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This paper shows that there exists a Blaschke product having a prescribed 
radial limit at each point of a prescribed finite subset of the unit circle. In 
addition, an analogue for singular inner functions is proved; and an extension 
dealing with tangential limits is established. 

1. INTRODUCTION 

Let C denote the complex plane; let U denote the open unit disk, {z E C: 
1 z j < l}; let u denote the closed unit disk, {z E C: 1 z ] < l}; and let T denote 
the unit circle, {z E C: / z 1 = l}. 

A Blaschke product is a (holomorphic) function, B, defined for each z in the 
complement of the closure of { 1 /g , l/K , 1 /s ,...} by 

where p is a nonnegative integer and Z = (zi , %a , za , . . .) is a sequence-empty, 
finite, or infinite-of complex numbers in U - (0) satisfying the conditon 
Ck (1 - / zlc I) < cc. (If Z is empty, then B(x) reduces to zp; if, in addition, 
p = 0, then B(z) = 1 for each z E C.) If Z is empty or finite, then B is called a 
finite Blaschke product. 

Throughout this paper a function of the form cB where c f T and B is a 
Blaschke product will be called an extended Blaschke product. Clearly, if b is an 
extended finite Blaschke product and if b(0) > 0, then b is a finite Blaschke 
product. 

An inner function, I, is a function that is bounded and holomorphic in U and 
has a radial limit, I*(M) = lim,.,,- I(YoL), of modulus one at almost every point 
(y. E T. Every extended Blaschke product is an inner function; and every inner 
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function can be factored into the product of an extended Blaschke product and a 
singular inner function, which is an inner function without zeros in U that is 
positive at the origin. (Cf. [4] or [8].) If I is an inner function, then, according 
to a theorem of 0. Frostman [3, p. 113; 2, p. 371, there exists a subset, L, of U 
such that the logarithmic capacity of L is zero and, for each a E U - L, 
(a - I)/(1 - d) is an extended Blaschke product. 

Cantor and Phelps [I] proved 

THEOREM CP. Let n be a positive integer, let (aI , ag ,..., a,) be an n-tuple of 
distinct complex numbers of modulus one, and let (a , & ,..., /I,,) be an n-tuple of 
complex numbers of modulus one. Then there exists a jinite Blaschke product, B, such 

that B*(q) = pfi for each k E (I, 2 ,..., n}. 

Actually, Cantor and Phelps proved the weaker version of this theorem that 
results when “finite Blaschke product” is replaced by “extended finite Blaschke 
product”. To prove Theorem CP, we proceed as follows. For each k E {I, 2,..., n>, 
define yIc to be ((4) - ,&)/{cq(l - (+) &)) and note that yh E T. According to the 
Cantor-Phelps theorem, there exists an extended finite Blaschke product, 6, , 

such that br(cyJ = yI; for each k E (I, 2,..., n}. Let b,(z) = zb,(z) for each z in 
the domain of b, . Then b, is an extended finite Blaschke product, b*(O) = 0, and 
bz(+) = ((-J - pl;}/{l - ($)pS for each k ~(1, 2,..., n}. Let b3(x) = ((4) - x}/ 

(1 - (&) zj whenever z f 2, and denote the composite function 6, 0 6, by B. 
Since B is the composition of two extended finite Blaschke products, it is an 
extended finite Blaschke product. Moreover, since B(0) = l/2 > 0, B is a 
finite Blaschke product. Finally, a routine calculation, which we omit, shows 
that B(Q) = & for each k E {I, 2 ,..., n}. 

If in Theorem CP the restriction that each plc have modulus one is replaced 
by the weaker restriction that each ,!Ih. have modulus at most one, then the 
resulting assertion is false, since B(T) C T for each extended finite Blaschke pro- 
duct B. The primary purpose of this paper is to prove that a correct assertion 
(Theorem I) does result if, in addition, B is permitted to be a Blaschke product. 

