

Available online at www.sciencedirect.com

Journal of Number Theory 112 (2005) 332 – 344

www.elsevier.com/locate/jnt

Well-behaved Beurling primes and integers

Titus W. Hilberdink

Department of Mathematics, University of Reading, Whiteknights, P.O. Box 220, Reading RG6 6AX, UK

Received 21 November 2003; revised 9 August 2004

Communicated by D. Goss

Available online 7 December 2004

Abstract

In this paper, we study generalised prime systems for which both the prime and integer counting functions are asymptotically well-behaved, in the sense that they are approximately li(x) and ρx , respectively (where ρ is a positive constant), with error terms of order $O(x^{\theta_1})$ and $O(x^{\theta_2})$ for some $\theta_1, \theta_2 < 1$. We show that it is impossible to have both θ_1 and θ_2 less than $\frac{1}{2}$.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Beurling's generalized primes

1. Introduction

A *generalised prime system* (or *g-prime system*) \mathcal{P} is a sequence of positive reals p_1, p_2, p_3, \ldots satisfying

$$
1 < p_1 \leqslant p_2 \leqslant \cdots \leqslant p_n \leqslant \cdots
$$

and for which $p_n \to \infty$ as $n \to \infty$. From these can be formed the system N of *generalised integers* or *Beurling integers*; that is, the numbers of the form

$$
p_1^{a_1} p_2^{a_2} \dots p_k^{a_k},
$$

0022-314X/\$ - see front matter © 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jnt.2004.09.001

E-mail address: t.w.hilberdink@reading.ac.uk

where $k \in \mathbb{N}$ and $a_1, \ldots, a_k \in \mathbb{N}_0$. ¹ This system generalises the notion of prime numbers and the natural numbers obtained from them. Such systems were first introduced by Beurling [\[2\]](#page-12-0) and have been studied by many authors since then (see in particular [\[1\]\)](#page-12-0).

Much of the theory concerns connecting the asymptotic behaviour of the g-prime and g-integer counting functions, $\pi_{\mathcal{P}}(x)$ and $N_{\mathcal{P}}(x)$, defined, respectively, by ²

$$
\pi_{\mathcal{P}}(x) = \sum_{p \in \mathcal{P}, p \leqslant x} 1 \quad \text{and} \quad N_{\mathcal{P}}(x) = \sum_{n \in \mathcal{N}, n \leqslant x} 1.
$$

The methods invariably involve the associated (Beurling) zeta function, defined by

$$
\zeta_{\mathcal{P}}(s) = \prod_{p \in \mathcal{P}} \frac{1}{1 - p^{-s}} = \sum_{n \in \mathcal{N}} \frac{1}{n^s}.
$$

It is often more useful to connect the functions $\psi_{\mathcal{P}}(x)$ and $N_{\mathcal{P}}(x)$, where $\psi_{\mathcal{P}}(x)$ is the function

$$
\psi_{\mathcal{P}}(x) = \sum_{p^k \leq x, p \in \mathcal{P}, k \in \mathbb{N}} \log p = \sum_{n \leq x, n \in \mathcal{N}} \Lambda_{\mathcal{P}}(n),
$$

where $\Lambda_{\mathcal{P}}$ denotes the (generalised) von Mangoldt function, defined by $\Lambda_{\mathcal{P}}(n) = \log p$ if $n = p^m$ for some $p \in \mathcal{P}$ and $m \in \mathbb{N}$, and $\Lambda_{\mathcal{P}}(n) = 0$ otherwise. This is because these functions are directly related to $\zeta_{\mathcal{P}}(s)$ via

$$
\zeta_{\mathcal{P}}(s) = s \int_1^{\infty} \frac{N_{\mathcal{P}}(x)}{x^{s+1}} dx \quad \text{and} \quad -\frac{\zeta_{\mathcal{P}}'(s)}{\zeta_{\mathcal{P}}(s)} = s \int_1^{\infty} \frac{\psi_{\mathcal{P}}(x)}{x^{s+1}} dx.
$$

We shall denote $-\frac{\zeta_p'(s)}{\zeta_p(s)}$ by $\phi_p(s)$. In this paper, we shall be concerned with systems for which both $\psi_{\mathcal{P}}(x)$ and $N_{\mathcal{P}}(x)$ are 'well-behaved', in the sense that

$$
\psi_{\mathcal{P}}(x) = x + O(x^{\theta_1}) \quad \text{and} \quad N_{\mathcal{P}}(x) = \rho x + O(x^{\theta_2}), \tag{1.1}
$$

hold simultaneously, for some θ_1 , θ_2 < 1 and $\rho > 0$. Note that the former is equivalent to

$$
\pi_{\mathcal{P}}(x) = \text{li}(x) + O(x^{\theta_1'}) \quad \text{for some } \theta_1' < 1.
$$

¹ Here and henceforth, $\mathbb{N} = \{1, 2, 3, ...\}$ and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$.
² We write $\sum_{p \in \mathcal{P}}$ to mean a sum over all the g-primes, counting multiplicities. Similarly for $\sum_{n \in \mathcal{N}}$.

For example, for the rational primes when $\mathcal{N} = \mathbb{N}$, assuming the Riemann hypothesis, these asymptotic relations are true with $\theta_2 = 0$ and any $\theta_1 > \frac{1}{2}$.

