_f$, runs identically as before. \Box

For the case of a generalized φ -contraction an existence result for the fixed point can also be established.

Theorem 3.11. Let (X, d, \leq) be an ordered metric space and $f: X \to X$ be an operator. We suppose that:

- (i) $X_{\leq} \in I(f \times f);$
- (ii) if $(x, y) \in X_{\leq}$ and $(y, z) \in X_{\leq}$, then $(x, z) \in X_{\leq}$;
- (iii) there exists $x_0 \in X$ such that $(x_0, f(x_0)) \in X_{\leq}$;
- (iv)_a f is orbitally continuous

or

- (iv)_b f is orbitally X_{\leq} -continuous and there exists a subsequence $(f^{n_k}(x_0))_{k\in\mathbb{N}}$ of $(f^n(x_0))_{n\in\mathbb{N}}$ such that $(f^{n_k}(x_0), x^*) \in X_{\leq}$ for each $k \in \mathbb{N}$;
 - (v) there exists a comparison function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ such that

$$d(f(x), f(y)) \leq \varphi \left(\max\left\{ d(x, y), d(x, f(x)), d(y, f(y)), \frac{1}{2} \left[d(x, f(y)) + d(y, f(x)) \right] \right\} \right),$$

for each $(x, y) \in X_{\leq}$;

(vi) the metric d is complete.

Then $F_f \neq \emptyset$.

Proof. Let $x_0 \in X$ be such that $(x_0, f(x_0)) \in X_{\leq}$. Suppose first that $x_0 \neq f(x_0)$. Then, from (i) we obtain

$$(f(x_0), f^2(x_0)), (f^2(x_0), f^3(x_0)), \dots, (f^n(x_0), f^{n+1}(x_0)), \dots \in X_{\leq n}$$

We claim that

 $(***) \qquad d\left(f^n(x_0), f^{n+1}(x_0)\right) \leqslant \varphi\left(d\left(f^{n-1}(x_0), f^n(x_0)\right)\right), \quad \text{for each } n \in \mathbb{N}.$

To see (***) we consider

$$d(f^{n}(x_{0}), f^{n+1}(x_{0})) \leq \varphi \left(\max \left\{ d(f^{n-1}(x_{0}), f^{n}(x_{0})), d(f^{n}(x_{0}), f^{n+1}(x_{0})), d(f^{n}(x_{0}), f^{n-1}(x_{0})), \frac{1}{2} \left[d(f^{n}(x_{0}), f^{n}(x_{0})) + d(f^{n-1}(x_{0}), f^{n+1}(x_{0})) \right] \right\} \right) \leq \varphi(M_{n}),$$

where

$$M_n := \max\left\{d\left(f^{n-1}(x_0), f^n(x_0)\right), d\left(f^n(x_0), f^{n+1}(x_0)\right), \frac{1}{2}\left[d\left(f^{n-1}(x_0), f^n(x_0)\right) + d\left(f^n(x_0), f^{n+1}(x_0)\right)\right]\right\}.$$

(1) If $M_n = d(f^{n-1}(x_0), f^n(x_0))$ we are done. (2) If $M_n = d(f^n(x_0), f^{n+1}(x_0))$, then $d(f^n(x_0), f^{n+1}(x_0)) = 0$. Since if not, then

$$d(f^{n}(x_{0}), f^{n+1}(x_{0})) \leq \varphi(d(f^{n}(x_{0}), f^{n+1}(x_{0}))) < d(f^{n}(x_{0}), f^{n+1}(x_{0})),$$

which is a contradiction. Thus (**) follows again.

(3) If $M_n = \frac{1}{2} [d(f^{n-1}(x_0), f^n(x_0)) + d(f^n(x_0), f^{n+1}(x_0))]$, then if $M_n = 0$ we have that $d(f^n(x_0), f^{n+1}(x_0)) = 0$ and (**) holds. If $M_n \neq 0$, then

$$d(f^{n}(x_{0}), f^{n+1}(x_{0})) \leq \varphi\left(\frac{1}{2}\left[d(f^{n-1}(x_{0}), f^{n}(x_{0})) + d(f^{n}(x_{0}), f^{n+1}(x_{0}))\right]\right)$$
$$< \frac{1}{2}\left[d(f^{n-1}(x_{0}), f^{n}(x_{0})) + d(f^{n}(x_{0}), f^{n+1}(x_{0}))\right].$$

Hence $d(f^n(x_0), f^{n+1}(x_0)) < d(f^{n-1}(x_0), f^n(x_0))$. In this case

$$M_n = \frac{1}{2} \Big[d \big(f^{n-1}(x_0), f^n(x_0) \big) + d \big(f^n(x_0), f^{n+1}(x_0) \big) \Big] < d \big(f^{n-1}(x_0), f^n(x_0) \big),$$

which contradicts the definition of M_n .

