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Abstract

In this paper, we study generalised prime systems for which both the prime and integer
counting functions are asymptotically well-behaved, in the sense that they are approximately
li(x) and px, respectively (where is a positive constant), with error terms of orderx’1)
and 0(x"2) for somefy, 02 <1. We show that it is impossible to have both and 0> less
than %
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

A generalised prime systeifor g-prime systeinP is a sequence of positive reals
P1, P2, p3, - .. satisfying

l<pis<pe<--<pa<-

and for which p, — oo asn — oo. From these can be formed the systevh of
generalised integersr Beurling integers that is, the numbers of the form

aip az
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wherek € N andaz, ..., a; € No.1 This system generalises the notion of prime num-
bers and the natural humbers obtained from them. Such systems were first introduced
by Beurling [2] and have been studied by many authors since then (see in particular

[1]).
Much of the theory concerns connecting the asymptotic behaviour of the g-prime
and g-integer counting functions;p(x) and Np(x), defined, respectively, By

mp(x)= Y 1 and Np(x)= » 1

PeP,p<x neN n<x

The methods invariably involve the associated (Beurling) zeta function, defined by

1 1
{p(s) = 1_[ -, = pre
peP neN

It is often more useful to connect the functiogls>(x) and Np(x), whereyp(x) is
the function

Yp)= Y. logp= > Ap,

pk<x,peP,keN n<x,neN

where Ap denotes the (generalised) von Mangoldt function, definedipyn) = log p
if n = p™ for somep € P andm € N, and Ap(n) = 0 otherwise. This is because
these functions are directly related @ (s) via

CP(S) :S/OO de and . CP(S) :wa lﬁp(x)
! 1

xs+l CP(S) s+1

We shall denote—g—% by ¢p(s). In this paper, we shall be concerned with systems

for which bothyp(x) and Np(x) are ‘well-behaved’, in the sense that
Ypx) =x+ 0" and Npx) =px+ 0(x%), (1.1)

hold simultaneously, for some;, 62 < 1 andp > 0. Note that the former is equivalent
to

np(x) = li(x) + o™y for some®; < 1.

1Here and henceforthlN = {1,2,3,...} and Ng = N U {0}.
2We write > pep to mean a sum over all the g-primes, counting multiplicities. Similarly o5 /-
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For example, for the rational primes whéi = N, assuming the Riemann hypothesis,
these asymptotic relations are true with= 0 and anyf; > %

The relations (1.1) are equivalent to knowing that(s) has an analytic continuation
to some vertical strip to the left dfis = 1 except for a simple pole at= 1 (with
residue p), is zero-freein this strip, and hadinite order® here (se€[5]). Our main
result in this paper is to show that this strip cannot have width greater %han

particular, this means that it is impossible for bdthand 0, to be less thar%.

2. Main results
2.1. [a, f]-systems

For 0<«a, f < 1, we define ana, f]-systemto be a generalised prime-system for
which

Ypx) = x + 0™ ), (2.1)
Np(x) = px + 0(xP*%)  (for somep > 0) (2.2)

hold for all ¢ > 0, but for noe < 0.
It is clear thata, >0 is necessary, sinc&(x) — px = Q(1) (for every p) and
Y(x) —x = Q(log x) in any case. Note that (2.2) implies that

Yp(x) = x + O(xe V9Y),

for somec > 0 (see[7]), and this is best possible in the sense that there exist systems
for which (2.2) holds, butyp(x) —x = Q(xe“v'°9%) (see[4]). In the other direction,
(2.1) implies

N’P(x) :px+ 0(xe—c~/ 0g x log OQX)

for somec > 0 (see[5]). It is not clear if this is best possible.
If P is the set of rational primes, so thaf = N, then (2.2) holds with3 = 0 (and
p = 1) and if the Riemann hypothesis is true, (2.1) holdsdos % This would then

demonstrate the existence o[% 0]-system. Further examples arise if we are prepared
to assume other conjectures, such as the generalised Riemann hypothesis. For example,

3f(s) has finite order in the strip wherdis € [a,b] if f(o+it) = O(|t|*) as |f| - oo for some
constantA, uniformly for ¢ € [a, b]. If there is no suchA, we say thatf is of infinite order in this strip.
We define, as usual, therder ;i /(o) to be the infimum of all real numbers such thatf (s +it) =

O(|1|7). It is well-known that, as a function of, uslo) is non-negative, decreasing, and convex.
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for the Gaussian integers of the field(i), the Dedekind zeta-function is given by

n)

