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We use lookback time versus redshift data from galaxy clusters (Capozziello et al., 2004 [9]) and
passively evolving galaxies (Simon et al., 2005 [62]), and apply a Bayesian prior on the total age of
the Universe based on WMAP measurements, to constrain dark energy cosmological model parameters.
Current lookback time data provide interesting and moderately restrictive constraints on cosmological
parameters. When used jointly with current baryon acoustic peak and Type Ia supernovae apparent
magnitude versus redshift data, lookback time data tighten the constraints on parameters and favor
slightly smaller values of the nonrelativistic matter energy density.
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1. Introduction

It is now a well established fact that the expansion of the Uni-
verse is accelerating, but the underlying mechanism which gives
rise to this cosmic acceleration is still a mystery. Recent cosmolog-
ical observations including the Hubble diagram of Type Ia super-
novae (SNeIa, e.g., [28,61,27]), combined with cosmic microwave
background (CMB) anisotropy measurements (e.g., [20,33]), baryon
acoustic peak galaxy power spectrum data (e.g., [44,57,26,66]), and
galaxy cluster gas mass fraction measurements (e.g., [2,56,22]) in-
dicate that we live in a spatially-flat Universe where nonrelativistic
matter contributes about 30% of the critical density. Within the
framework of Einstein’s general theory of relativity, the rest of the
70% of the energy density of the Universe is termed dark energy,
a mysterious component with negative effective pressure that is
responsible for the observed accelerated expansion.1 For recent re-
views of dark energy see [51,8,24], and [53].

There are many dark energy candidates. The simplest is Ein-
stein’s cosmological constant Λ. In addition, there are other op-
tions like XCDM, a slowly rolling scalar field, Chaplygin gas, etc.,
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1 For discussions of modification of Einsteinian gravity on cosmological scales that
attempt to do away with the need for dark energy, see [49,5,10,70,72], and refer-
ences therein.
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which can also give rise to an accelerated expansion of the Uni-
verse. In this Letter we constrain the parameters of three different
dark energy models. The first model is the cosmological constant
dominated cold dark matter (�CDM) model [41]. In this model
the energy density of the vacuum (the cosmological constant) does
not vary with time and it has a negative pressure characterized by
pΛ = −ρΛ , where ρΛ is the vacuum energy density.

Secondly, we consider the XCDM parameterization of dark en-
ergy. In this case dark energy is assumed to be a fluid satisfying
the following relation between pressure and the energy density,
px = ωxρx, with ωx < 0; this is not a physically complete model.
Lastly, we study the slowly rolling dark energy scalar field φ

model (φCDM) with an inverse power-law potential energy density
for the scalar field, V ∝ φ−α where α is a nonnegative constant
[42,50,43].2 We only consider the spatially-flat φCDM and XCDM
cases. The φCDM model with α = 0 and the XCDM model with
ωx = −1 are equivalent to the spatially-flat �CDM model with the
same matter density. In all three models the nonrelativistic matter
density is dominated by cold dark matter.

In this Letter we use two sets of lookback time versus redshift
measurements, for galaxy clusters [9] and for passively evolving
galaxies [62], and apply a Bayesian prior on the total age of the

2 In the φCDM model we consider here, φ only couples gravitationally to other
components. For models where φ also interacts more directly with other compo-
nents, see [15,4,7,45,25,35], and references therein. For other dark energy models,
see [39,3,29,6,63,21,40], and references therein.
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Universe based on WMAP estimates [20], to constrain parameters
of these dark energy models. This time-based cosmological test dif-
fers from other widely-used distance-based cosmological tests.3 An
important feature of this time-based method is that the age of dis-
tant objects are independent of each other. Therefore, it may avoid
biases that are present in techniques that use distances of primary
or secondary indicators in the cosmic distance ladder method. In
the literature a variety of time-based methods have been con-
sidered, based on measurements of the absolute age of objects,
differential age of objects, and lookback time of objects.4

The absolute age method is based on the simple criterion that
the age of the Universe at a given redshift is always greater than
or equal to the age of the oldest object at that redshift [1,37,30,
67]. The differential age method is based on the measurement
of �z/�t . �z is the redshift separation between the two pas-
sively evolving galaxies having the age difference �t [31,32]. This
method requires a large sample of passively evolving galaxies with
high quality spectroscopy and is probably more reliable than the
absolute age method as a number of systematic effects are elimi-
nated.