Two distinct proofs of this modification of Theorem CP are given. The second 
proof yields a stronger result (Theorem 2) in which each radial limit is replaced 
by a tangential limit of (arbitrarily high) prescribed order of contact. From a 
logical point of view, the proof of Theorem 1 is superfluous, since it is superceded 
by that of Theorem 2. However, the existence of a Blaschke product with a 
prescribed boundary value at each point of a prescribed countably infinite set 
has not been established; therefore, the inclusion of two proofs in the finite case 
seems to be justified, since it furnishes a broader base for future research. An 
additional justification for including the proof of the weaker result is that the 
proof can be modified so as to yield an analogous result for singular inner 
functions (Theorem 3); whereas the proof of the stronger result cannot be used 
in a similar manner. 
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2. BLASCHKE PRODUCTS WITH PRESCRIBED RADIAL LIMITS 

THEOREM 1. Let n be a positive integer, let (aI, tiz ,..., a,) be an n-tuple of 
distinct complex numbers of modulus one, and let (& , f12 ,..., fin) be an n-tuple of 
complex numbers of modulus at most one. Then there exists a Blaschke product, B, 

such that B*(Q) = /?k for each k E {1,2 ,..., n). 

Proof. The proof consists of the following steps. First, we prove that there 
exist a Blaschke product, B, , and an n-uple, (n , ya ,..., rn), of complex numbers 
of modulus one such that BT(-yJ = plc for each k E (1, 2,..., n). Second, we note 
that there exists a finite Blaschke product, B, , such that B,(O) = 0 and B,(arJ 
= yk for each k E {1,2,..., n}, Third, we prove that the composite function 
B, o B, is a Blaschke product. Finally, we prove that (BI 0 B,)* (CLJ = j3, for 
each k E (1, 2 ,..., n}. 

The existence of B, is a consequence of the fact that there exists a Blaschke 
product, B, , such that (7 E T: B:(y) = p> is uncountable for each /3 E 0. To prove 
this, first recall that, using the theory of Riemann surfaces, M. Ohtsuka [7] has 
constructed an inner function, Z, such that (y E T: Z*(y) = a} is uncountable for 
each a E 0. According to the previously mentioned theorem of Frostman, there 
exist a constant a E U, a constant c E T, and a Blaschke product, B, , such that 
{u - Z(z))/{1 - aZ(z)} = cB,(z) f or each n E U. Let fl E u, and consider the 
corresponding point 01 = {u - @j/(1 - E%c~). Clearly, 01 E g, since a E U and 
c/3 E D. A routine argument, which we omit, shows that, if y E T, then Z*(y) = a 
if and only if B;(y) = /?. Since {r E T: Z*(r) = ti} is uncountable, so is (r E T: 
B?(r) = p}; and this completes the proof. 

According to Theorem CP, there exists a finite Blaschke product, b, such that 
b(a,) = yr/er; for each k E (1, 2,..., n}. Let B*(Z) = zb(x) for each z in the 
domain of b. Then B, is a finite Blaschke product such that B,(O) = 0 and 
B,(qJ = yk for each k E (1, 2 ,..., n}. 

Next, let us prove that B, 0 B, is a Blaschke product. We know that B, has a 
representation of the form 

where p is a nonnegative integer and Z = (zr , z2 , z, ,...) is a sequence-empty, 
finite, or infinite-of complex numbers in U - {0} satisfying the condition 
Ck (1 - 1 zk 1) < 00. Since 
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for each z E U and since {B,(z)} D e d fi nes a finite Blaschke product, it will suffice 
to prove that the function, b, defined by the formula 

b(z) = n Izli/ Zk - B,(z) 
Zk 1 - z,B,(z) (ZE u> 

k 
(1) 

is a Blaschke product. 
If 2 is empty, then b(z) = I for each z E U; and we are done. Assume that 2 

is not empty. 
Suppose that the finite Blaschke product B, is of order m, that is, assume that 

B, has m zeros counted according to multiplicity in U. Then, for each K, the 
function defined by the formula 

is a finite Blaschke product of order m. In fact, (2) represents an extended finite 
Blaschke product of order m, since it is the composition of a finite Blaschke 
product of order m and a finite Blaschke product of order 1; and this extended 
finite Blaschke product is a finite Blaschke product, since (2) reduces to the 
positive number / al, / when a = 0. Hence, for each k, there exists an m-tuple, 

czkl , zk2 ,-*., zkm), of complex numbers in U - (0) such that 

(3) 

for each x E U. 
If 2 is finite, then it follows at once from (1) and (3) that b is a finite Blaschke 

product, as desired. 
Finally, assume that 2 is an infinite sequence. Then, from (1) and (3), it 

follows that, for each z E U, 

b(z) = p& zll -2 ) (+q.z) . . . (!$ lz,;-z)\ 
1 - ZllZ _ 12 1WI 

x it Iz21l z21--z - I( 12221 222-z ... 

