
JOURNAL OF NUMBER THEORY 5, 224-236 (1973) 

On a Problem of Chowla 

A. BAKER” 

Trinity College, Cambridge, England 

B. J. BIRCH 

Brasenose College, Oxford, England 

AND 

E. A. WIRSING* 

Philipps Universitiit, Marburg-L.ahn, Germany 

Communicated by S. Chowla 

Received March 10, 1971 

The equation Zf(n)/n = 0 is studied for periodic algebraically-valued 
functions f and, in particular, a well known problem of Chowla in this context 
is resolved. The work depends on an application of a theorem of the first author 
concerning linear forms in the logarithms of algebraic numbers. 

1. INTRODUCTION. 

In a lecture at the Stony Brook conference on number theory in the 
summer of 1969, Chowla raised the question whether there exists a 
rational-valued function f(n), periodic with prime period p, such that 

f/&L*. 
a4 n 

(1) 

He proved some twenty years ago (cf. [3]) that this certainly could not 
hold for odd functions f if $(p - 1) is a prime, a condition subsequently 
removed by Siegel, and recently he showed that the same is true for even 
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functionsfprovided only thatf(0) = 0. In the present paper we solve this 
problem in general by proving that there is in fact no function f with the 
above pr0perties.l We shall indeed treat a somewhat wider problem in 
which f is allowed to assume arbitrary algebraic values and the period is 
no longer restricted to primes. 

By Q we shall mean, as usual, the rational number field. We denote by q 
an arbitrary natural number and by 4jn the qth cyclotomic polynomial. 
Our main theorem is as follows. 

THEOREM 1. If f is a nonvanishing function defined on the integers with 
algebraic values and period q such that (i) f(r) = 0 if 1 < (r, q) < q, 
(ii) Q. is irreducible over Q(f(l),..., f (q)), then 

f f(n) 
n-1 

-J-- # 0. 

It will be seen that if q is a prime then (i) is vacuous and iff is rational- 
valued then (ii) holds trivially; thus, we have the solution to Chowla’s 
problem mentioned at the beginning. Further, we observe that the theorem 
would become false if the condition (i) were omitted; for (1) certainly holds 
if, for instance, q = p2, where p is a prime, and f is defined by 

i f(n) - = (1 - pl-8)s C(s), 
?X=‘l ns 

where c(s) denotes the Riemann zeta-function. When q is composite it 
would perhaps look more natural to have 

f(r) = 0 if (r, q) 2 1 (2) 

in place of (i), but our condition derives naturally from the case when q 
is a prime and implies a slightly greater degree of generality. Also one 
cannot, in general, waive condition (ii); if, for instance, x, x’ are the 
quadratic characters mod 12 with conductors 3 and 4, respectively, then (1) 
holds with f = 2x - d/3x’, since 

L(1, x) = 77-, 
2 d3 

L(1, x’) = 3. 

Other examples will be given by Theorem 2. 

1 While working on the manuscript we were informed by Professor Chowla that he 
had also solved the problem to the extent stated above. 
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There is an obvious analogy between our theorem and Dirichlet’s 
famous result L(1, x) # 0 for a nonprincipal character x mod 4. In fact 
we use this result in the proof of our theorem and, indeed, the latter is a 
much more general statement for certain q, in particular when q is a prime. 
Because of condition (ii), however, the theorem does not contain Dirichlet’s 
result for all q. For let us denote by t1 the Ith root of unity ezxili and by 
Qr = Q(&) the Ith cyclotomic field; then if f is any primitive character 
mod q condition (ii) demands that a,, be irreducible over QOtp) , that is 

The first of these fields is 

where the square brackets signify the least common multiple and which 
has degree 

the other has degree y(q(q)). Condition (ii), therefore, amounts to 
v((4p(q), q)) = 1 or simply (y(q), q) < 2. The only genuine case with 
(q(q), q) = 2, incidentally, is q = 4, since for moduli q = 2q’ with odd q’ 
there are no primitive characters. 

The failure of our theorem to cover Dirichlet’s result in full is not due to 
unnecessary stringency in connection with condition (ii). In fact no theorem 
of this general nature can cover Dirichlet’s result fully as becomes clear 
from the following assertion: There are integers q and functions f periodic 
mod q that take their values in the field Q@(p-) but satisfy (1) and (2). 
Obviously, therefore, for such q, the nonvanishing of L(1, x) for a 
primitive character x mod q is due to properties not reflected in general 
statements about QecP) , the field generated by the character values. The 
assertion will be verified after the formulation of Theorem 2. 

The functionf = 2x - d/Jx’ mentioned previously shows that relations 
of the kind 

C aAL X) = 0, 

where x runs through all characters with a given modulus, can hold with 
algebraic a, not all 0. The question arises as to whether the same is true 
with rational a, . We leave the question open, but note that Theorem 1 
contains the following partial answers. 