The relations (1.1) are equivalent to knowing that $\zeta_{\mathcal{P}}(s)$ has an analytic continuation to some vertical strip to the left of $\Re s = 1$ except for a simple pole at $s = 1$ (with residue ρ), is *zero-free* in this strip, and has *finite order* ³ here (see [\[5\]\)](#page-12-0). Our main result in this paper is to show that this strip cannot have width greater than $\frac{1}{2}$. In particular, this means that it is impossible for both θ_1 and θ_2 to be less than $\frac{1}{2}$.

2. Main results

2.1. $[\alpha, \beta]$ -systems

For $0 \le \alpha, \beta < 1$, we define an [α, β]-*system* to be a generalised prime-system for which

$$
\psi_{\mathcal{P}}(x) = x + O(x^{\alpha + \varepsilon}), \tag{2.1}
$$

$$
N_{\mathcal{P}}(x) = \rho x + O(x^{\beta + \varepsilon}) \quad \text{(for some } \rho > 0\text{)}\tag{2.2}
$$

hold for all $\varepsilon > 0$, but for no $\varepsilon < 0$.

It is clear that α , $\beta \geq 0$ is necessary, since $N(x) - \rho x = \Omega(1)$ (for every ρ) and $\psi(x) - x = \Omega(\log x)$ in any case. Note that (2.2) implies that

$$
\psi_{\mathcal{P}}(x) = x + O(xe^{-c\sqrt{\log x}}),
$$

for some $c > 0$ (see [\[7\]\)](#page-12-0), and this is best possible in the sense that there exist systems for which (2.2) holds, but $\psi_{\mathcal{P}}(x) - x = \Omega(xe^{-c\sqrt{\log x}})$ (see [\[4\]\)](#page-12-0). In the other direction, (2.1) implies

$$
N_{\mathcal{P}}(x) = \rho x + O(xe^{-c\sqrt{\log x \log \log x}})
$$

for some $c > 0$ (see [\[5\]\)](#page-12-0). It is not clear if this is best possible.

If P is the set of rational primes, so that $\mathcal{N} = \mathbb{N}$, then (2.2) holds with $\beta = 0$ (and $\rho = 1$) and if the Riemann hypothesis is true, (2.1) holds for $\alpha = \frac{1}{2}$. This would then demonstrate the existence of a $[\frac{1}{2}, 0]$ -system. Further examples arise if we are prepared to assume other conjectures, such as the generalised Riemann hypothesis. For example,

 $3 f(s)$ has finite order in the strip where $\Re s \in [a, b]$ if $f(\sigma + it) = O(|t|^A)$ as $|t| \to \infty$ for some constant *A*, uniformly for $\sigma \in [a, b]$. If there is no such *A*, we say that *f* is of infinite order in this strip.

We define, as usual, the *order* $\mu_f(\sigma)$ to be the infimum of all real numbers λ such that $f(\sigma + it) =$ $O(|t|^{\lambda})$. It is well-known that, as a function of σ , $\mu_f(\sigma)$ is non-negative, decreasing, and convex.

for the Gaussian integers of the field $\mathbb{Q}(i)$, the Dedekind zeta-function is given by

$$
\zeta_{\mathcal{P}}(s) = \frac{1}{1 - 2^{-s}} \prod_{p} \left(\frac{1}{1 - p^{-s}} \right)^2 \prod_{q} \left(\frac{1}{1 - q^{-2s}} \right) = \frac{1}{4} \sum_{n=1}^{\infty} \frac{r(n)}{n^s},
$$

where p and q run over the rational primes $1 \pmod{4}$ and $3 \pmod{4}$, respectively, and $r(n)$ is the number of ways of writing *n* as $a^2 + b^2$ with $a, b \in \mathbb{Z}$. The corresponding g-prime system P therefore consists of 2, the rational primes $p \equiv 1 \pmod{4}$ occuring with multiplicity two, and the squares of the primes of the form 3 (mod 4). Thus

$$
\pi_{\mathcal{P}}(x) = 1 + 2\pi_{1,4}(x) + \pi_{3,4}(\sqrt{x}),
$$

where $\pi_{k,m}(x)$ is the number of primes less than or equal to *x* of the form k (mod m). On the generalised Riemann hypothesis, one has

$$
\pi_{\mathcal{P}}(x) = \text{li}(x) + O(x^{\frac{1}{2} + \varepsilon}) \quad \text{for all } \varepsilon > 0.
$$

On the other hand, it is known that (see [\[6\]\)](#page-12-0)

$$
N_{\mathcal{P}}(x) = \frac{1}{4} \sum_{n \leq x} r(n) = \frac{\pi}{4} x + O(x^{\frac{23}{73}})
$$

and it is conjectured that the exponent in the error term is actually $\frac{1}{4} + \varepsilon$ for all $\varepsilon > 0$. Hence, assuming these conjectures, \mathcal{P} is an example of a $[\frac{1}{2}, \frac{1}{4}]$ -system. Further examples of such $[\frac{1}{2}, \beta]$ -systems (with $\beta < \frac{1}{2}$) based on Dedekind zeta functions, can be conjectured to exist.