%l 1 - Z2lZ z22 1 - a;sz 
1 ( lzzlnl 

%m 
-7 zzm-- )I 
1 - ~ZrnZ 

(4) 
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Next, let us prove that the removal of the curly brackets from the right-hand 
side of (4) yields an infinite product that converges and has the same value as the 
original product. (As the convergent infinite product 

:(-1) (-])]{(-I) (-I)}((--1) (-1)) ... 

clearly shows, the removal of brackets must be treated with care.) 
By hypothesis, x:,“=, (1 - j Z~ 1) < co and 0 < 1 zk j < 1 for each positive 

integer k; hence JJ,“=, 1 zk j > 0. (Cf. [S, p. 3221.) 
Setting z = 0 in (3), we conclude that / sk 1 = ( zlcl j ( zt2 / -1. ( zlcllL 1 for each 

positive integer k. Hence, the sequence of partial products of [ z, 1 \ z, 1 1 z, 1 .‘- 
(which converges to a positive real number) is a subsequence of the decreasing 
(and, hence, convergent) sequence of partial products of 

131 I I % I ... I %m I I %I I 1222 I ..* I Z2m I .*. * (5) 

Consequently, (5) is a convergent infinite product (in the strict sense); and, 
hence, if the curly brackets are removed from the right-hand side of (4), the 
resulting infinite product converges for each x E U and represents a Blaschke 
product. (Cf. [4, p. 641.) 

A simple argument shows that, if brackets are inserted in a convergent infinite 
product, the resulting infinite product is convergent and has the same value as 
the original product. Hence, b is a Blaschke product. 

Finally, let us prove that (B, 0 Be)* (ak) = plc for each K E (1,2,..., n}. We 
prove the following more general result, since it is needed in the proof of Theo- 
rem 3: I f  B, is a bounded holomorphic function defined on U, B, is a nonconstant 
extended finite Blaschke product, CL E T, y = B,(a), and B, has a radial limit, 
B:(y), at y, then B, 0 B, has a radial Zimit at 01 and (B, 0 B,)* (a) = B?(y). 

Since B, is bounded and holomorphic in U and has a radial limit at y, a 
classical theorem of Monte1 implies that B, has an angular limit at y, that is, if 
K is the convex hull of a set (y, p, 4) where p, 4 E U (such a K is called a Stolz 
triangle at r), then 

exists and is equal to Bf(y). (Th e same conclusion also follows from Lindelof’s 
theorem, [2, p.191.) 

Next, consider the nonconstant extended finite Blaschke product B, . Clearly, 
I?, can be expressed in the form 
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where c E T, m is a positive integer, and (zi , za ,..., zm) is an m-tuple of complex 
numbers in U. A rather long but straightforward calculation (which we omit) 
using the logarithmic derivative shows that 

for each x E T. This implies that the radius of a terminating at ol is mapped onto 
a curve that (lies in D and) is tangent at the point y to the radius of 0 terminating 
at y, Indeed, the radial image under B, has the parametric representation 
z(t) = B,(tol), 0 < t < 1. The tangent line to the radial image at z(l) = B,(a) 
= y is parallel to the vector representation of 

z’(1) = B;(a) iy = B,(u) f  (1 - j xk I”}/{/ LX - z/,. I”}. 
b=l 

Since z’(l) is a positive multiple of y = B2(~), the desired conclusion follows 
immediately. (The same conclusion is a consequence of the conformality of B, 
at (Y, which holds since B;l(ol) # 0 in virtue of (7), and the fact that B,(T) C T.) 

Next, let K be a Stolz triangle at y whose angle at y is bisected by the radius 
of D terminating at y. In virtue of the foregoing observations, it is geometrically 
clear and not very difficult to prove analytically (although we omit the proof 
because of its length) that, as x approaches ai radially, B,(x) eventually enters and 
remains in K and approaches y, and, hence, that B,(B,(z)) approaches B?(y). 

Analytically, this means that (Bl 0 B,)* (CX) exists and is equal to B:(y). 

