CELLULAR IMMUNE DEFECTS IN UREMIA

Dysfunction of polymorphonuclear leukocytes in uremia: Role of parathyroid hormone

SHAUL G. MASSRY and MIROSŁAW SMOGORZEWSKI

Division of Nephrology, University of Southern California, Keck School of Medicine, Los Angeles, California, USA

Dysfunction of polymorphonuclear leukocytes in uremia: Role of parathyroid hormone. Polymorphonuclear leukocytes (PMNLs) from uremic patients have elevated basal levels of cytosolic calcium ([Ca^{2+}]i), reduced calcium signal after activation of FcyRIII receptor, and impaired phagocytosis. Chronic excess of parathyroid hormone (PTH) in uremia mediates its effect on PMNL's metabolism and function through the sustained elevation of their [Ca^{2+}]i. Because calcium channel blockers interfere with this effect of PTH on PMNLs, treatment of patients on hemodialysis with verapamil, nifedipine, or amlodipine was associated with an improvement in metabolism and phagocytosis of PMNLs in humans. The therapy with calcium channel blockers should be continued in order to maintain its beneficial effects.

Uremic patients have an increased susceptibility to infection [1]. This may be partly caused by defective leukocyte function. Indeed, polymorphonuclear leukocytes (PMNLs) from uremic patients display impaired migration [2] and defective phagocytic [3] and bactericidal activities [4]. The pathogenesis of these derangements is not evident. Certain clinical observations suggest that parathyroid hormone (PTH) affects leukocyte function. It has been reported that random migration and chemotaxis of PMNLs were impaired in patients with primary hyperparathyroidism and normal renal function, and these defects disappeared after removal of the adenoma [5]. Others found that sera from uremic patients with high blood PTH levels stimulated chemiluminescence of PMNLs, and the decrease in blood levels of PTH after parathyroidectomy was associated with a reduction in this stimulatory effect [6].

Recent studies from our laboratory have demonstrated that PMNLs are a target for PTH action. Indeed, acute exposure of leukocytes to PTH-(1-84) increased elastase release from these cells [7] and impaired their random migration [2]. The aminoterminal fragment of the hormone was inert in regard to PMNLs function, and the 19-84 amino-fragment of PTH increased elastase release from PMNLs as the PTH-(1-84) did [2, 7].

A large body of evidence exists that implicates the state of secondary hyperparathyroidism in the genesis of PMNLs dysfunction in uremic patients. Random migration of PMNLs is impaired in chronic renal failure (CRF) patients, and an inverse relationship exists between random migration of PMNLs and blood levels of PTH in these patients [2]. PMNLs of CRF patients and those treated with hemodialysis have elevated basal levels of cytosolic calcium ([Ca^{2+}]i), reduced adenosine 5'-triphosphate (ATP) content, and impaired phagocytosis [3]. These derangements are due to the state of secondary hyperparathyroidism of CRF. Studies in CRF rats support this conclusion and further demonstrate that these derangements are prevented by prior parathyroidectomy of CRF animals or by their treatment with verapamil [8]. Also, glucose uptake by androgen content of PMNLs are reduced, and the activity of their glucagon synthase is impaired in patients with CRF [9]. The treatment of these patients with verapamil or 1,25(OH)_{2}D_{3} (which suppresses the activity of the parathyroid glands) reversed these abnormalities [9]. Finally, oxygen consumption by PMNLs from rats and humans with CRF is decreased [10]; this abnormality is prevented by prior parathyroidectomy of the CRF animals or by their treatment with verapamil [10]. The treatment of rats with pre-existing CRF with verapamil reversed the derangement in the oxygen consumption by these cells as well [10].

Since chronic excess of PTH mediates its effect on PMNLs metabolism and function through the sustained elevation of their [Ca^{2+}]i and since calcium channel blockers interfere with this effect of PTH on [Ca^{2+}]i of PMNLs, these drugs could be useful in preventing and/or reversing the adverse effects of PTH on PMNLs. Such a beneficial effect of calcium channel blockers on PMNL function and metabolism was confirmed in a study of two groups of hemodialysis patients [11]. Indeed, the PMNLs of hemodialysis patients without therapy with a calcium channel blocker displayed elevated basal levels of [Ca^{2+}]i, reduced ATP content, and impaired phagocyto-

Key words: chronic renal disease, calcium channel blockers, hemodialysis, bacterial infection.

