
Physics Letters B 763 (2016) 337–340

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Matter and gravitons in the gravitational collapse

Roberto Casadio a,b,∗, Andrea Giugno c, Andrea Giusti a,b

a Dipartimento di Fisica e Astronomia, Alma Mater Universià di Bologna, via Irnerio 46, 40126 Bologna, Italy
b I.N.F.N., Sezione di Bologna, IS FLAG, viale B. Pichat 6/2, I-40127 Bologna, Italy
c Arnold Sommerfeld Center, Ludwig-Maximilians-Universität, Theresienstraße 37, 80333 München, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 August 2016
Accepted 24 October 2016
Available online 27 October 2016
Editor: A. Ringwald

Keywords:
Gravitational collapse
Black holes
No singularity

We consider the effects of gravitons in the collapse of baryonic matter that forms a black hole. We first 
note that the effective number of (soft off-shell) gravitons that account for the (negative) Newtonian 
potential energy generated by the baryons is conserved and always in agreement with Bekenstein’s area 
law of black holes. Moreover, their (positive) interaction energy reproduces the expected post-Newtonian 
correction and becomes of the order of the total ADM mass of the system when the size of the collapsing 
object approaches its gravitational radius. This result supports a scenario in which the gravitational 
collapse of regular baryonic matter produces a corpuscular black hole without central singularity, in 
which both gravitons and baryons are marginally bound and form a Bose–Einstein condensate at the 
critical point. The Hawking emission of baryons and gravitons is then described by the quantum depletion 
of the condensate and we show the two energy fluxes are comparable, albeit negligibly small on 
astrophysical scales.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

One of the main issues in gravity theory is to understand the 
formation of black holes from the gravitational collapse of com-
pact objects. It is in fact a theorem in general relativity [1] that, 
provided the collapsing (massive) matter satisfies the weak en-
ergy condition and a trapping surface appears at some point, all 
the matter will eventually shrink into a space-time singularity (of 
infinite density). A simple and explicit example of this behaviour 
was illustrated long ago by Oppenheimer and Snyder [2]. How-
ever, such a singular final state of matter is clearly incompatible 
with the principles of quantum physics,1 which immediately calls 
for a search of alternative end-points of the collapse within a fully 
quantum description of nature.

We consider here the gravitational collapse of a spherically 
symmetric object assuming the validity of the Hamiltonian con-
straint of general relativity, that is, of total energy conservation in 
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Newtonian terms.2 The only quantum gravity ingredient we shall 
employ is the description of the gravitational field in terms of 
“gravitons”. In particular, we will include the effect of (negative 
energy) gravitons with a wavelength of the order of the size of 
the collapsing body in the total energy balance. These soft gravi-
tons indeed appear in the quantum representation of the New-
tonian potential by means of a coherent state coupled to the 
matter source [3,4], and one might speculate [5] that they could 
be associated with the recently advocated breaking of the BMS 
symmetry [6] precisely induced by the presence of localised mat-
ter. Our main result is that these (soft off-shell) gravitons satisfy 
Bekenstein’s area law [7] and appear to produce the expected post-
Newtonian correction [8] to the total energy of the system, which 
becomes a major contribution to the dynamics when the gravita-
tional radius is approached. At that point, a black hole should form, 
mostly made of such soft gravitons (in a sense that will be clari-
fied later on), in qualitative agreement with the corpuscular model 
of Refs. [9].

2 We should remark that in Newtonian physics the total energy of a system can 
be arbitrarily shifted by a constant, whereas in general relativity this operation is 
not allowed.
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2. Energy balance of self-gravitating objects

Let us consider a simple model for a compact stellar object 
made of NB identical components, which we will call baryons for 
simplicity, of rest mass μ assembled in a spherically symmetric 
configuration of radius R . These baryons can interact gravitation-
ally, and we assume their number does not depend on R [10]. We 
also neglect any emission of radiation, for simplicity, so that the 
total energy is conserved and always equals the Arnowitt–Deser–
Misner (ADM) mass M of the system [11]. Energy conservation is 
granted in the Newtonian description of isolated systems, but let 
us also recall the same result holds in general relativity, where it 
is given by the Hamiltonian constraint associated with the free-
dom of time reparameterization. In an asymptotically flat space, 
the Hamiltonian constraint takes the form [11,12]

H ≡ HB + HG = M , (1)

where HB and HG respectively denote the (super)-Hamiltonian of 
matter and gravity, obtained by varying the action with respect 
to the lapse function, and M emerges from boundary terms. For 
instance, one could consider configurations of a given constant 
R = Rs as representing stable stars (for which the Hamiltonian 
constraint leads to the Tolman–Oppenheimer–Volkov equation), or 
let R reduce all the way down to form a black hole of size equal 
to the Schwarzschild gravitational radius3

RH = 2�p
M

mp
. (2)

If we ideally think of preparing the system when the NB
baryons are very far apart, the total energy is simply given by the 
baryonic rest mass,

H = EB ≡ μ NB � M . (3)