1 1 \2 1enr
0= e TN Tl) - 12
wherep and g run over the rational primes 1(mod4) and 3 (mod 4), respectively, and
r(n) is the number of ways of writing as a? + b? with a, b € Z. The corresponding
g-prime systenfP therefore consists of 2, the rational primgs= 1(mod 4 occuring
with multiplicity two, and the squares of the primes of the form 3 (mod4). Thus

mp(x) = 1+ 21 4(x) + 3.4(V/x),

where ;. ,, (x) is the number of primes less than or equaktof the formk (modm).
On the generalised Riemann hypothesis, one has

wp(x) = lix) + O(x2+%)  for all & > 0.

On the other hand, it is known that (sf&)

Np(x) = % Z r(n) = —x + 0(x73)

n<x

and it is conjectured that the exponent in the error term is actL%inys for all
¢ > 0. Hence, assuming these conjectuf@ss an example of a%, %]—system. Further
examples of sucr[l%, pl-systems (withf < %) based on Dedekind zeta functions, can
be conjectured to exist.
However, at present it seems that no actual examplés, ¢f-systems are knowf.
The best possible system would be one wherg = 0. However, we show that such
systems are impossible. Indeed, we find thand f cannotboth be less thar%.

Theorem 1. Let P be an[a, ff]-system. The® = max{a, f} > %

Corollary 2. (a) If yp(x) =x + O(x*) for some constant < % (which implies that
Np(x) ~ px for somep > 0), then for everyy € (a, %), Np(x) — px = Q) and
{p(s) does not have finite order throughout the stfipe C: n < Ns < 1}.

4In a recent personal communication, H. Montgomery told me that he believes that the methods
employed in[4] can be used to find examples pf, ff]-systems for anw,ﬁ}%.

Of course, if we allowcontinuoussystems, whereVp(x) and yp(x) may vary continuously, then
the existence of such systems is trivial, e.g. takg (x) = Yp(x) =x —1 for x >1, and O otherwise;
then {p(s) = [g° xS dNp(x) = ;=1



336 T.W. Hilberdink/Journal of Number Theory 112 (2005) 332-344

(b) If Np(x) = px + O(xF) for some constantg > 0 and 8 < 3, then for every
n € (P, %), Yp(x) —x = Q") and {p(s) has infinitely many zeros in the strip
{seC:y <Ns < 1}.

3. Proofs

For the proofs we recall, fronf5], Theorem 2.3 (which is a generalisation of the
implication ‘Riemann hypothesis implies Lindel6f hypothésasid the remark following
it.

Theorem A (Hilberdink and Lapidug5, Theorem 2.3). Let P be a[«, f]-system. Then
for ¢ > ©® = max{«, f}, and uniformly fore>© + 6 (any é > 0),

$p(o+i) = 0((logli)T6+) and (p(o+in) = O(expidogli)T6+%)),
for all ¢ > 0. In particular, both ¢ (s) and {p(s) have zero order fofis > ©.

Remark B. (i) If « <  and we already know thatp(s) is of finite order foreg >
for somen € (o, ), then{p(s) and ¢ (s) have zero order in this range.

(i) If B < o and we already know thap(s) has only finitely many poles for
o > 1 (equivalently,{p(s) has finitely many zeros here), thém(s) and ¢p(s) have
zero order in this range.

Proof of Theorem 1. The result would follow immediately from a theorem of Carlson
[3, p. 7] concerning general Dirichlet series if we assume that

1
n'>n+— for someA=>0, (3.1)
n

wheren and »’ are consecutive g-integers. For Theorem A tells us that the function
f(s) defined by

1—p4
F6) = tps) — pihpts) = 3 T LZP,

neN

which is analytic forfis > @, would have order O in this half-plane. By Carlson’s
result, if (3.1) holds, a mean-value would exist here and

T . 2
im = [ 1o+ inpar =y ETPAPOT
T

T—o00 2T J_ aN n

This is plainly absurd if® < 1, as the final sum diverges far< 3. Hence®> 1.
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However, we do not want to restrict the size i8f— n by assuming something like
(3.1).