© 2001 by the International Society of Nephrology

S-195
versing the effects of uremia on the metabolism, [Ca$^{2+}$]i, ATP content, glucose uptake, glycogen content, glyco-
gen synthase, and function (phagocytosis) of PMNLs in
humans. The therapy with the calcium channel blocker
should be continued in order to maintain their benefical
effects.

ACKNOWLEDGMENTS

This work was supported by Grant #29955 from NIDDK.

Reprint requests to Shaul G. Masry, M.D., Division of Nephrology,
LAC/USC Medical Center, 1200 North State Street, Room #4250, Los
Angeles, California 90033, USA.

REFERENCES

1. VANHOLDER R, RINGOIR S: Infectious morbidity and defects in
phagocytosis function in end-stage renal disease: A review. J Am
2. DOHERTY CC, LABELLE P, COLLINS JF, BEATBAR N, MASRY SG:
Effect of parathyroid hormone on random migration of human
3. ALEXIEWICZ JM, SMOGORZEWSKI M, FADDA GZ, MASRY SG: Im-
paired phagocytosis in dialysis patients: Studies on mechanisms.
4. SALANT DJ, GLOVER AM, ANDERSON R, MEYERS AM, RABBIN R,
MYBURGI JA, RABSON AR: Polymorphonuclear leukocyte function
in chronic renal failure and after renal transplantation. Proc Eur
Dial Transplant Assoc 12:370–379, 1975
5. KHAN F, KHAN AJ, PAPAGAROUPALLIS C, WARREN J, KHAN P, EVANS
HE: Reversible defect of neutrophil chemotaxis and random migra-
tion in primary hyperparathyroidism. J Clin Endocrinol Metab
48:582–584, 1979
6. TUMA SN, MARTIN RR, MALLETTE LE, EKNOYAN G: Augmented
polymorphonuclear leukocyte chemiluminescence in uremic
298, 1981
7. MASRY SG, SCHAFFER RM, TESCHNER M, ROEDER M, ZULL JF,
HEIDLAND A: Effect of parathyroid hormone on elastase release
890, 1989
8. CHERKU I, KIESZTEIN M, ALEXIEWICZ JM, FADDA GZ, MASRY
SG: Impaired phagocytosis in chronic renal failure is mediated by
9. HÖRL WH, HAAG-WEBER M, MAI B, MASRY SG: Verapamil re-
verses abnormal [Ca$^{2+}$]i and carbohydrate metabolism of PMNL
10. KIESZTEIN M, SMOGORZEWSKI M, TRANAKICZARI P, FADDA GZ,
MASRY SG: Decreased O$_2$ consumption by PMNL from humans
and rats with CRFL: Role of secondary hyperparathyroidism. Kid-
ney Int 42:602–609, 1992
11. ALEXIEWICZ JM, SMOGORZEWSKI M, KLIN M, AKMAL M, MASRY
SG: Effect of treatment of hemodialysis patients with nifedipine
on metabolism and function of polymorphonuclear leukocytes. Am
12. ALEXIEWICZ JM, SMOGORZEWSKI M, GILL SK, AKMAL M, MASRY
SG: Time course of the effect of nifedipine therapy and its discon-
tinuation on [Ca$^{2+}$]i and phagocytosis of polymorphonuclear leuko-

In contrast, the PMNLs of hemodialysis patients who
were receiving nifedipine had normal levels of [Ca$^{2+}$]i,
ATP content, and phagocytosis.

In a prospective study of hemodialysis patients, the
basal levels of [Ca$^{2+}$]i and phagocytosis of PMNLs were
examined before, monthly for two months during treat-
ment with nifedipine (30 mg/day), and monthly for addi-
tional two months after discontinuation of the drug.
Therapy with amloidipine reversed the derangements in
the PMNL’s [Ca$^{2+}$]i and phagocytosis, with the values
being normal during the treatment period. However, the
abnormalities in [Ca$^{2+}$]i and phagocytosis of the PMNLs
re-emerged after discontinuation of the treatment with
the calcium channel blocker (Fig. 1) [12].

These observations and others cited earlier dem-
sstrate that calcium channel blockers are effective in re-

Fig. 1. Changes in cytosolic calcium ([Ca$^{2+}$]i) of polymorphonuclear
leukocytes (PMNLs; A) and phagocytosis (B) observed in the five
hemodialysis patients before, during, and after cessation of nifedipine
therapy. Each line represents one patient.