Thus in all cases (***) holds.

From (***) we immediately have

$$d(f^n(x_0), f^{n+1}(x_0)) \leq \varphi^n(d(x_0, f(x_0))), \text{ for each } n \in \mathbb{N}.$$

Since $\varphi^n(d(x_0, f(x_0)) \to 0 \text{ as } n \to +\infty)$, for an arbitrary $\varepsilon > 0$ we can choose $N \in \mathbb{N}^*$ such that

$$d(f^n(x_0), f^{n+1}(x_0)) < \varepsilon - \varphi(\varepsilon), \text{ for each } n \ge N.$$

As in the proof of Theorem 3.3 we have first that

$$d(f^{n}(x_{0}), f^{n+2}(x_{0})) \leq d(f^{n}(x_{0}), f^{n+1}(x_{0})) + d(f^{n+1}(x_{0}), f^{n+2}(x_{0}))$$

$$< \varepsilon - \varphi(\varepsilon) + \varphi(d(f^{n}(x_{0}), f^{n+1}(x_{0}))) \leq \varepsilon.$$

Now since $(f^n(x_0), f^{n+2}(x_0)) \in X_{\leq}$ (see (ii)) we have for any $n \geq N$ that

$$\begin{aligned} d(f^{n}(x_{0}), f^{n+3}(x_{0})) \\ &\leqslant d(f^{n}(x_{0}), f^{n+1}(x_{0})) + d(f^{n+1}(x_{0}), f^{n+3}(x_{0})) \\ &< \varepsilon - \varphi(\varepsilon) + \varphi \left(\max \left\{ d(f^{n}(x_{0}), f^{n+2}(x_{0})), d(f^{n}(x_{0}), f^{n+1}(x_{0})), d(f^{n+2}(x_{0}), f^{n+3}(x_{0})), \right. \\ &\left. \frac{1}{2} \Big[d(f^{n+1}(x_{0}), f^{n+2}(x_{0})) + d(f^{n}(x_{0}), f^{n+3}(x_{0})) \Big] \Big\} \right) \\ &< \varepsilon - \varphi(\varepsilon) + \varphi \left(\max \left\{ \varepsilon, \varepsilon - \varphi(\varepsilon), \varphi^{2}(\varepsilon), \frac{1}{2} \Big[\varphi(\varepsilon) + d(f^{n}(x_{0}), f^{n+3}(x_{0})) \Big] \right\} \right) \\ &\leqslant \varepsilon - \varphi(\varepsilon) + \varphi \left(\max \left\{ \varepsilon, \varepsilon - \varphi(\varepsilon), \varphi^{2}(\varepsilon), \frac{1}{2} \Big[\varphi(\varepsilon) + d(f^{n}(x_{0}), f^{n+3}(x_{0})) \Big] \right\} \right) \\ &\leqslant \varepsilon - \varphi(\varepsilon) + \varphi \left(\max \left\{ \varepsilon, \varepsilon - \varphi(\varepsilon), \varphi^{2}(\varepsilon), \frac{1}{2} \Big[\varphi(\varepsilon) + d(f^{n}(x_{0}), f^{n+3}(x_{0})) \Big] \right\} \right) \\ &\leqslant \varepsilon - \varphi(\varepsilon) + \varphi \left(\max \left\{ \varepsilon, \varepsilon - \varphi(\varepsilon), \varphi^{2}(\varepsilon), \frac{1}{2} \Big[\varphi(\varepsilon) + d(f^{n}(x_{0}), f^{n+3}(x_{0})) \Big] \right\} \right) \\ &\leqslant \varepsilon - \varphi(\varepsilon) + \varphi \left(\max \left\{ \varepsilon, \varepsilon - \varphi(\varepsilon), \varphi^{2}(\varepsilon), \frac{1}{2} \Big[\varphi(\varepsilon) + d(f^{n}(x_{0}), f^{n+3}(x_{0})) \Big] \right\} \right) \\ &\leqslant \varepsilon - \varphi(\varepsilon) + \varphi \left(\max \left\{ \varepsilon, \varepsilon - \varphi(\varepsilon), \varphi^{2}(\varepsilon), \frac{1}{2} \Big[\varphi(\varepsilon) + d(f^{n}(x_{0}), f^{n+3}(x_{0})) \Big] \right\} \right) \\ &\leqslant \varepsilon - \varphi(\varepsilon) + \varphi \left(\max \left\{ \varepsilon, \varepsilon - \varphi(\varepsilon), \varphi^{2}(\varepsilon), \frac{1}{2} \Big[\varphi(\varepsilon) + d(f^{n}(x_{0}), f^{n+3}(x_{0})) \Big] \right\} \right) \\ &\leqslant \varepsilon - \varphi(\varepsilon) + \varphi \left(\max \left\{ \varepsilon, \varepsilon - \varphi(\varepsilon), \varphi^{2}(\varepsilon), \frac{1}{2} \Big[\varphi(\varepsilon) + d(f^{n}(x_{0}), f^{n+3}(x_{0})) \Big] \right\} \right) \\ &\leqslant \varepsilon - \varphi(\varepsilon) + \varphi(\varepsilon) + \varphi(\varepsilon) + \varphi(\varepsilon) \\ &\leqslant \varepsilon - \varphi(\varepsilon) + \varphi(\varepsilon) + \varphi(\varepsilon) + \varphi(\varepsilon) + \varphi(\varepsilon) + \varphi(\varepsilon) \\ \\ &\leqslant \varepsilon - \varphi(\varepsilon) + \varphi(\varepsilon)$$