Suppose, for a contradiction, that we hafe< 3. Let {y(s) = Y oa<nn’, where
the sum ranges over € A/ (for clarity, we shall drop the subscri® throughout this
proof). Consider

T 1 T
f |y (o +it))2dt = Ef |Cy (o +it)|?dr
0 -T

for fixed ¢ € (O, 3). We have

1 T N 1 1T 1 1 Sm,n(T)
EKT|CN(a+zz)| dt=§/Tn;V prer > i = > v

m<N m,n<N
where S, ,(T) =T and form # n,

sin(7T log(n/m))

S T) = =g/ m)

Note thatsS,, ,(T) = S,..(T). Hence

’ N mn(T)
/O (o +inPde = Z 42 ZHGZ :

n<N n<N m<n
the % indicating that the multiplicites must be squared. In any case, we have

Yonenn =Y, yn 2 2kN2 for some ky > 0.° For m<%, we have
|Sm.n(T)|<1/log 2, so that

mn(T) 2 1 1 o\ o aa
22 3 gTZZn—J = = (anz)_O(sz).

n<N m<n/2 n<N m<n/2 n<N

Thus, for some positive constants, k2, independent off and N,

T
mn T -
/ IEy(o+in)|>di =kiT N 2"+2Z > ( ) —koNZ%7. (3.2
0

n<N §<m<n

S1t follows readily from Np(x) ~ px that 3, ., n* ~ ¢fx1+ for fixed 4 > —1.
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Now put7 =2r —1 forr =1,2,..., R, and sum both sides. Observe that

R .
ZSin<(2r —1)log ﬁ) - SIM(R log n/m) >0
m

o sinflogn/m) ~

since O< log n/m < log 2. Thus (3.2) yields
R 2r—1
Z / Iy (o +it)|>di >kiR2NY™2% — kpRN?>727 = RNY"2° (k1R — koN).
0
r=1

In particular, for N < zk—,jzR,

R p2r-1 ky
Z/O |CN(J+it)|2dt>ER2N1_26- (3.3)
r=1

Now letc > 1—0¢ and N ¢ /. Then

1 c+iT(N)wd_w:0( (N/n)¢ ) {1 ifn<N

2ni Joir \n/ w T|log N/n| 0 ifn>N"

where the implied constant is independentrofind N. Multiply through by n™* =
n~ "' where|t| < T, and sum over alk € . Thus forN ¢ A/, we have

1 [HT (s +w)NY N¢ 1
— T dw= o= ———— ).
2ni Jo iy w w=Cn)+ ( T ZNnc+a||og N/n|>

ne

Forn<% andn>2N, |logN/n|> log 2, so

c+iT w c
CN(S)_i./ {(s + w)N a’w—i—O(N—Z 1)

2ni Jo_ir w T nENnC+‘7
N¢ 1
ol =— - -
+o(7 2 weiog w7al)
5 <n<2N
1 c+iT C(S+U))Nw N¢
= — —d ol———
2mi /HT w W (T(c+o-—1)>

N1 1
0 9
" ( T |n—N|>

%<n<2N
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since {(x) = O(:17) and |log N/n| = |log(1 + “5YV)| = 2N for & < n < 2N,
For the integral on the right, we push the contour as fafas = —n, for some

n € (0,0 — @), picking up residues atv = 0 andw = 1 — s (since|t| < T). The
contribution along the horizontal ling-n +iT,c +iT] is, in modulus, less than

1 [ N (o+y+i@t+T))l

), VY2 + T2

dy = O(N‘T* 1) for all ¢ > 0,

since{(s) has zero order in this range after Theorem A. Similarlyjem —iT,c—iT].
For the integral alongiw = —5, we have

dy = O(N~T?)

1 /"7+iT {(s +w)NY
—dw

2mi

‘<N_'7/T |0 —n+i(t+y))l
N—iT w Com oy V2 + 52

for all ¢ > 0. The residues atv = 0 andw = 1 — s are, respectively/(s) and
1—

pNI=5/(1—5) = O(NTG). Putting these observations together and lettirg 1 — ¢ +

]ogl—N (so thatN¢ = eN1~%), we have

1-0

N%log N>

) £ ON"T?) + O(NY T+ 1) ¢ 0( -

N
Ints) = L)+ 0

It

Nl-c 1
o .
" < T |N—n|)
7<n<2N

Suppose now thalV — oo in such a way thai{N — % N + %) NN = @. (This is
possible since otherwise; 1 < ng + 0(%) (where ny is the kth g-integer), which
leads ton; = O(v/k)—a contradiction.) ThenN — n| 2% for everyn € N, and the

last sum is at mosp_,_,y N = O(N?). Taking T to be a sufficiently large power of
N, say7 = N°, we have

1-0

|t]