However, at present it seems that no actual examples of $[\alpha, \beta]$ -systems are known.⁴

The best possible system would be one where α , $\beta = 0$. However, we show that such systems are impossible. Indeed, we find that α and β cannot *both* be less than $\frac{1}{2}$.

Theorem 1. Let P be an $[\alpha, \beta]$ -system. Then $\Theta = \max{\lbrace \alpha, \beta \rbrace} \geq \frac{1}{2}$.

Corollary 2. (a) If $\psi_{\mathcal{P}}(x) = x + O(x^{\alpha})$ for some constant $\alpha < \frac{1}{2}$ (which implies that $N_{\mathcal{P}}(x) \sim \rho x$ for some $\rho > 0$, then for every $\eta \in (\alpha, \frac{1}{2}), N_{\mathcal{P}}(x) - \rho x = \Omega(x^{\eta})$ and $\zeta_{\mathcal{P}}(s)$ *does not have finite order throughout the strip* $\{s \in \mathbb{C} : \eta < \Re s < 1\}.$

⁴ In a recent personal communication, H. Montgomery told me that he believes that the methods employed in [\[4\]](#page-12-0) can be used to find examples of $[\alpha, \beta]$ -systems for any $\alpha, \beta \geq \frac{1}{2}$.

Of course, if we allow *continuous* systems, where $N_{\mathcal{P}}(x)$ and $\psi_{\mathcal{P}}(x)$ may vary continuously, then the existence of such systems is trivial; e.g. take $N_p(x) = \psi_p(x) = x - 1$ for $x \ge 1$, and 0 otherwise; then $\zeta_{\mathcal{P}}(s) = \int_0^\infty x^{-s} dN_{\mathcal{P}}(x) = \frac{1}{s-1}$.

(b) If $N_p(x) = \rho x + O(x^\beta)$ for some constants $\rho > 0$ and $\beta < \frac{1}{2}$, then for every $\eta' \in (\beta, \frac{1}{2}), \ \psi_{\mathcal{P}}(x) - x = \Omega(x^{\eta'})$ and $\zeta_{\mathcal{P}}(s)$ has infinitely many zeros in the strip $\{s \in \mathbb{C} : \overline{\eta'} < \Re s < 1\}.$

3. Proofs

For the proofs we recall, from [\[5\],](#page-12-0) Theorem 2.3 (which is a generalisation of the implication *'Riemann hypothesis implies Lindelöf hypothesis'*) and the remark following it.

Theorem A (*Hilberdink and Lapidus* [5, *Theorem 2.3]*). Let P be a $[\alpha, \beta]$ -system. Then for $\sigma > \Theta = \max\{\alpha, \beta\}$, and uniformly for $\sigma \geq \Theta + \delta$ (any $\delta > 0$),

$$
\phi_{\mathcal{P}}(\sigma + it) = O((\log |t|)^{\frac{1-\sigma}{1-\Theta}+\varepsilon}) \quad \text{and} \quad \zeta_{\mathcal{P}}(\sigma + it) = O(\exp\{(\log |t|)^{\frac{1-\sigma}{1-\Theta}+\varepsilon}\}),
$$

for all $\varepsilon > 0$. In particular, both $\phi_{\mathcal{P}}(s)$ and $\zeta_{\mathcal{P}}(s)$ have zero order for $\Re s > \Theta$.

Remark B. (i) If $\alpha < \beta$ and we already know that $\zeta_{\mathcal{P}}(s)$ is of finite order for $\sigma > \eta$ for some $\eta \in (\alpha, \beta)$, then $\zeta_{\mathcal{P}}(s)$ and $\phi_{\mathcal{P}}(s)$ have zero order in this range.

(ii) If $\beta < \alpha$ and we already know that $\phi_{\mathcal{D}}(s)$ has only finitely many poles for $\sigma > \eta'$ (equivalently, $\zeta_{\mathcal{P}}(s)$ has finitely many zeros here), then $\zeta_{\mathcal{P}}(s)$ and $\phi_{\mathcal{P}}(s)$ have zero order in this range.

Proof of Theorem 1. The result would follow immediately from a theorem of Carlson [\[3, p. 7\]](#page-12-0) concerning general Dirichlet series if we assume that

$$
n' > n + \frac{1}{n^A} \quad \text{for some } A \ge 0,
$$
 (3.1)

where *n* and n' are consecutive g-integers. For Theorem A tells us that the function $f(s)$ defined by

$$
f(s) = \zeta_{\mathcal{P}}(s) - \rho \phi_{\mathcal{P}}(s) = \sum_{n \in \mathcal{N}} \frac{1 - \rho \Lambda_{\mathcal{P}}(n)}{n^s},
$$

which is analytic for $\Re s > \Theta$, would have order 0 in this half-plane. By Carlson's result, if (3.1) holds, a mean-value would exist here and

$$
\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |f(\sigma + it)|^2 dt = \sum_{n \in \mathcal{N}} \frac{(1 - \rho A \mathcal{P}(n))^2}{n^{2\sigma}}.
$$

This is plainly absurd if $\Theta < \frac{1}{2}$, as the final sum diverges for $\sigma \leq \frac{1}{2}$. Hence $\Theta \geq \frac{1}{2}$.

However, we do not want to restrict the size of $n' - n$ by assuming something like (3.1).