3. BLASCHKE PRODUCTS WITH PRESCRIBED TANGENTIAL LIMITS 

In this section we prove that there exists a Blaschke product having a 
prescribed tangential limit (of arbitrarily high order of contact) at each point of a 
prescribed finite subset of T. First, we prove that the boundary behavior can be 
prescribed at a single point while control is maintained off that point. 

LEMMA 1. Suppose that 01 E T and B E 8; and let J be a Jordan curve such 
that J C u and J n T = {a}. Then there exists an extended Blaschke product, B, 
such that B is holomorphic in u - {LY} and 

where I(J) denotes the interior of J. 
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Proof. I f  [ ,El 1 = 1, then it suffices to take B(z) = J3 for each complex 

number z. 
Next, suppose that /? = 0. According to a theorem of Linden and Somadasa 

[5], which was proved independently by Beurling and published by Weiss [9], 
there exists a Blaschke product, B, , such that the sequence of zeros of B, con- 

verges to 01 and 

lii B,(x) = 0. (9) 
.=lUlU) 

Since the sequence of zeros of B, converges to a, B, is holomorphic in g - [a} 
and has modulus one at each point of T - {a} (cf. [4, p. 681). 

Finally, assume that 0 < I,8 1 < 1. Let B, be the Blaschke product just 
described; and define a function, B, by means of the formula 

&+) = p - Bo(x) 
1 - /@o(z) 

for each z in the domain of B0 such that B,(z) # l/p. Clearly, B is an inner 
function, B is holomorphic in .?7 - (a}, and B has modulus one at each point 

of T - {a]. A fort&i, B*(t) exists and has modulus one for each 5 E T - {a}. 
In virture of Lindelijf’s theorem (cf. [6, p. 5]), Bg(or) = 0. Hence, B*(or) = J3. 
Consequently, zero is not a radial limit of the nonconstant inner function B. 

Hence, B is an extended Blaschke product (cf. [6, p. 331). 
Since (9) holds, it follows that (8) holds, as desired. 

THEOREM 2. Let n be a positive integer; let (01~) a2 ,..., a,,) be an n-tuple of 
distinct complex numbers of modulus one; let (PI , pz ,..., 8,) be an n-tuple of com- 
plex numbers of modulus at most one; and, for each k E (1, 2,..., n}, let jk be a 
Jordan curve such that Jk C n and Jk n T = {tik}. Then there exists a Blaschke 

product, B, such that B is holomorphic in u - (01~ , 01~ ,..., a,) and .for each 
k ~(1, 2,..., n) 

where I( JIc) denotes the interior of Jlc . 

Proof. Suppose that j E (1, 2 ,..., n}. According to Lemma 1, there exists an 
extended Blaschke product, bj , such that bj is holomorphic in D - {tij) and 
b,(z) --f /$ as z --+ aj through Jj U l(Ji). Then there exist a constant cj E T and a 
Blaschke product, B, , such that b, = cjBj . 
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Since Bj is holomorphic in ci - {o+>, B, is holomorphic and has modulus one 
at 01~; if K E {I, 2 ,..., nl\ and k # j. A fortiori, for each such K, 

exists and is equal to B,(aJ where B,(ol,) E T. 
According to Theorem CP, there exists a finite Blaschke product, B,+I , 

such that 

for each K E (1, 2 ,..., n}. 
Let B denote the product B,B, ... B-B,,, . Then B is a Blaschke product, 

since the product of a finite number of Blaschke products is a Blaschke product. 
Clearly, B is holomorphic in 17 - (01~ , 01s ,..., a,}. 
Finally, for each R E (1, 2 ,..., n}, 

lim B,(z) a+or lim 4+&d 
.=JhUT(lh) z@Iyhfi ) 

= Pk , 

as desired. 

4. SINGULAR FUNCTIONS WITH PRESCRIBED RADIAL LIMITS 

In this section we prove an analogue of Theorem 1 for singular inner functions. 

THEOREM 3. Let n be a positive integer, let (aI , 0~~ ,..., a,) be an n-tuple of 
distinct complex numbers of modulus one, and let (& , pz ,..., pn) be an n-tuple of 
complex numbers of modulus at most one. Then there exists a singular inner function, 
S, such that S*(LX,) = pIi for each k E {I, 2 ,,,., n}. 