Lookback time as a tool to constrain dark energy models was
first used by Capozziello et al. [9] who compiled a list of galaxy
cluster ages and redshifts and used this data to constrain the
XCDM dark energy parameterization. This data has been used to
constrain brane cosmology and holographic dark energy models
[46,71]. The lookback time test has also been applied using pas-
sively evolving galaxies data, to constrain parameters of XCDM and
�CDM [17,18]. No doubt these time-based methods are subject
to some different systematic errors but they offer an indepen-
dent means to cross-check cosmological constraints obtained using
other techniques.

In this Letter we take advantage of the fact that the [9] galaxy
cluster data and the [62] passive galaxy data are independent, so it
is straightforward to use them simultaneously in a lookback time
versus redshift test analysis of dark energy models. Our joint anal-
yses of these data sets allow us to derive the tightest lookback
time constraints on dark energy parameters to date. The resulting
constraints are moderately restrictive, and these data favor lower
matter density values than do some other current data, but are
consistent with a spatially-flat �CDM model in which nonrela-
tivistic matter contributes 30% of the energy budget at a little less
than two standard deviations. To derive tighter constraints, we per-
form a joint analysis of the lookback time data with current baryon
acoustic peak and SNeIa measurements.

In Section 2 we describe the lookback time as a function of red-
shift test. The data and method we use are outlined in Section 3.
Our results are presented and discussed in Section 4.

2. Lookback time versus redshift test

The lookback time is the difference between the present age of
the Universe (t0) and its age at redshift z, t(z),

tL(z, p) = t0(p) − t(z)

= 1

H0

[ ∞∫
0

dz′

(1 + z′)H(z′, p)
−

∞∫
z

dz′

(1 + z′)H(z′, p)

]

3 Distance-based cosmological tests include those mentioned above that use
SNeIa, CMB, baryon acoustic peak, and galaxy cluster gas mass fraction data, as well
as radio-galaxy and quasar angular size versus redshift data (e.g., [13,47,16,60]) and
gamma-ray burst luminosity distance versus redshift measurements (e.g., [64,48,68,
36,65,59]).

4 A variation of this test uses measurements of the Hubble parameter as a func-
tion of redshift (e.g., [55,38,19,23], and references therein).
= 1

H0

z∫
0

dz′

(1 + z′)H(z′, p)
. (1)

Here p are the parameters of the cosmological model under con-
sideration, H(z, p) = H(z, p)/H0, H(z, p) is the Hubble parameter
at redshift z, and the Hubble constant H0 = 100h km s−1 Mpc−1.

Following [9], the observed lookback time tobs
L (zi), to an object

i at redshift zi is defined as

tobs
L

(
zi, tinc, tobs

0

) = tobs
0 − ti(zi) − tinc. (2)

Here

• tobs
0 is the measured current age of the Universe.

• ti(zi) is the age of the object (passively evolving galaxy, cluster,
etc.), defined as the difference between the current age of the
Universe at redshift zi and the age of the Universe when the
object was born at redshift z f ,

ti(zi) = t(zi) − t(z f ) = tL(z f ) − tL(zi)

= 1

H0

z f∫
zi

dz′

(1 + z′)H(z′, p)
, (3)

where we have used Eq. (1).
• tinc = tobs

0 −tL(z f ) is the incubation time of the object. This de-
lay factor encodes our ignorance of the formation redshift z f .