Suppose, for a contradiction, that we have $\Theta < \frac{1}{2}$. Let $\zeta_N(s) = \sum_{n \le N} n^{-s}$, where the sum ranges over $n \in \mathcal{N}$ (for clarity, we shall drop the subscript $\mathcal P$ throughout this proof). Consider

$$
\int_0^T |\zeta_N(\sigma + it)|^2 dt = \frac{1}{2} \int_{-T}^T |\zeta_N(\sigma + it)|^2 dt
$$

for fixed $\sigma \in (\Theta, \frac{1}{2})$. We have

$$
\frac{1}{2} \int_{-T}^{T} |\zeta_N(\sigma + it)|^2 dt = \frac{1}{2} \int_{-T}^{T} \sum_{n \le N} \frac{1}{n^{\sigma + it}} \sum_{m \le N} \frac{1}{m^{\sigma - it}} dt = \sum_{m,n \le N} \frac{S_{m,n}(T)}{(mn)^{\sigma}},
$$

where $S_{n,n}(T) = T$ and for $m \neq n$,

$$
S_{m,n}(T) = \frac{\sin(T \log(n/m))}{\log(n/m)}.
$$

Note that $S_{m,n}(T) = S_{n,m}(T)$. Hence

$$
\int_0^T |\zeta_N(\sigma+it)|^2 dt = T \sum_{n \le N} \frac{1}{n^{2\sigma}} + 2 \sum_{n \le N} \frac{1}{n^{\sigma}} \sum_{m < n} \frac{S_{m,n}(T)}{m^{\sigma}},
$$

the the * indicating that the multiplicities must be squared. In any case, we have $\sum_{n=N}^{k} n^{-2\sigma} \ge \sum_{n \le N} n^{-2\sigma} \ge k_1 N^{1-2\sigma}$ for some $k_1 > 0.5$ For $m \le \frac{n}{2}$, we have $\sum_{n \leq N} n^{-2\sigma} \geqslant \sum_{n \leqslant N} n^{-2\sigma} \geqslant k_1 N^{1-2\sigma}$ for some $k_1 > 0.5$ For $m \leqslant \frac{n}{2}$, we have $|S_{m,n}(T)| \leq 1/\log 2$, so that

$$
\left|2\sum_{n\leqslant N}\frac{1}{n^{\sigma}}\sum_{m\leqslant n/2}\frac{S_{m,n}(T)}{m^{\sigma}}\right|\leqslant \frac{2}{\log 2}\sum_{n\leqslant N}\frac{1}{n^{\sigma}}\sum_{m\leqslant n/2}\frac{1}{m^{\sigma}}=O\Big(\sum_{n\leqslant N}n^{1-2\sigma}\Big)=O(N^{2-2\sigma}).
$$

Thus, for some positive constants k_1, k_2 , independent of *T* and *N*,

 \mathbf{I}

$$
\int_0^T |\zeta_N(\sigma + it)|^2 dt \ge k_1 T N^{1 - 2\sigma} + 2 \sum_{n \le N} \frac{1}{n^{\sigma}} \sum_{\frac{n}{2} < m < n} \frac{S_{m,n}(T)}{m^{\sigma}} - k_2 N^{2 - 2\sigma}.\tag{3.2}
$$

⁵ It follows readily from $N_p(x) \sim \rho x$ that $\sum_{n \leq x} n^{\lambda} \sim \frac{\rho}{1 + \lambda} x^{1 + \lambda}$ for fixed $\lambda > -1$.

Now put $T = 2r - 1$ for $r = 1, 2, ..., R$, and sum both sides. Observe that

$$
\sum_{r=1}^{R} \sin\left((2r-1)\log\frac{n}{m}\right) = \frac{\sin^2(R\log n/m)}{\sin(\log n/m)} \ge 0,
$$

since $0 < \log n/m < \log 2$. Thus (3.2) yields

$$
\sum_{r=1}^{R} \int_0^{2r-1} |\zeta_N(\sigma+it)|^2 dt \ge k_1 R^2 N^{1-2\sigma} - k_2 R N^{2-2\sigma} = R N^{1-2\sigma} (k_1 R - k_2 N).
$$

In particular, for $N \leq \frac{k_1}{2k_2}R$,

$$
\sum_{r=1}^{R} \int_{0}^{2r-1} |\zeta_N(\sigma + it)|^2 dt \geq \frac{k_1}{2} R^2 N^{1-2\sigma}.
$$
 (3.3)

Now let $c > 1 - \sigma$ and $N \notin \mathcal{N}$. Then

$$
\frac{1}{2\pi i} \int_{c-iT}^{c+iT} \left(\frac{N}{n}\right)^w \frac{dw}{w} = O\left(\frac{(N/n)^c}{T|\log N/n|}\right) + \begin{cases} 1 & \text{if } n < N \\ 0 & \text{if } n > N \end{cases},
$$

where the implied constant is independent of *n* and *N*. Multiply through by n^{-s} = $n^{-\sigma-it}$, where $|t| < T$, and sum over all $n \in \mathcal{N}$. Thus for $N \notin \mathcal{N}$, we have

$$
\frac{1}{2\pi i} \int_{c-iT}^{c+iT} \frac{\zeta(s+w)N^w}{w} dw = \zeta_N(s) + O\left(\frac{N^c}{T} \sum_{n \in \mathcal{N}} \frac{1}{n^{c+\sigma} |\log N/n|}\right).
$$