COROLLARY 1. Let (q, v(q)) = 1 and let x run through the nonprincipal 
characters mod q. Then the numbers L(1, x) are linearly independent over Q. 
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COROLLARY 2. Ifx 1 , . . . , Xk are any quadratic characters for which the as- 
sociatedprimitiue characters x1*,..., xk* are distinct then L(I, x1),..., L(1, x3 
are linearly independent over Q. 

Corollary 1 follows immediately from the theorem on noting that any 

f= C a,x 

with rational a, fultils the conditions of Theorem 1 since, as remarked 
before, @, is irreducible over Qot4) . To verify Corollary 2 we observe that 
since L(1, x) and L(1, x*) differ only by a rational factor we may assume, 
without loss of generality, that x r ,..., Xk are defined to a common modulus, 
namely the least common multiple of the conductors, and any function 

with rational a, is rational-valued and so satisfies the hypotheses of 
Theorem 1. Actually Corollary 2 can be obtained more directly from 
Dirichlet’s formulae for L(1, x), where x is the quadratic character; in 
fact L(1, x) is an algebraic multiple of a logarithm of a unit in a quadratic 
field and the result, therefore, follows by an argument parallel to the proof 
of Lemma 2 on noting that the square roots of the discriminants of the 
fields that arise are linearly independent over the rationale+. Moreover, 
if we restrict x to even quadratic characters then the L(1, x) are linearly 
independent over the field of all algebraic numbers; for in this case the 
units that arise are multiplicatively independent. 

We have already remarked that (i) and (ii) are trivially valid if q is a 
prime and f is rational-valued. We show now that if we allow f to take 
algebraic values then there will indeed be a wide class of solutions of (1) 
provided that q > 4. It is in fact relatively easy to write down a basis for 
all odd functions with this property. 

THEOREM 2. Let q >, 3 be a natural number. Then ali odd algebraically- 
valued functions f, periodic mod q, for which (1) holds, are given by the 
totality of iinear combinations with algebraic coe@cients of the following 
[$(q - 3)] functions: 

fi(n) = (-l)“-’ (s)‘, I= 3,5 ,..., q-2, ifqisodd, 

h(n) = (-W-l ( ~n$)(%/$)z, E= 3,5 ,..., q-3, ifqiseuen. 

The functions are linearly independent and take real values in Q, . 
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It can further be verified that the functions f are characterized alter- 
natively by the condition 

a-1 
zl.fir) cot rd4 = 0, 

the left side being in fact (-29/n) Cf(n)/n iff is odd. 
If q = 3 or 4 the theorem implies that there are no nontrivial functions 

with the above properties. To confirm the assertion made before about 
the existence of functions f in Qrn(*) satisfying (I) and (2), we have only 
to takef = x,&r , wheref, is one of the functions given by Theorem 2 with 
prime period p1 > 5 and x0 is the principal character modulo any prime 
p2 = 1 (mod pJ; then f has period q = plp2, takes values in 
Q,, C QPSel C Qmca) , and clearly satisfies (2); further, sincef&p,) = fi(n) 
we have 

p’ - 
n 

Finally we prove that, when f is not odd, (ii) is redundant and that, 
therefore, Theorem 2 is exhaustive. 

THEOREM 3. All algebraically-valued functions f, periodic mod q, for 
which (i) and (1) hold are odd. 

Thus, Theorem 2 lists all functions under consideration when q is a 
prime. In particular for q = 2 and 3 there are no such functions and for 
q = 5 the only solutions are given by 

f (0) = 0, f(l) = -f(4) = 1, f(2) = --f(3) = 2 + 45 

and multiples thereof. For arbitrary q condition (i) obviously defines a 
subspace of the set of functions specified in Theorem 2, and, as an 
incidental consequence of Theorem 1, we find that no nonvanishing 
element of this subspace can comply with condition (ii). Furthermore, as 
an immediate deduction from Theorem 3 we obtain the following. 

COROLLARY 3. If x1 ,..., xk are any even characters for which the 
associated primitive characters are distinct then L(1, x1),..., L(1, xk) are 
linearly independent over the field of all algebraic numbers. 

This generalizes our earlier remark concerning even quadratic characters. 
The proofs of the theorems rest on an application of Theorem 1 of [l] 

relating to linear forms in the logarithms of algebraic numbers; otherwise 
the arguments run on classical lines. As an intermediate step in the 
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derivation of both Theorems 1 and 3, we show that if (1) holds then also 

f f@o - 0 for (h,q) = 1, 
n=1 n 

provided thatf satisfies suitable conditions. By appealing to more refined 
results on linear forms in logarithms (see Feldman [4]) we can easily 
strengthen the conclusion of these theorems to 

wheret;denotes the maximum of the heights off(l),..., f (q) and c, K denote 
positive numbers depending only on q and the degrees off(l),..., f (q). 