where

$$S_n := \max\left\{\varepsilon, \frac{1}{2} \left[\varphi(\varepsilon) + d\left(f^n(x_0), f^{n+3}(x_0)\right)\right]\right\}.$$

We will prove that $S_n = \varepsilon$. If not, then $S_n = \frac{1}{2} [\varphi(\varepsilon) + d(f^n(x_0), f^{n+3}(x_0))]$. Since $S_n > 0$ we have

$$d\big(f^n(x_0), f^{n+3}(x_0)\big) < \varepsilon - \varphi(\varepsilon) + \frac{1}{2} \big[\varphi(\varepsilon) + d\big(f^n(x_0), f^{n+3}(x_0)\big)\big]$$

and thus

$$d(f^n(x_0), f^{n+3}(x_0)) < 2[\varepsilon - \varphi(\varepsilon)] + \varphi(\varepsilon).$$

As a consequence $S_n < \frac{1}{2}\varphi(\varepsilon) + [\varepsilon - \varphi(\varepsilon)] + \frac{1}{2}\varphi(\varepsilon) = \varepsilon$, which contradicts the definition of S_n . Hence $S_n = \varepsilon$ and thus $d(f^n(x_0), f^{n+3}(x_0)) < \varepsilon - \varphi(\varepsilon) + \varphi(\varepsilon) = \varepsilon$. Next, by induction, we obtain that $d(f^n(x_0), f^{n+k}(x_0)) < \varepsilon$, for any $k \in \mathbb{N}^*$ and $n \ge N$. Hence $(f^n(x_0))_{n \in \mathbb{N}}$ is a Cauchy sequence in (X, d). From (vi) we have $(f^n(x_0))_{n \in \mathbb{N}} \to x^*$, as $n \to +\infty$. Now we prove that $x^* \in F_f$. If (iv)_a holds, then clearly $x^* \in F_f$. If we suppose that (iv)_b takes place, then since $(f^{n_k}(x_0))_{n \in \mathbb{N}} \to x^*$ and $(f^{n_k}(x_0), x^*) \in X_{\leq}$ for all $k \in \mathbb{N}$ we obtain, from the orbitally X_{\leq} -continuity of f, that $f^{n_k+1}(x_0) \to f(x^*)$ as $k \to +\infty$. Thus $x^* = f(x^*)$.

If $f(x_0) = x_0$, then x_0 is a fixed point. \Box

4. Applications

Consider the integral equations

$$x(t) = \int_{a}^{b} K(t, s, x(s)) ds + g(t), \quad t \in [a, b],$$
(1)

and

$$x(t) = \int_{a}^{t} K(t, s, x(s)) ds + g(t), \quad t \in [a, b].$$
(2)

The purpose of this section is to give existence results for Eqs. (1) and (2) using Theorem 3.6.