For $n \leq \frac{N}{2}$ and $n \geq 2N$, $|\log N/n| \geq \log 2$, so

$$
\zeta_N(s) = \frac{1}{2\pi i} \int_{c-iT}^{c+iT} \frac{\zeta(s+w)N^w}{w} dw + O\left(\frac{N^c}{T} \sum_{n \in \mathcal{N}} \frac{1}{n^{c+\sigma}}\right) \n+ O\left(\frac{N^c}{T} \sum_{\frac{N}{2} < n < 2N} \frac{1}{n^{c+\sigma} |\log N/n|}\right) \n= \frac{1}{2\pi i} \int_{c-iT}^{c+iT} \frac{\zeta(s+w)N^w}{w} dw + O\left(\frac{N^c}{T(c+\sigma-1)}\right) \n+ O\left(\frac{N^{1-\sigma}}{T} \sum_{\frac{N}{2} < n < 2N} \frac{1}{|n-N|}\right),
$$

since $\zeta(x) = O(\frac{1}{x-1})$ and $|\log N/n| = |\log(1 + \frac{n-N}{N})| \asymp \frac{|n-N|}{N}$ for $\frac{N}{2} < n < 2N$. For the integral on the right, we push the contour as far as $\Re w = -\eta$, for some $\eta \in (0, \sigma - \Theta)$, picking up residues at $w = 0$ and $w = 1 - s$ (since $|t| < T$). The contribution along the horizontal line $[-\eta + iT, c + iT]$ is, in modulus, less than

$$
\frac{1}{2\pi} \int_{-\eta}^{c} \frac{N^y |\zeta(\sigma + y + i(t+T))|}{\sqrt{y^2 + T^2}} dy = O(N^c T^{\varepsilon - 1}) \quad \text{for all } \varepsilon > 0,
$$

since $\zeta(s)$ has zero order in this range after Theorem A. Similarly on $[-\eta - iT, c - iT]$. For the integral along $\Re w = -\eta$, we have

$$
\left|\frac{1}{2\pi i}\int_{-\eta-iT}^{-\eta+iT} \frac{\zeta(s+w)N^w}{w} dw\right| \leq \frac{N^{-\eta}}{2\pi} \int_{-T}^{T} \frac{|\zeta(\sigma-\eta+i(t+y))|}{\sqrt{\eta^2+\gamma^2}} dy = O(N^{-\eta}T^{\varepsilon})
$$

for all $\varepsilon > 0$. The residues at $w = 0$ and $w = 1 - s$ are, respectively, $\zeta(s)$ and $\rho N^{1-s}/(1-s) = O(\frac{N^{1-\sigma}}{|t|})$. Putting these observations together and letting $c = 1 - \sigma +$ $\frac{1}{\log N}$ (so that $N^c = eN^{1-\sigma}$), we have

$$
\zeta_N(s) = \zeta(s) + O\left(\frac{N^{1-\sigma}}{|t|}\right) + O(N^{-\eta}T^{\varepsilon}) + O(N^{1-\sigma}T^{\varepsilon-1}) + O\left(\frac{N^{1-\sigma}\log N}{T}\right)
$$

$$
+ O\left(\frac{N^{1-\sigma}}{T} \sum_{\frac{N}{2} < n < 2N} \frac{1}{|N-n|}\right).
$$

Suppose now that $N \to \infty$ in such a way that $(N - \frac{1}{N}, N + \frac{1}{N}) \cap \mathcal{N} = \emptyset$. (This is possible since otherwise $n_{k+1} < n_k + O(\frac{1}{n_k})$ (where n_k is the kth g-integer), which leads to $n_k = O(\sqrt{k})$ —a contradiction.) Then $|N - n| \ge \frac{1}{N}$ for every $n \in \mathcal{N}$, and the last sum is at most $\sum_{n<2N} N = O(N^2)$. Taking *T* to be a sufficiently large power of *N*, say $T = N^5$, we have

$$
\zeta_N(\sigma + it) = \zeta(\sigma + it) + O\left(\frac{N^{1-\sigma}}{|t|}\right) + o(1)
$$

for $|t| < N^5$. But, by Theorem A, $\zeta(\sigma + it) = O(|t|^{\varepsilon})$ for all $\varepsilon > 0$, so that for $N^{1-\sigma} \leqslant |t| < N^5$,

$$
|\zeta_N(\sigma + it)| = O(|t|^{\varepsilon}),\tag{3.4}
$$

as $N \to \infty$ such that $(N - \frac{1}{N}, N + \frac{1}{N}) \cap \mathcal{N} = \emptyset$. We show that this is incompatible with (3.3).