2. LEMMAS 

By Z, Q, A we shall mean the sets of all rational integers, rational 
numbers, and algebraic numbers, respectively. We shall denote by q any 
natural number > 2, and, as in Section 1, we put ,$ = & = ezriJq, and 
we write Q, = Q&). 

We denote by F, the set of all functions f : Z -+ A with period q such 
that (1) holds. By G, we signify the set of all g defined on Z of the form 

t?(s) = 4-l i f 0.) iy” T=l (3) 

with fin Fq . Clearly (3) is inverted by 

f(r) = i g(s) Jy, (4) 
S=l 

and Fa and G, are vector spaces of the same finite dimension over the 
algebraic numbers. Further we have 

glfO = 0 if f 6Fq, (5) 

for otherwise Cf(n)/n would diverge, and (5) implies that 

g(O) = 0 if gEG,. 

Logarithms will have their principal values. 
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LEMMA 1. g E G, if and only if g is algebraically-valued and 

9-l 

Fl g(s) logO - 49 = 0. (6) 

Proof. The assertion is clear on noting that for every f, periodic mod q, 
for which g(0) = 0, where g is given by (3), we have 

f f(n) - 9-l 

Vt=l n --zl g(s) hdl - Es), 

This follows easily using the logarithmic expansion of the right side and 
substituting for f on the left from (4). 

LEMMA 2. If g E C, and u is any automorphism of A then ug E G, . 

Proof. Let log 01~ ,..., log at be a maximal subset of the log( 1 - [“) 
with s = 1, 2,..., 4 - 1, linearly independent with respect to Q. We have 
then 

log(1 - 5”) = i ars log 01~) 

where a,, E Q. From (6) we obtain 

Bllog% + *** + fl,logor, = 0, 

where 
Q-l 

/A- = C g(s) ars . 
s=l 

Here the 01, and /37 are algebraic and the log 01, are linearly independent 
over Q. Hence, Theorem 1 of [112 implies that /I,. = 0 for all r. But then 
also 

Q-1 

C &I ars = 0 

for any automorphism a and so 

In view of Lemma 1 this means that mg E G, , as required. 

2 Alternatively the dependence of g(l),. . . , g(q - 1) can be deduced directly from 
Theorem 2 of [2]. 
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LEMMA 3. Gq has a basis offunctions y: Z -+ Z. 

Proof. Suppose that g E G, and let PI ,..., /& be a basis for 
QMO,..., g(q - 1)). We have 

for some rational-valued g&z), and clearly each g&z) can be written as a 
linear combination of conjugates ug. Hence, by Lemma 2, all g, E G, . It 
follows now that any basis for the rational-valued g E G, will be a basis 
for all of G, , and the required integer-valued basis is given by multiplying 
through with a common denominator. 

LEMMA 4. If f E FQ , a is any automorphism of A and h is the integer 
defined mod q by a+$ = 5” then f ‘(n) = uf (hn) is also in F, . 

Proof. By definition a[” = 8, and (4) holds for some g E G, . Hence, 

Q-l P-l 

af(hr) = u C g(s) ~hT8 = 
84 

,c, w(s) P* 

The lemma follows since erg E G, by Lemma 2. 

LEMMA 5. f E Fq if and only if the odd and even parts off are in Fq ; and 
the same holds for g E G, . 

Proof: We need only consider real-valued f, for clearly f E F, if and 
only if the real and imaginary parts off are in F, . On applying Lemma 4 
with u denoting complex conjugation, we see that h = -1 and 
f’(s) = f(-s) is in F,, . Hence, the odd and even parts off, namely 

Hf(4 - f(4), HfW + f(-4) 

are also in Fq . This carries over to G, since 

q-l i f’(r) 5-T” = q-l i f(r) es = g(-s). 
l-1 7=1 

3. PROOF OF THEOREM 1 

We show that if f E F, and (i) and (ii) hold then f vanishes identically. 
In view of (ii), there exists, for any h with (h, q) = 1, an automorphism u 

of A such that u-‘6 = 5” and of = f. Thus, by Lemma 4, 

f (hn) E Fq (7) 
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for all such h. Summing over h we get 

that is C a(n)/n = 0, where 

u(n) = i f(h). 
h=l 

(h,q)=l 

Now u(n) = y(q)f(O) if (n, q) = q and, by (i), a(n) = 0 if 1 < (n, q) < q. 
If (n, q) = 1 we have from (i) and (5), 

u(n) = u(l) = 2 f(h) -f(O) = -f(O). 
h=l 

But this gives 

m ( Y(4) 
= j(O) z* 1 q 4 mq - $1 

1 
t s+mq ’ 