Proof. The following proof is patterned after the proof of Theorem 1. 
Without loss of generality, we may (and do) assume that 0 E {pi , ,& ,..., j3,j. 
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First, let us prove the existence of an inner function having each #Jlc (k = 
1, 2,..., n) as a radial limit. Let W denote the universal covering surface of 

lJ - (81 1 sz ,***> /3J, let F denote a univalent conformal mapping of W onto U, 
and let S, denote the composition of F-l with the conformal projection of W 
onto U - {Ply & ,.-, /I,}. A well-known argument [3, p. 113; 2, p. 371 shows 
that S,(U) = U - (PI , /3, ,..., fin} and that S, is an inner function. According 
to a theorem of Seidel[2, p. 1071, if K E (1,2,..., n} and plc E U, then there exists a 
point yli E T such that Sf(yk) = pk. According to a theorem of Calderon, 
Gonzalez-Dominguez, and Zygmund [6, p. 371, if R E (1, 2 ,..., n} and Pk E T, 
then there exists a point yr E T such that S:(Y~) = pR . 

Since S,(U) = U - {& , fi2 ,..., fin}, there exists a point a E U such that 
S,(a) > 0. Letf denote the function such thatf(z) = (u - z)/(l - a~) for each 
z E C - {l/a}, let 8, = (u - y?J/(l - 3yJ for each K E (I, 2,..., n}, and note 
that 6, E T for each K E (1, 2 ,..., rr}. 

According to the second step in the proof of Theorem 1, there exists a finite 
Blaschke product, B, , such that B?(O) = 0 and B,(N,) = 6, for each 
k E (1, 2 ,...) n}. 

Let S denote the composite function S, 0 (f 0 B,), and note that f 0 B, is a 
nonconstant extended finite Blaschke product. According to the last step in the 
proof of Theorem 1, S*(olJ exists and is equal to /3, for each K ~(1, 2,..., n}. 
Since 0 # S(U) and S(0) > 0, we can conclude that S is a singular inner function 
once we know that S is an inner function. 

That S is an inner function follows from the known fact that the composition 
of two nonconstant inner functions is again an inner function. However, since 
in the special case that we are now considering one of the inner functions is a 
nonconstant extended finite Blaschke product, we can give an elementary proof 
that S is an inner function. One way to proceed is as follows. Let X denote 
one-dimensional Lebesgue measure on T, and let E denote the set T - {< E T: 
5$(t) exists and has modulus one}. Since S, is an inner function, h(E) = 0. Let 
B denote the nonconstant extended finite Blaschke product f 0 B, . If X(B-l(E)) 
= 0, then the last step in the proof of Theorem 1 implies that S, 0 B = S is an 
inner function, as desired. 

There are a number of ways to prove that X(B-l(E)) = 0, some of which are 
quite sophisticated. One elementary proof consists of assuming that B is repre- 
sented by the right-hand side of (6) letting E be a positive real number, letting 

A, , 4 > A, ,.‘. be a sequence of open arcs of T such that E C (Jz==, A, and 

and then using (7) to infer that the sequence B-l(A,), B-l(A,), B-l(A,),... 
determines in a natural way a sequence of open arcs of T whose union contains 
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B-l(E) and the sum of whose lengths is less than E. Because of space considera- 
tions, we omit the somewhat lengthy details. 

Alternatively, once we know that B-r(E) is A-measurable, we can use an 
extension of Liiwner’s lemma (cf. [6, p. 341) to conclude that h(B-l(E)) == 0. 
To prove that B-l(E) is X- measurable, first note that ST is a Bore1 measurable 
function on the F,, subset (5 E T: S;i’(<) exists} of T (cf. [2, p. 231) and, hence, 
that T - E = (ST)-l (T) is a Bore1 set relative to the topological space con- 
sisting of the set (5 E T: ST(J) exists} with its inherited topology. Since the class 
of Bore1 sets is a minimal a-algebra, a routine argument (which we omit) shows 
that T - E is a Bore1 set relative to T. Hence, E is a Bore1 set relative to T. Since 
B determines a continuous mapping from T onto T, B-l(E) is a Bore1 set 
relative to T; and, thus, B-l(E) is /\- measurable, as desired. (Incidentally, if E 
were countable, the reasoning above would be somewhat heavy handed; however, 
if u f-7 {A , A ,-., PA contains more than one point, a theorem of Lohwater (cf. 
[2, p. 1091) shows that the logarithmic capacity of E is not zero.) 
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