For, in any case, $|\zeta_N(\sigma + it)| \leq \zeta_N(\sigma) = O(N^{1-\sigma})$. Hence

$$
\sum_{r \leq \sqrt{R}} \int_0^{2r-1} |\zeta_N(\sigma + it)|^2 dt = O(RN^{2-2\sigma})
$$

and

$$
\sum_{r \leq R} \int_0^{\sqrt{r}} |\zeta_N(\sigma + it)|^2 dt = O(R^{3/2} N^{2-2\sigma}).
$$

Thus, if *R* is chosen of larger order than N^2 , say $R = N^4$, then (3.3) implies

$$
\sum_{\sqrt{R}\n(3.5)
$$

for some positive constant *c*. But on the left, *t* ranges between $R^{1/4}$ and $2R - 1$; i.e. between N and $2N^4 - 1$. This lies in the range $[N^{1-\sigma}, N^5)$, so that from (3.4), the LHS of (3.5) is

$$
O\bigg(\sum_{\sqrt{R}0,<="">
$$

which contradicts (3.5) . \Box

Remark C. Note that in the proof of Theorem 1, no explicit use was made of the fact that $\zeta_{\mathcal{P}}(s)$ has no zeros for $\sigma > \alpha$ (which follows from (2.1)). This was only implicitly used (in Theorem A) to show that $\zeta_{\mathcal{P}}(s)$ has zero order for $\sigma > \Theta$. In particular, after Remark B(ii), this means that the same proof holds for the following: *for an* $[\alpha, \beta]$ -system with $\beta < \alpha$, if $\zeta_{\mathcal{P}}(s)$ has finitely many zeros for $\sigma > \eta'$ with $\eta' \in (\beta, \alpha)$, *then* $\eta' \geq \frac{1}{2}$.

To prove Corollary 2, we shall first require the following Tauberian result connecting the Dirichlet series $f(s) = \sum_{n \in \mathcal{N}} \frac{a_n}{n^s}$ and the asymptotic behaviour of the sum $A(x) = \sum_{n \leq x} a_n$, for a given non-negative sequence a_n defined on the g-integers. $\sum_{n \leq x} a_n$, for a given non-negative sequence a_n defined on the g-integers.

Proposition 3. Let $\{a_n\}_{n \in \mathbb{N}}$ be a non-negative sequence such that $a_n = O(n^{\varepsilon})$ for every $\varepsilon > 0$. Let $f(s)$ and $A(x)$ be defined as above for $\Re s > 1$ and $x \ge 0$, respectively. Suppose that for some $\theta \in [0, 1)$, $f(s)$ has an analytic continuation to the half-plane $\{s \in \mathbb{C} : \Re s > \theta\}$, except for a simple (non-removable) pole at $s = 1$ with residue a.

Further assume that $|f(\sigma + it)| = O(|t|^{\varepsilon})$ *for all* $\varepsilon > 0$, *uniformly for* $\sigma \geq \theta + \delta$ *for any* $\delta > 0$ *. Then*

$$
A(x) = ax + O(x^{\theta + \varepsilon}) \quad \text{for all } \varepsilon > 0.
$$

Proof. Let $c > 1$, $T, x > 0$ such that $x \notin \mathcal{N}$. Then, for $n \in \mathcal{N}$,

$$
\frac{1}{2\pi i} \int_{c-iT}^{c+iT} \left(\frac{x}{n}\right)^s \frac{ds}{s} = O\left(\frac{(x/n)^c}{T|\log x/n|}\right) + \begin{cases} 1 & \text{if } n < x, \\ 0 & \text{if } n > x, \end{cases}
$$

where the implied constant is independent of n and x . Multiply through by a_n and sum over all $n \in \mathcal{N}$. Thus for $x \notin \mathcal{N}$, we have

$$
\frac{1}{2\pi i} \int_{c-iT}^{c+iT} \frac{f(s)x^s}{s} ds = A(x) + O\left(\frac{x^c}{T} \sum_{n \in \mathcal{N}} \frac{a_n}{n^c |\log x/n|}\right).
$$

For $n \leq \frac{x}{2}$ and $n \geq 2x$, $|\log x/n| \geq \log 2$, so

$$
A(x) = \frac{1}{2\pi i} \int_{c-iT}^{c+iT} \frac{f(s)x^s}{s} ds + O\left(\frac{x^c}{T} \sum_{n \in \mathcal{N}} \frac{a_n}{n^c}\right) + O\left(\frac{x^c}{T} \sum_{\frac{x}{2} < n < 2x} \frac{a_n}{n^c |\log x/n|}\right)
$$
\n
$$
= \frac{1}{2\pi i} \int_{c-iT}^{c+iT} \frac{f(s)x^s}{s} ds + O\left(\frac{x^c}{T(c-1)}\right) + O\left(\frac{x^{1+\varepsilon}}{T} \sum_{\frac{x}{2} < n < 2x} \frac{1}{|n-x|}\right), \tag{3.6}
$$

since $f(c) = O(\frac{1}{c-1})$ and $|\log x/n| = |\log(1 + \frac{n-x}{x})| \asymp \frac{|n-x|}{x}$ for $\frac{x}{2} < n < 2x$.