Subsequently, as the radius R shrinks, the baryon energy will be 
decreased by the (negative) interaction potential energy UBG be-
tween baryons mediated by the gravitons, and acquire kinetic en-
ergy KB, so that

EB(R) = M + KB(R) + UBG(R) + UBB(R) , (4)

where we explicitly wrote the dependence of all terms on the typ-
ical size R of the system, and UBB ≥ 0 is an additional (repulsive) 
interaction among baryons, which provides the pressure required 
for a static configuration at a given finite value of R = Rs (corre-
sponding to which we will have KB(Rs) = 0). In a purely classical 
model, this would equal the total energy of the system, the ADM 
mass M , and one would thus find the classical equation of motion

KB(R) + UBG(R) + UBB(R) = 0 . (5)

But baryons are quantum, and a consistent description requires 
we also consider quantum features of the gravitational interaction. 
For this purpose, let us start from a simple estimate of the baryon 
total gravitational potential energy for a static configuration ob-
tained from Newtonian physics, that is

UBG(R) � NB μφN(R) � −NB μ
�p M

mp R
= − M2 �p

mp R
, (6)

where the classical Newtonian field φN satisfies the Poisson equa-
tion

3 We shall always write the Newton constant GN = �p/mp and the Planck con-
stant h̄ = �p mp.
�φN = �p
M

mp
j(r) , (7)

with a static source profile such that 
∫ R

0 r2 dr j(r) = 1. In the quan-
tum theory, this field can be described by means of a coherent 
state of (virtual) gravitons [3,4], like a coherent state of (virtual) 
photons reproduces the Coulomb field around a static charge [4]. 
This can be easily seen from the momentum space form of Eq. (7),

k2 φN(k) = − M

mp
j(k) , (8)

where k is the dimensionless wave number, and expanding the 
graviton field operator in the corresponding radial modes, φ̂k �
(ĝk + ĝ†

−k)/
√

k. A coherent state is an eigenstate of the annihila-
tion operators,

ĝk | g 〉 = g(k) | g 〉 . (9)

In particular, we can choose

g(k) � − M j(k)

mp k3/2
, (10)

which precisely reproduces the classical field,

〈 g | φ̂k | g 〉 � − M j(k)

mp k2
� φN(k) . (11)

The expectation value of the graviton number is now well-
approximated by

NG =
∫

k2 dk 〈 g | ĝ†
k ĝk | g 〉 � M2

m2
p

∫
dk

j2(k)

k

� M2

m2
p

∼ R2
H

�2
p

, (12)

which is essentially Bekenstein’s area law [7], but holds regardless 
of the actual size R of the matter source.

It is worth noting that, since M is constant in our approxima-
tion, the number NG of gravitons is also conserved, like NB. If we 
further write

UBG(R) � NG εG(R) , (13)

we immediately conclude the typical graviton energy is in fact 
given by [3,4]

εG � −�p

R
mp , (14)

which is extremely small for a macroscopic source, but increases 
(in modulus) for decreasing R . The above relation tells us that εG
is determined by the typical length of the quantum coherent state 
according to the de Broglie relation, but is of course negative. This 
feature is in agreement with gravity contributing to the general 
relativistic Hamiltonian constraint with a sign opposite to that of 
matter, and the non-relativistic view of the negative Newtonian 
energy. It also signals that the gravitons of a static potential are 
off-shell from the quantum field theory point of view.

Since gravitons self-interact, we add the graviton interaction en-
ergy,

UGG(R) � NG εG(R)φN(R) � NG
M �2

p

R2
, (15)

which we note is positive and falls off with the size R of the 
source like 1/R2, two properties that characterise a typical post-
Newtonian correction to the Newtonian potential [8]. Since
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∣∣∣∣ UGG

UBG

∣∣∣∣ � RH

R

 1 , (16)

this contribution is overall very small for a large star, but becomes 
crucial when R � RH.

Finally, the complete Hamiltonian constraint (1) reads

M = EB + UGG

= M + KB(R) + UBB(R) + UBG(R) + UGG(R) , (17)

which should hold for any physically acceptable value of the size 
R of the system.

2.1. Black hole configuration

Let us now consider the case that the system can contract all 
the way down to R � RH. At that point we find the interesting 
relation

UGG(RH) � −UBG(RH) � M , (18)

which we can view precisely as the marginal bound condition for 
gravitons of Refs. [9]. It can also be recast in the form of the critical 
condition for a Bose–Einstein condensate of gravitons [9],

α NG � 1 , (19)

where α � ε2
G/m2

p is the gravitational coupling for graviton–
graviton scattering. Beside Eq. (12), which holds for any R and 
can be written as a scaling relation for the horizon radius,

RH � √
NG �p , (20)

in the limit R � RH one also recovers the scaling relation for the 
effective graviton mass [9]

m = −εG � mp√
NG

� M

NG
. (21)

The Hamiltonian constraint in the black hole configuration now 
yields

KB + UBB � 0 . (22)

However, since we reasonably assumed UBB ≥ 0, the only possible 
solution allowing for the black hole formation is

KB(RH) � UBB(RH) � 0 , (23)

which one can analogously view as the marginal bound condition 
for the baryons.