Theorem 4.1. Consider Eq. (1). Suppose

- (i) $K:[a,b] \times [a,b] \times \mathbb{R}^n \to \mathbb{R}^n$ and $g:[a,b] \to \mathbb{R}^n$ are continuous;
- (ii) $K(t, s, \cdot) : \mathbb{R}^n \to \mathbb{R}^n$ is increasing for each $t, s \in [a, b]$;
- (iii) there exist a continuous function $p:[a,b] \times [a,b] \to \mathbb{R}_+$ and a comparison function $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$, such that

$$|K(t,s,u) - K(t,s,v)| \leq p(t,s)\varphi(|u-v|), \text{ for each } t,s \in [a,b], u,v \in \mathbb{R}^n, u \leq v;$$

- (iv) $\sup_{t \in [a,b]} \int_a^b p(t,s) \, ds \leq 1;$
- (v) there exists $x_0 \in C([a, b], \mathbb{R}^n)$ such that $x_0(t) \leq \int_a^b K(t, s, x_0(s)) ds + g(t)$, for any $t \in [a, b]$.

Then the integral equation (1) has a unique solution x^* in $C([a, b], \mathbb{R}^n)$.

Proof. Let $X := C([a, b], \mathbb{R}^n)$ with the usual supremum norm, i.e., $||x|| := \max_{t \in [a,b]} |x(t)|$, for $x \in C([a, b], \mathbb{R}^n)$. Consider on *X* the partial order defined by

 $x, y \in C([a, b], \mathbb{R}^n), x \leq y$ if and only if $x(t) \leq y(t)$ for any $t \in [a, b]$.

Then $(X, \|\cdot\|, \leq)$ is an ordered and complete metric space. Moreover for any increasing sequence $(x_n)_{n \in \mathbb{N}}$ in X converging to a certain $x^* \in X$ we have $x_n(t) \leq x^*(t)$, for any $t \in [a, b]$. Also, for every $x, y \in X$ there exists $c(x, y) \in X$ which is comparable to x and y.

Define $A: C([a, b], \mathbb{R}^n) \to C([a, b], \mathbb{R}^n)$, by the formula

$$Ax(t) := \int_{a}^{b} K(t, s, x(s)) ds + g(t), \quad t \in [a, b].$$

1250

First observe that from (ii) A is increasing. Also, for each $x, y \in X$ with $x \leq y$ we have

$$|Ax(t) - Ay(t)| \leq \int_{a}^{b} |K(t, s, x(s)) - K(t, s, y(s))| ds \leq \int_{a}^{b} p(t, s)\varphi(|x(s) - y(s)|) ds$$
$$\leq \varphi(||x - y||) \cdot \int_{a}^{b} p(t, s) ds \leq \varphi(||x - y||), \quad \text{for any } t \in [a, b].$$

Hence $||Ax - Ay|| \leq \varphi(||x - y||)$, for each $x, y \in X$ with $x \leq y$.

From (v) we have that $x_0 \leq Ax_0$.

The conclusion follows now from Theorem 3.6. \Box

Theorem 4.2. Consider Eq. (2). Suppose

- (i) $K:[a,b]\times[a,b]\times\mathbb{R}^n\to\mathbb{R}^n$ and $g:[a,b]\to\mathbb{R}^n$ are continuous;
- (ii) $K(t, s, \cdot) : \mathbb{R}^n \to \mathbb{R}^n$ is increasing for each $t, s \in [a, b]$;
- (iii) there exists a comparison function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ with $\varphi(\lambda t) \leq \lambda \varphi(t)$, for each $t \in \mathbb{R}_+$ and each $\lambda \geq 1$, such that

$$K(t,s,u) - K(t,s,v) | \leq \varphi(|u-v|), \quad \text{for each } t,s \in [a,b], \ u,v \in \mathbb{R}^n, \ u \leq v;$$

(iv) there exists $x_0 \in C([a, b], \mathbb{R}^n)$ such that $x_0(t) \leq \int_a^t K(t, s, x_0(s)) ds + g(t)$, for any $t \in [a, b]$.