Now consider the integral on the right-hand side of (3.6). We can push the contour past the pole at $s = 1$ to the line $\Re s = \sigma$ for any $\sigma > \theta$. The residue at 1 is *ax*. Hence

$$
\frac{1}{2\pi i} \int_{c-iT}^{c+iT} \frac{f(s)x^s}{s} ds = ax + \frac{1}{2\pi i} \left(\int_{c-iT}^{\sigma-iT} + \int_{\sigma-iT}^{\sigma+iT} + \int_{\sigma+iT}^{c+iT} \right) \frac{f(s)x^s}{s} ds.
$$

We estimate these integrals in turn, using $f(s) = O(|t|^{\epsilon})$. We have

$$
\left|\frac{1}{2\pi i}\int_{\sigma+iT}^{c+iT} \frac{f(s)x^s}{s} ds\right| \leq \frac{x^c}{2\pi T} \int_{\sigma}^{c} |f(y+iT)| dy = O(x^c T^{-1+\varepsilon})
$$

and similarly for $\int_{c-iT}^{\sigma-iT}$, while

$$
\left|\frac{1}{2\pi i}\int_{\sigma-iT}^{\sigma+iT}\frac{f(s)x^s}{s}\,ds\right|\leq \frac{x^\sigma}{2\pi}\int_{-T}^T\frac{|f(\sigma+it)|}{\sqrt{\sigma^2+t^2}}\,dt=O(x^\sigma T^\varepsilon).
$$

Now choose $c = 1 + \frac{1}{\log x}$. Then (3.6) gives

$$
A(x) = ax + O(xT^{-1+\varepsilon}) + O(x^{\sigma}T^{\varepsilon}) + O\left(\frac{x^{1+\varepsilon}}{T}\right) + O\left(\frac{x^{1+\varepsilon}}{T} \sum_{\frac{x}{2} < n < 2x} \frac{1}{|n-x|}\right) \tag{3.7}
$$

for $x \notin \mathcal{N}$ and every $\varepsilon > 0$. We need to bound the sum on the right-hand side but this is difficult in general as x can be arbitrarily close to a g-integer. So let us suppose that *x* is such that there are no g-integers *n* with $|n-x| < \frac{1}{x^2}$; i.e. $(x - \frac{1}{x^2}, x + \frac{1}{x^2}) \cap \mathcal{N} = \emptyset$. Then

$$
\sum_{\frac{x}{2} < n < 2x} \frac{1}{|n-x|} \leq x^2 \sum_{\frac{x}{2} < n < 2x} 1 \leq x^2 N(2x) = O(x^3).
$$

Taking $T = x^4$, (3.7) gives $A(x) = ax + O(x^{\sigma+\varepsilon})$ for all $\varepsilon > 0$. This holds for all $\sigma > \theta$ so

$$
A(x) = ax + O(x^{\theta + \varepsilon}),
$$

whenever $x \to \infty$ in such a way that $(x - \frac{1}{x^2}, x + \frac{1}{x^2}) \cap \mathcal{N} = \emptyset$.

Now we show that this is sufficient to prove the theorem. More precisely, we show the following: *for all x sufficiently large for which* $(x - \frac{1}{x^2}, x + \frac{1}{x^2})$ ∩ $\mathcal{N} \neq \emptyset$, ∃ x_1 ∈ (x – 3, x) *and* x_2 ∈ (x, x + 3) *such that*

$$
\left(x_1 - \frac{1}{x_1^2}, x_1 + \frac{1}{x_1^2}\right) \cap \mathcal{N} = \emptyset \quad \text{and} \quad \left(x_2 - \frac{1}{x_2^2}, x_2 + \frac{1}{x_2^2}\right) \cap \mathcal{N} = \emptyset. \tag{3.8}
$$

Then the result will follow since $x = x_r + O(1)$ and $A(x_r) = ax_r + O(x_r^{\theta+\varepsilon})$ (for $r = 1, 2$, so that

$$
A(x) \leqslant A(x_2) = ax_2 + O(x_2^{\theta + \varepsilon}) = ax + O(x^{\theta + \varepsilon})
$$

and

$$
A(x) \geqslant A(x_1) = ax_1 + O(x_1^{\theta + \varepsilon}) = ax + O(x^{\theta + \varepsilon}).
$$

It remains to prove (3.8) .

Suppose, for a contradiction, that there is no such x_2 . Let $y_n = \sqrt[3]{x^3 + 9n}$, for $n \in \mathbb{N}$. Thus each interval $(y_n - \frac{1}{y_n^2}, y_n + \frac{1}{y_n^2})$ contains an element of N whenever $y_n < x + 3$; i.e. for $n < x^2 + 3x + 3$. It is elementary to show that

$$
y_n + \frac{1}{y_n^2} < y_{n+1} - \frac{1}{y_{n+1}^2},
$$

so that these intervals are non-overlapping. This means that $N(x+3) - N(x) \ge x^2$. But this is false for all *x* sufficiently large, as $N(x) = O(x)$.

The existence of x_1 is shown in a similar way using the sequence $z_n = \sqrt[3]{x^3 - 9n}$, leading to $N(x) - N(x - 3) \ge x^2$. \Box

Proof of Corollary 2. (a) The assumptions imply that $N(x) \sim \rho x$ for some $\rho > 0$. From Theorem 1, it is immediate that $N_p(x) - \rho x = \Omega(x^{\eta})$ for every $\eta < \frac{1}{2}$.