Indeed one could have considered the Oppenheimer–Snyder 
model of collapsing dust [2] from the beginning, so that UBB = 0
for all values of R , with a constant number NG of soft gravitons. 
In this case KB(RH) � 0 and the (quantum) matter stops collaps-
ing. This of course represents a huge correction to the classical 
model in which the system ends into the singularity at R = 0. If 
we took the above Eq. (23) at face value, we could actually say 
that, since any kind of matter has UBB > 0 and KB ≥ 0, the con-
figuration R � RH should not even be reached. However, such a 
strong conclusion definitely requires a better analysis of all the 
terms in the Hamiltonian constraint (1) for R � RH. In fact, we 
never explicitly considered the spatial distribution of the baryons, 
consequently the variable R could merely represents the typical 
(quantum) size of the collapsing object, rather then a sharp (clas-
sical) radius. The simple estimates (6) and (15) could then be 
improved by employing a better approximation for the potential 
of a self-gravitating system (for example, the harmonic [13] or 
Pöschl–Teller potential [14]) and one could also include effective 
quantum field theory corrections [15]. We leave such improve-
ments for future investigations, and just remark that the effective 
number of soft gravitons in the Newtonian potential and in the 
black hole is much larger than the number of baryons. For exam-
ple, let us consider a solar mass black hole (M = M� ∼ 1038 mp) 
made of neutrons (μ ∼ 10−19 mp). The number of neutrons in the 
system is NB = M/μ ∼ 1057, whereas the number of gravitons 
NG � μ N2

B/mp ∼ 1095 � NB, which is again consistent with the 
underling hypothesis of the corpuscular model for black holes.

2.2. Quantum depletion of gravitons and baryons

In the above description, we neglected any possible emission of 
gravitons or baryons, but the black hole just formed should radiate 
according to Hawking’s law [16]. In the corpuscular model, this 
effect is reproduced by the quantum depletion occurring because 
of the graviton–graviton scatterings [9]. We shall here consider the 
added contribution of graviton–baryon scatterings to the emission 
of gravitons, and the baryon–graviton scattering for the emission 
of baryons [17].

Because of the NB baryons, the depletion law discussed in 
Refs. [9] will become

ṄG � −N2
G

1

N2
G

1

�p
√

NG
− NG NB

1

N2
G

1

�p
√

NG

� − 1

�p
√

NG

(
1 + NB

NG

)
, (24)

where in each of the two terms in the r.h.s. of the first line, the 
first factor accounts for the graviton and baryon multiplicity, the 
second factor is the gravitational coupling α2 and the third factor 
comes from the typical energy m of the process. Also baryons will 
be scattered out of the collapsed object [17], according to

ṄB � −NG NB
1

N2
G

1

�p
√

NG

� − NB

NG

1

�p
√

NG
, (25)

where we assumed the typical baryon energy will again be given 
by the typical graviton’s energy, as predicted by Hawking. It is then 
important to notice that baryons with such a small energy can 
be emitted because Eq. (23) holds after the black hole is formed. 
Looking at the above emission rates, although ṄG � ṄB, it is clear 
that the corresponding energy fluxes are of the same magnitude.

m ṄG � M

�p N3/2
G

� μ ṄB . (26)

This implies that both are indeed practically irrelevant for an as-
trophysical object with M � mp (and thus NG � NB � 1), like one 
already expected from the standard expression of the Hawking ef-
fect.

3. Concluding remarks

We have shown, in rather general terms, that including the 
effect of soft gravitons in the description of the gravitational col-
lapse of a compact object naturally leads to the expected post-
Newtonian correction to the energy of the system and to the possi-
ble formation of a corpuscular black hole mostly made of gravitons. 
By this statement we precisely mean that the number of gravitons 
NG � NB and their typical effective mass m = −εG is such that 
M � NG m [9]. In astrophysical situations, where the Hawking radi-
ation, here described as a depletion effect, is negligible, this state 
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should represent the end-point of the collapse, with no central sin-
gularity at all.

Of course, our conclusion could be further refined by consid-
ering improved approximations for the various energy terms that 
appear in the Hamiltonian constraint, like we commented previ-
ously. Moreover, we did not solve for any specific dynamics, and 
it is thus possible that different energy terms will appear in a 
fully time-dependent analysis. Even if all the terms remained of 
the same functional form, numerical coefficients might very likely 
differ from those we employed, and this is the main reason we did 
not show many exact equalities in the present analysis. Of course, 
it would be extremely interesting to derive the macroscopic dy-
namics from the microscopic (quantum field theory) description 
of (corpuscular) black hole formation from graviton–graviton (and 
graviton–baryon) scatterings [18–20]. All that said, our findings 
still suggest to consider the possibility that the end-point of the 
gravitational collapse, or physical black holes, are quite different 
objects from those described by classical general relativity, and 
their quantum properties might therefore differ from the usual 
ones obtained from quantum field theory on classical black hole 
backgrounds.
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