To compute model predictions for the lookback time tL(z, p),
Eq. (1), we need an expression for H(z, p). In the �CDM model
the Hubble parameter is

H(z, p) = H0
[
Ωm(1 + z)3

+ (1 − Ωm − ΩΛ)(1 + z)2 + ΩΛ

]1/2
, (4)

where p are Ωm and ΩΛ , the nonrelativistic matter and dark en-
ergy density parameters at z = 0. For the XCDM parameterization
in a spatially-flat cosmological model we have

H(z, p) = H0
[
Ωm(1 + z)3 + (1 − Ωm)(1 + z)3(1+ωx)

]1/2
, (5)

where p are Ωm and ωx. In the spatially-flat φCDM model

H(z, p) = H0
[
Ωm(1 + z)3 + Ωφ(z)

]1/2
, (6)

where the scalar field energy density parameter Ωφ(z) can be
evaluated numerically by solving the coupled set of equations of
motion,

φ̈ + 3
ȧ

a
φ̇ − κα

2
m2

pφ−(α+1) = 0, (7)

(
ȧ

a

)2

= 8π

3m2
p

[
Ωm(1 + z)3 + Ωφ(z)

]
, (8)

Ωφ(z) = [
(φ̇)2 + κm2

pφ−α
]
/12. (9)

Here a(t) is the scale factor, an overdot denotes a time derivative,
mp is Planck’s mass, and κ and α are nonnegative constants that
characterize the inverse power law potential energy density of the
scalar field, V (φ) = κφ−α . In this case the parameters p are Ωm
and α.
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Table 1

[62] galaxy ages

zi ti(zi) (Gyr)

0.1171 10.2
0.1174 10.0
0.2220 9.0
0.2311 9.0
0.3559 7.6
0.4520 6.8
0.5750 7.0
0.6440 6.0
0.6760 6.0
0.8330 6.0
0.8360 5.8
0.9220 5.5
1.179 4.6
1.222 3.5
1.224 4.3
1.225 3.5
1.226 3.5
1.340 3.4
1.380 3.5
1.383 3.5
1.396 3.6
1.430 3.2
1.450 3.2
1.488 3.0
1.490 3.6
1.493 3.2
1.510 2.8
1.550 3.0
1.576 2.5
1.642 3.0
1.725 2.6
1.845 2.5

3. Data and computation

In order to constrain cosmological parameters of �CDM, XCDM,
and φCDM, we use two age data sets. One is the [62] ages of
32 passively evolving galaxies (Table 1, [73]) in the redshift in-
terval 0.117 � z � 1.845. For this sample we assume a 12% one
standard deviation uncertainty on the age measurements [73]. The
other is [9, Table 1] ages of 6 galaxy clusters in the redshift range
0.10 � z � 1.27. This sample has a 1 Gyr one standard deviation
uncertainty on the age measurements. In all, we have 38 measure-
ments of tobs

L (zi) with uncorrelated uncertainties σi .
For each model and parameter value set (p) we compute the

χ2 function

χ2(p, H0, tinc, tobs
0

) =
38∑

i=1

(tL(zi, p) − tobs
L (zi, tinc, tobs

0 ))2

σ 2
i + σ 2

tobs
0

+ (t0(p, H0) − tobs
0 )2

σ 2
tobs
0

, (10)

where σ obs
t0

is the uncertainty in the estimate of t0 and tL(zi, p)

and t0(p) are the predicted values in the model under considera-
tion. From χ2 we construct a likelihood function L′(p, H0, tinc) ∝
exp(−χ2/2).