Now suppose $\zeta_{\mathcal{P}}(s)$ has finite order in some strip $\{s \in \mathbb{C} : \eta < \Re s < 1\}$ with $\eta \in (\alpha, \frac{1}{2})$. Then N is an $[\alpha', \beta']$ -system for some α', β' with $\alpha' \le \alpha$. By Remark B(i), $\zeta_{\mathcal{P}}(s)$ has zero order in the strip where $\sigma > \eta$. Now apply Proposition 3 with $a_n = 1$, so that $A(x) = N_{\mathcal{P}}(x)$ and $f(s) = \zeta_{\mathcal{P}}(s)$. Then $f(s)$ has a simple pole at $s = 1$ with residue ρ , and satisfies the conditions of Proposition 3 with $\theta = \eta$. Hence, $N_P(x) = \rho x + O(x^{\eta+\varepsilon})$ for all $\varepsilon > 0$. This contradicts Theorem 1 since $\eta < \frac{1}{2}$.

(b) It follows immediately from Theorem 1 that $\psi_{\mathcal{P}}(x) - x = \Omega(x^{\eta'})$ for every $\eta' < \frac{1}{2}$.

Now suppose $\zeta_{\mathcal{P}}(s)$ has only finitely many zeros in some strip $\{s \in \mathbb{C} : \eta' < \Re s < 1\}$ with $\eta' \in (\beta, \frac{1}{2})$. Then N is an $[\alpha'', \beta'']$ -system for some α'', β'' with $\beta'' \leq \beta$. By Remark B(ii), $\zeta_{\mathcal{P}}(s)$ has zero order in the strip where $\sigma > \eta'$. But then by Remark C, $\eta' \ge \frac{1}{2}$ —a contradiction. \square

4. Final discussion

After Theorem 1, we see that the best possible systems are $[\frac{1}{2}, 0]$ and $[0, \frac{1}{2}]$. The existence of the former is conjectured for $\mathbb N$, but there is no apparent candidate for the latter system. We can certainly find a system for which $\alpha = 0$, that is,

$$
\psi_{\mathcal{P}}(x) = x + O(x^{\varepsilon}) \quad \text{for all } \varepsilon > 0
$$

by choosing p_n appropriately. For example, let $p_n = R^{-1}(n)$, where R is the strictly increasing function on $[1, \infty)$ defined by

$$
R(x) = \sum_{k=1}^{\infty} \frac{(\log x)^k}{k! k \zeta(k+1)},
$$

where $\zeta(\cdot)$ is the classical Riemann zeta-function. For then, $\pi_{\mathcal{D}}(x)\leq R(x) < \pi_{\mathcal{D}}(x)+1$ and hence

$$
\Pi_{\mathcal{P}}(x) \stackrel{\text{def}}{=} \sum_{n=1}^{\infty} \frac{\pi_{\mathcal{P}}(x^{1/n})}{n} = \sum_{1 \le n \le A \log x} \frac{R(x^{1/n})}{n} + O(\log \log x) \quad \text{(for some } A > 0)
$$
\n
$$
= \sum_{1 \le n \le A \log x} \frac{1}{n} \sum_{k=1}^{\infty} \frac{(\log x^{1/n})^k}{k! k \zeta(k+1)} + O(\log \log x)
$$
\n
$$
= \sum_{k=1}^{\infty} \frac{(\log x)^k}{k! k \zeta(k+1)} \sum_{1 \le n \le A \log x} \frac{1}{n^{k+1}} + O(\log \log x)
$$
\n
$$
= \sum_{k=1}^{\infty} \frac{(\log x)^k}{k! k \zeta(k+1)} \left(\zeta(k+1) + O\left(\frac{1}{k(\log x)^k}\right) \right) + O(\log \log x)
$$
\n
$$
= \text{li}(x) + O(\log \log x).
$$

By integration, one obtains

$$
\psi_{\mathcal{P}}(x) = \int_0^x \log t \, d\pi_{\mathcal{P}}(t) = x + O(\log x \log \log x).
$$

The question is now whether the corresponding counting function $N_{\mathcal{P}}(x)$ behaves according to (2.2). We know that the error $|Np(x) - px|$ is $O(xe^{-c\sqrt{\log x \log \log x}})$ for some $c > 0$, and after Theorem 1, it is $\Omega(x^{\frac{1}{2}-\delta})$ for every $\delta > 0$.

References

- [1] P.T. Bateman, H.G. Diamond, Asymptotic distribution of Beurling's generalised prime numbers in: W.J. le Veque (Ed.), Studies in Number Theory, vol. 6, Prentice-Hall, Englewood Cliffs, NJ, 1969, pp. 152–212.
- [2] A. Beurling, Analyse de la loi asymptotique de la distribution des nombres premiers généralisés, I, Acta Math. 68 (1937) 255–291.
- [3] F. Carlson, Contributions á la théorie des séries de Dirichlet, II, Ark. Mat. Astronom. Fys. 19A (25) (1925) 1–17.
- [4] H. Diamond, H. Montgomery, U. Vorhauer, Beurling primes with large oscillation, to appear.
- [5] T.W. Hilberdink, M.L. Lapidus, Beurling zeta functions, generalised primes, and fractal membranes, preprint 2003.
- [6] M.N. Huxley, Exponential sums and lattice points, Proc. London Math. Soc. 60 (1990) 471–475.
- [7] E. Landau, Neuer beweis des primzahlsatzes und beweis des primidealsatzes, Math. Ann. 56 (1903) 645–670.