(.vl)-1 

and the sum over m here is plainly negative. Hence, we see that f(0) = 0 
and so, by (5), 

where x0 denotes the principal character mod q. 
Let now x be any nonprincipal character mod q and write 

b(n) = i xWf(hn). 
h=l 

Then, by (7), b E F, . Further we see that b(n) = b(1) x(n) (the equation 
being trivial if (n, q) > 1) and thus b(1) L(1, n) = 0. Since, by Dirichlet’s 
theorem, L(1, 17) # 0, it follows that b(1) = 0. We have, therefore, shown 
that 

7$1 XWf(N = 0 
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for all characters x. By the orthogonality properties of the characters, this 
implies that f(h) = 0 for all h with (A, q) = 1, and since we know already 
that f(h) = 0 for all other h, the theorem is proved. 

4. PROOF OF THEOREM 2 

In view of (3) and (4) it will suffice to determine all odd g E G, . 
We note first that 

1 - 5” = -([$I’ - &+12) fSlz = -2i(sjn ST/~) p-rilq, 

and so the principal value of the logarithm is 

lOg(1 - 5”) = log (2 sin T) + ($ - i) 7i 

if 1 < s < q. Now sin m/q is even, and, thus, we deduce from Lemma 1 
that an odd function g E G, if and only if 

Q-l 

,r; &a = 0. 

There are [!&q - 1)] linearly independent odd functions periodic mod q, 
and subjecting them to a single linear relation reduces this number by 1. 
Thus, there are [+(q - 3)] linearly independent odd functions g E Gq and as 
many linearly independent odd functions YE F, . In particular, if q = 3 
or 4, then there are no nontrivial odd g E G, or f o F, . 

We now observe that if q > 5 is odd then the functions 

s%(S) = (- Wk (;I:) (1 ,< k < &(q - 3), 1 ,< s < q), 

where the binomial coefficient is read as 0 ifs -=c k or s > q - k, are odd, 
linearly independent and satisfy 

For clearly 

gdq - s) = (-I)--~ (4 “-;“,) = (-1)q+s--k (“,I:) = -g.&); 
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the linear independence is easily verified on noting that g,(k) = 1 and 
gk(s) = 0 for s = 1, 2,..., k - 1; and the polynomial 

U-1 

,r; %h> x8-l 

is the derivative of 

Q-l 

,c, g*(s) xs = x”(1 - X)@k, 

whence (8) follows if q - 2k >, 3. If q is even we work similarly with the 
functions 

which satisfy 

(1 < k < !& - 4), 1 < s -=c d, 

I-l 

z1 g*(s) x8 = x”(1 + x)(1 - x)Q-2k--1. 

The corresponding functions f are obtained from (4); we have 

Q-l 

fk(4 = c &c(S) 57 
s=1 

and the expression on the right is given by 

according as q is odd or even. By normalizing so that f(l) = 1 and setting 
I = q - 2k or q - 2k - 1 we obtain the functions of Theorem 2. 

5. PROOF OF THEOREM 3 

Let f E F, be even and suppose that (h, q) = 1. We shall prove that 
f’(r) = f(h) is also in F, ; this will suffice to establish the theorem for, 
as we have shown in the proof of Theorem 1, the latter fact together with 
(i) implies that f vanishes identically and so, by Lemma 5, any f E F, 
satisfying (i) must be odd. 

From Lemmata 3 and 5 we see that G, has a basis of functions y: Z --+ Z 
which are each either odd or even and clearly only the even y are needed 



ON A PROBLEM OF CHOWLA 235 

to represent the even g E G, . Since the function g defined in terms off 
by (3) is even it suffices now to prove that for any y as before and for each k 
with (k, q) = 1 we have y’(s) = y(ks) E G, ; for then g’(s) = g(ks) E G,, , 
and, choosing k such that hk = 1 (mod q), we obtain 

f(h) = i g(s) Shrs = i g(ks) 5’“, 
S=l s=l 

whence, by Lemma 1, f’ E Fp as required. 
Now by Lemma 1 again we see that 

and, thus, 
Q-l 

; (1 - .$S)y(@ = 1. 

On applying the automorphism u of Q, given by a[ = tn, it follows that 

Q-l 
n (1 - pJ)v(S) = 1, 

s=l 

whence 
O-l 

c Y(S) log(l - P") 

is a multiple of 27ri. But since the imaginary part of log(1 - .$““) is an odd 
function of s, and, by definition, y is even, the foregoing sum is real and so 
must in fact vanish. Substituting sk for s, where hk = 1 (mod q), we get 

Q-l 

C y(ks) log(l - t8) = 0, 
S4 

and, appealing once more to Lemma 1, we see that y’ E Gq , as required. 
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