(n(o+it) = (o +if) + 0<N ) +o()

for |r] < N°. But, by Theorem A,l(c + it) = O(|t|¥) for all ¢ > 0, so that for
N=7<Jt| < N3,

[y (o +in)] = 0(t[), (3.4)
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as N — oo such that(N — % N + %) NN = @. We show that this is incompatible
with (3.3).
For, in any case|{y(c + i1)| <{y(c) = O(N¥%). Hence

2r—1
> / | y(o+it)2di = O(RN*29)
r<f

and

Zf (o +it)|?dt = O(R¥2N?~%),

r<R

Thus, if R is chosen of larger order thaN?, say R = N4, then (3.3) implies

2r—1
> |(y(o+it)|>di > cR?NY%° (3.5)
VR<r<R "

for some positive constartt But on the left,t ranges betwee®/4 and 2R — 1; i.e.
betweenN and 2v* — 1. This lies in the rangg N1~?, N°), so that from (3.4), the
LHS of (3.5) is

2r—1
ol > tgdt> = O(R%*%) for all ¢ > 0,
\/ﬁ<r<R vr

which contradicts (3.5). O

Remark C. Note that in the proof of Theorem 1, no explicit use was made of the fact
that {»(s) has no zeros for > o (which follows from (2.1)). This was only implicitly
used (in Theorem A) to show thdip(s) has zero order folw > ©. In particular,
after Remark B(ii), this means that the same proof holds for the followfog:an

[, fl-system withp < a, if {p(s) has finitely many zeros far > 5" with ' € (f, o),
thenn'> 3.

To prove Corollary 2, we shall first require the following Tauberian result connecting
the Dirichlet seriesf(s) = ", oz 2 -+ and the asymptotic behaviour of the suhix) =
> < an, fOr a given non-negative sequenag defined on the g-integers.

Proposition 3. Let{a,},cn be a non-negative sequence such that= O (n?) for every
¢ > 0. Let f(s) and A(x) be defined as above foiks > 1 and x >0, respectively.
Suppose that for somé < [0, 1), f(s) has an analytic continuation to the half-plane
{s € C: Ms > 0}, except for a simplénon-removablg pole ats = 1 with residue a.
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Further assume thatf (o + it)| = O(Jt|®) for all ¢ > 0, uniformly for >0 + ¢ for
any o0 > 0. Then

A(x) = ax + 0% for all &> 0.
Proof. Letc > 1, T,x > 0 such thatx ¢ N. Then, forn e N/,

1 C‘“T( )Sds_o( (x/n)¢ ) {1 if n < x,
n

2ni Je—ir s T|log x/n| 0 if n>x,

where the implied constant is independentnadnd x. Multiply through bya, and sum
over alln € N. Thus forx ¢ A/, we have

1 c+iT f(s)x c an
%/H-T ds = Al )+0<T nanCllogx/nl)'

Forn<3 andn>2x, |log x/n|> log 2, so

1 [T f(s)xS x€ an x¢ an
A) = — as+o(S" )10 S —
) 2mi s st (T ch>+ (T XZ nC||ng/n|>
§<n<2x

c—iT neN

c+i s ¢ e
zi +Tf(s)x ds—|-0< X )+O<x+ Z 1 ), (36)

21 Jo_iT s T(c—1) T = n — x|

5<n

since f(c) = O(;;) and|log x/n| = [log(1 + "=%)| < "= for £ <n < 2x.
Now con3|der the integral on the right-hand S|de of (3 6). We can push the contour
past the pole at = 1 to the linefs = ¢ for any ¢ > 0. The residue at 1 iax. Hence

c+iT o+iT c+iT
i. f(S)xd _ax+_(f /+ f+ )f(S)x
2ni Jo_ir s o+iT

We estimate these integrals in turn, usifi¢s) = O(|7|°). We have

i/C_HT f(s)x“

2mi

C C
ds‘ <= / |f(y+iT)|dy = 0T~
T S 2nT Jo

and similarly for (7", while

o+iT K T
if f(?x ds ’<_/ |f(0+”)|d _O(X(TTF)

2ni Jo—iT 2n a2 +12
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Now choosec = 1+ 7. Then (3.6) gives

1+e

xl+8 1
. )+0< — > |n_x|> 3.7)

X

A(x) = ax + 0T~ + O(x°T%) + 0(

for x ¢ N and everye > 0. We need to bound the sum on the right-hand side but this
is difficult in general ax can be arbitrarily close to a g-integer. So let us suppose that
x is such that there are no g-integersvith |n — x| < )%; ie. (x—xiz,er%)m\/' = .
Then

1
Z |n_x|<x2 Z 1<x2N©2x) = 0(x9).

5<n<2x 5<n<2x

Taking T = x*, (3.7) givesA(x) = ax + O(x°*%) for all ¢ > 0. This holds for all
o> 0 so

A(x) = ax + O (x"%),

wheneverr — oo in such a way thatx — %, x + %) NN =0.