The likelihood function L′(p, H0, tinc, tobs
0 ) depends on the to-

tal age of the Universe tobs
0 , incubation time tinc and the Hubble

parameter H0. We do not know tinc and so treat it as a nuisance
parameter and analytically marginalize L′ over it as in [9,17]. We
treat H0 as a nuisance parameter and marginalize over it with a
Gaussian prior with h = 0.742±0.036 [52], a little higher than, but
still consistent with, the earlier summary value of h = 0.68 ± 0.04
[12]. We also apply a Bayesian prior as a Gaussian function with
Fig. 1. 1, 2, and 3σ confidence level contours for the �CDM model from the look-
back time data and measurement of the age of the Universe. The dashed line
corresponds to spatially-flat models. The cross indicates the best-fit parameters
Ωm = 0.01 and ΩΛ = 0.19 with χ2 = 33 for 37 degrees of freedom.

central values and variances based on the WMAP estimate of
the total age of the Universe, which is tobs

0 = (13.75 ± 0.13) Gyr

for the �CDM model and tobs
0 = (13.75+0.29

−0.27) Gyr for the XCDM
model [20].5 For the φCDM model we assume the same central
value as the other two models and conservatively inflate the er-
ror bar to tobs

0 = (13.75 ± 0.5) Gyr. The resulting lookback time
likelihood function depends only on the two cosmological param-
eters p, LL(p). The best-fit parameters are the pair p∗ that maxi-
mize the likelihood function and the 1, 2, and 3σ confidence level
contours are defined as the sets of cosmological parameters pσ at
which the likelihood L(pσ ) is exp(−2.30/2), exp(−6.18/2), and
exp(−11.83/2) times smaller than the maximum likelihood L(p∗).

To check our method we used the [9] galaxy cluster data and
the earlier tobs

0 result they used and computed the constraints
on the XCDM parameterization. Our contours are consistent with
those shown in Fig. 2 of [9]. We also used the [62] passively
evolving galaxy ages and the tobs

0 value [17] used to constrain the
�CDM model. We find that if we pick h = 0.72 we are able to ac-
curately reproduce the central and right panels of Fig. 2 of [17].

The lookback time versus redshift data constraints on �CDM,
XCDM, and φCDM are shown in Figs. 1–3.

4. Results and discussions

Fig. 1 shows the constraints on the �CDM model from the
lookback time and age of the Universe measurements. The data
favor low vales of both Ωm and ΩΛ with the best-fit values being
Ωm = 0.01 and ΩΛ = 0.19. These data prefer spatially-open mod-
els, however a spatially-flat �CDM model with Ωm = 0.3 is less
than 3σ from the best-fit model. The data constrains Ωm to be
less than 0.45 on 3σ confidence level.

5 The numbers are taken from http://gsfc.nasa.gov/.

http://gsfc.nasa.gov/
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Fig. 2. 1, 2, and 3σ confidence level contours for the XCDM parameterization of
dark energy in a spatially-flat cosmological model, from the lookback time data and
measurement of the age of the Universe. The dashed ωx = −1 line corresponds to
spatially-flat �CDM models. The cross indicates the best-fit parameters Ωm = 0.03
and ωx = −0.41 with χ2 = 28 for 37 degrees of freedom.

Fig. 3. 1, 2, and 3σ confidence level contours for the spatially-flat φCDM model from
the lookback time data and measurement of the age of the Universe. The α = 0
horizontal axis corresponds to spatially-flat �CDM models. The cross indicates the
best-fit parameters Ωm = 0.04 and α = 10 with χ2 = 22 for 37 degrees of freedom.

Fig. 2 presents the constraints on the XCDM parametrization of
the equation of state. The nonrelativistic matter density parameter
is constrained to be less than 0.5 at 3σ confidence. Low values
of Ωm are favored with the best-fit values being Ωm = 0.03 and
ωx = −0.41 and a spatially-flat model with Ωm = 0.3 is about 2σ
from the best-fit model.
Fig. 4. 1, 2, and 3σ confidence level contours for the �CDM model. Numerical
noise is responsible for the jaggedness of parts of the contours. The dashed line
demarcates spatially-flat models. Dotted lines (circle denotes the best-fit point at
Ωm = 0.30 and ΩΛ = 0.78 with χ2 = 359 for 346 degrees of freedom) are de-
rived using the lookback time data, measurement of the age of the Universe, SNeIa
Union data, and BAO peak measurements, while solid lines (cross denotes the best-
fit point at Ωm = 0.32 and ΩΛ = 0.78 with χ2 = 318 for 307 degrees of freedom)
are derived using SNeIa and BAO data. The dashed line corresponds to spatially-flat
models.