Then the integral equation (2) has a unique solution x^* in $C([a, b], \mathbb{R}^n)$.

Proof. Let $X := C([a, b], \mathbb{R}^n)$ be endowed with a Bielecki-type norm, i.e., $||x||_B := \max_{t \in [a,b]} (|x(t)| \cdot e^{-\tau(t-a)})$, for $x \in C([a, b], \mathbb{R}^n)$ (where $\tau > 0$ is arbitrarily chosen). Consider on X the same partial order defined before (see the proof of Theorem 4.1).

Then $(X, \|\cdot\|_B, \leq)$ is an ordered and complete metric space. Moreover for any increasing sequence $(x_n)_{n\in\mathbb{N}}$ in X converging to a certain $x^* \in X$ we have $x_n(t) \leq x^*(t)$, for any $t \in [a, b]$. Also, for every $x, y \in X$ there exists $c(x, y) \in X$ which is comparable to x and y.

Define $A: C([a, b], \mathbb{R}^n) \to C([a, b], \mathbb{R}^n)$, by the formula

$$Ax(t) := \int_{a}^{t} K(t, s, x(s)) ds + g(t), \quad t \in [a, b].$$

From (ii) we have that A is increasing. Also, for each $x, y \in X$ with $x \leq y$ we have

$$\begin{aligned} \left| Ax(t) - Ay(t) \right| &\leq \int_{a}^{t} \left| K\left(t, s, x(s)\right) - K\left(t, s, y(s)\right) \right| ds \leq \int_{a}^{t} \varphi\left(\left| x(s) - y(s) \right| \right) ds \\ &= \int_{a}^{t} \varphi\left(\left| x(s) - y(s) \right| e^{-\tau(s-a)} e^{\tau(s-a)} \right) ds \leq \int_{a}^{t} e^{\tau(s-a)} \varphi\left(\left| x(s) - y(s) \right| e^{-\tau(s-a)} \right) ds \\ &\leq \varphi\left(\left\| x - y \right\|_{B} \right) \int_{a}^{t} e^{\tau(s-a)} ds \leq \frac{1}{\tau} \varphi\left(\left\| x - y \right\|_{B} \right) e^{\tau(t-a)}, \quad \text{for any } t \in [a, b]. \end{aligned}$$

Hence, for $\tau \ge 1$ we obtain $||Ax - Ay||_B \le \varphi(||x - y||_B)$, for each $x, y \in X$ with $x \le y$.

From (iv) we have that $x_0 \leq Ax_0$.

The conclusion follows now from Theorem 3.6. \Box

Acknowledgments

The authors are thankful to anonymous reviewers, for remarks and suggestions that improved the quality of the paper.

References

- [1] R.P. Agarwal, M.A. El-Gebeily, D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., in press.
- [2] Z. Drici, F.A. McRae, J. Vasundhara Devi, Fixed point theorems in partially ordered metric spaces for operators with PPF dependence, Nonlinear Anal. 7 (2007) 641–647.
- [3] M. Fréchet, Les espaces abstraits, Gauthier-Villars, Paris, 1928.
- [4] O. Hadžić, E. Pap, V. Radu, Generalized contraction mapping principles in probabilistic metric spaces, Acta Math. Hungar. 101 (2003) 131– 138.
- [5] O. Hadžić, E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Acad. Publ., Dordrecht, 2001.
- [6] J. Jachymski, I. Jóźwik, Nonlinear contractive conditions: A comparison and related problems, Banach Center Publ. 77 (2007) 123–146.
- [7] J.J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005) 223–239.
- [8] J.J. Nieto, R.L. Pouso, R. Rodríguez-López, Fixed point theorem theorems in ordered abstract sets, Proc. Amer. Math. Soc. 135 (2007) 2505–2517.
- [9] J.J. Nieto, R. Rodríguez-López, Existence and uniqueness of fixed points in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.) 23 (2007) 2205–2212.
- [10] A. Petruşel, I.A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134 (2006) 411-418.
- [11] A.C.M. Ran, M.C. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435–1443.
- [12] I.A. Rus, Generalized Contractions and Applications, Cluj Univ. Press, 2001.
- [13] I.A. Rus, Picard operators and applications, Sci. Math. Jpn. 58 (2003) 191-219.
- [14] I.A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory 1950–2000: Romanian Contributions, House of the Book of Science, Cluj-Napoca, 2002.