Now we show that this is sufficient to prove the theorem. More precisely, we show
the following: for all x sufficiently large for which(x — ;12,x + ;12) NN # @, 3
x1 € (x —3,x) and x2 € (x, x + 3) such that

1 1 1 1
<x1——2,x1+—2>ﬂ/\/=® and (xz——z,xz+—2)ﬂ/\/=®. (3.8)
) x3 *2 *2

Then the result will follow sincex = x, + O(1) and A(x;) = ax, + O(xf“) (for
r=1,2), so that

A(x)<Axz) = axz + 0(xy ™) = ax + 0(x"*9)
and
AX)=A(x1) = ax1 + 0% = ax + 0 ("9,

It remains to prove (3.8).
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Suppose, for a contradiction, that there is no sugh_et y, = v/x3 + 9, forn € N.
Thus each intervaly, — 5, y, + —) contains an element of” whenevery, < x + 3;
yn yn

i.e. forn < x2+3x + 3. It is elementary to show that

1 1
Ynt 5 <Y+l — 5
Yn Yn+1

so that these intervals are non-overlapping. This meansithat- 3) — N (x) >x2. But
this is false for allx sufficiently large, asV(x) = O (x).

The existence ofc; is shown in a similar way using the sequenge= v/x2 — 9n,
leading toN(x) — N(x —3)>x2. [

Proof of Corollary 2. (a) The assumptions imply tha¥(x) ~ px for somep > O.
From Theorem 1, it is immediate thatp(x) — px = Q(x") for everyn < %
Now suppose{p(s) has finite order in some strifgs € C : 1 < Ns < 1} with
n € (o, 3). Then NV is an [o/, f']-system for somex, f' with ' <o. By Remark
B(i), {p(s) has zero order in the strip wheee> 7. Now apply Proposition 3 with
a, =1, so thatA(x) = Np(x) and f(s) = {p(s). Then f(s) has a simple pole at
s = 1 with residuep, and satisfies the conditions of Proposition 3 with= . Hence,

Np(x) = px + O(x"%) for all ¢ > 0. This contradicts Theorem 1 singe< %

(b)llt follows immediately from Theorem 1 thagp(x) — x = Q" for every
< 5.

N0\2/v suppos€p(s) has only finitely many zeros in some stfipe C : ' < s < 1}
with " € (B, 3). Then\ is an[o”, B"]-system for some”, B with p” < . By Remark
B(ii), {p(s) has zero order in the strip whese> 1. But then by Remark Gy > %—a
contradiction. [

4. Final discussion

After Theorem 1, we see that the best possible systems{%au@ and [0, %]. The
existence of the former is conjectured f; but there is no apparent candidate for the
latter system. We can certainly find a system for whick: 0, that is,

Yp(x) =x+ 0% foralle>0

by choosingp, appropriately. For example, lgi, = R~1(n), whereR is the strictly
increasing function o1, oco) defined by

9]

_ (log x)¥
R = kZ:l OkCk + 1)



344 T.W. Hilberdink/Journal of Number Theory 112 (2005) 332-344

where((-) is the classical Riemann zeta-function. For thep(x) < R(x) < np(x)+1
and hence

1/n R 1/n
Ip(x) = wf Z ™) = Z R + O(log log x) (for someA > 0)
n=1 n 1<n<Alog x n

> Z (log x*7)" + O(log log x)
= X
1<n<Alogx k= 1k‘kC(k+1)

=, (log x)* 1
=y ==Y + 0(log log x)
; Kk (k + 1) 2. g

1<n<Alog x

S k
_ Z(Iog—x)<é’(k+l)+0(
k

> G+ D )) + O(log log x)

k(A log x)*
= li(x) + O(og log x).

By integration, one obtains

Ypx) = / log rdIlp(t) = x + O(log x log log x).
0

The question is now whether the corresponding counting funaiigiix) behaves ac-
cording to (2.2). We know that the erroNp(x) — px| is O(xe V09 x109709x) for
somec > 0, and after Theorem 1, it iQ(x%*(;) for every o > 0.
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