Fig. 3 shows the constraints on the φCDM model of dark energy.
In this model the nonrelativistic matter density parameter is less
than 0.5 at 3σ confidence. The α parameter on the other hand is
not well constrained. The best-fit parameter value is α = 10, but
the likelihood is very flat in the direction of α and the difference
between the best-fit value and α = 0 (which is the spatially-flat
�CDM case) is slightly less than 2σ .

Current lookback time data by themselves are unable to tightly
constrain cosmological parameters. Constraints from galaxy cluster
gas mass fraction versus redshift data (e.g., [14]), SNeIa apparent
magnitude versus redshift measurements (e.g., [69]), and baryon
acoustic peak data (e.g., [58]) are more restrictive than the look-
back time constraints. However, the constraints from lookback time
data are somewhat tighter than the constraints from strong gravi-
tational lensing data (e.g., [11]), measurements of the Hubble pa-
rameter as a function of redshift (e.g., [54]), radio galaxy angular
size versus redshift data (e.g., [16]), and gamma-ray burst luminos-
ity distance versus redshift data (e.g., [59]).

To get tighter constraints on cosmological parameters we com-
bine the lookback time data and the measurement of the age
of the Universe with baryon acoustic peak data [44] and SNeIa
“Union” apparent magnitude versus redshift measurements [34].
Since these data sets are independent we compute a joint likeli-
hood function that is a product of individual likelihood functions

Ljoint = LL LBAO LSNe, (11)

and define the best-fit parameters and confidence level contours
as discussed above.

The constraints on the three dark energy models from a joint
analysis of these data are shown in Figs. 4–6. Currently available
lookback time data do not significantly change the results derived



L. Samushia et al. / Physics Letters B 693 (2010) 509–514 513
Fig. 5. 1, 2, and 3σ confidence level contours for the XCDM parameterization of dark
energy in a spatially-flat cosmological model. The dashed line demarcates spatially-
flat �CDM models. Dotted lines (circle denotes the best-fit point at Ωm = 0.19 and
ωx = −0.80 with χ2 = 352 for 346 degrees of freedom) are derived using the look-
back time data, measurement of the age of the Universe, SNeIa Union data, and BAO
peak measurements, while solid lines (cross denotes the best-fit point at Ωm = 0.19
and ωx = −0.81 with χ2 = 321 for 307 degrees of freedom) are derived using only
SNeIa and BAO data. The dashed ωx line corresponds to spatially-flat �CDM mod-
els.

Fig. 6. 1, 2, and 3σ confidence level contours for the spatially-flat φCDM model.
The α = 0 horizontal axis corresponds to spatially-flat �CDM models. Dotted lines
(circle denotes the best-fit point at Ωm = 0.215 and α = 0.0 with χ2 = 359 for 346
degrees of freedom) are derived using the lookback time data, measurement of the
age of the Universe, SNeIa Union data, and BAO peak measurements, while solid
lines (cross denotes the best-fit point at Ωm = 0.22 and α = 0.0 with χ2 = 329 for
307 degrees of freedom) are derived using only SNeIa and BAO data.

using BAO peak measurements and SNeIa apparent magnitude
data. In all three dark energy models when lookback time data
are added to the mix the confidence level regions favor slightly
smaller values of nonrelativistic matter density parameter Ωm.

Overall, current data is a good fit to all three dark energy mod-
els. For φCDM and XCDM they slightly favor time-dependent dark
energy, but the time-independent cosmological constant is also a
good fit.

We anticipate that a new, improved data set of lookback times
will soon be available [74]. With more and better data we ex-
pect significantly tighter constraints on dark energy parameters.
The lookback time versus redshift test, either by itself or at least
in combination with other cosmological probes, could prove very
useful in detecting or constraining dark energy time evolution.
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