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It has been proved that the charged stringy black holes are stable under the perturbations of massive 
charged scalar fields. However, superradiant instability can be generated by adding the mirror-like 
boundary condition to the composed system of charged stringy black hole and scalar field. The unstable 
boxed quasinormal modes have been calculated by using both analytical and numerical methods. In this 
paper, we further provide a time domain analysis by performing a long time evolution of charged scalar 
field configuration in the background of the charged stringy black hole with the mirror-like boundary 
condition imposed. We have used the ingoing Eddington–Finkelstein coordinates to derive the evolution 
equation, and adopted Pseudo-spectral method and the forth-order Runge–Kutta method to evolve the 
scalar field with the initial Gaussian wave packet. It is shown by our numerical scheme that Fourier 
transforming the evolution data coincides well with the unstable modes computed from frequency 
domain analysis. The existence of the rapid growth mode makes the charged stringy black hole a good 
test ground to study the nonlinear development of superradiant instability.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Superradiance is an interesting classical effect of the rotating 
or charged black holes [1–4]. Although in any classical process in 
black hole spacetime no particle (even for photon) can escape from 
the event horizon of black hole, the energy of rotating or charged 
black hole can be extracted out via the superradiance process. It 
should also be noted that this classical superradiance process does 
not violate the area theorem. Consider, for example, the superra-
diance effect of rotating black hole. Suppose a bosonic wave of 
the form e−i(ωt−mφ) , with ω and m being the frequency and az-
imuthal quantum number, is scattered by the event horizon. If 
Re[ω] < m�H with �H being the angular velocity of event hori-
zon, the incident wave gets amplified by the black hole rotating. 
For the charged black holes, the charged bosonic fields should be 
considered in order to create this effect, where the charge of per-
turbation field plays the role of rotating [5].
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This effect may trigger an instability if the wave repeatedly 
scatters off the black hole, which is named as superradiant insta-
bility or black hole bomb mechanism [6,7]. This can be achieved 
by either introducing a mass term of the bosonic field or adding a 
mirror-like boundary condition outside the black hole, which will 
reflect the bosonic wave repeatedly. Then the energy extracted 
from the black hole can grow exponentially with the time. For 
many cases, this instability triggered by superradiance has been 
confirmed by both analytical and numerical methods [8–33]. Be-
sides the stability problems of black holes in theory, the astrophys-
ical black holes are suggested to be sensitive detectors of ultralight 
bosons with mass between 10−20 and 10−10 eV [34–36]. One can 
refer to Ref. [37] for a recent review on the topic of superradi-
ant instabilities and related problems. However, this is not the full 
story. It is shown that, in some cases, the scalar fields do behave 
the superradiance effect, while the instability does not occur. For 
example, the Reissner–Nordstrom black hole is stable against the 
superradiance [38–41].

In [42], we have shown that the mass term of charged scalar 
field cannot support quasi-bound state outside the charged stringy 
black hole. This is to say that the charged stringy black hole is sta-
ble against the massive charged scalar perturbation. This result was 
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further confirmed in [43] by computing the quasinormal modes of 
charged scalar perturbation. In [44], we have studied the superra-
diant instability of the scalar field in the background of charged 
stringy black hole due to a mirror-like boundary condition. The 
analytical expression of the unstable superradiant modes is de-
rived by using the asymptotic matching method [7]. Soon later, 
this analytical result is further confirmed by the recent numeri-
cal studies [45]. It is well-known that the asymptotic global Anti 
de-Sitter (AdS) boundary condition can also play the role of the re-
flecting mirror [46,47]. The superradiant instabilities of scalar field 
and gravitational field in the background of Reissner–Nördstrom 
AdS black holes and Kerr AdS black holes imply the existence of 
hairy black holes and black holes with less symmetry. In fact, these 
black hole solutions can be constructed in a perturbative expansion 
[48,49] and numerically at full non-linear level by solving the Ein-
stein equations [50,51]. While for the asymptotically flat case, the 
rotating hairy black hole is constructed in [52]. Motivated by these 
works, the stationary cloud-like configurations of scalar field satis-
fying the superradiant critical frequencies are also studied in [53]. 
However, the instability of scalar field in the charged stringy black 
hole is only revealed by computing the unstable boxed quasinor-
mal modes in the frequency domain analysis.1

In this paper, we shall perform the time domain analysis of 
the charged scalar field configuration in the above charged stringy 
black hole background. Although the time domain analysis of 
superradiant instability is a challenging work due to the small 
growth rate, a time domain study of superradiant instability for the 
scalar field on Kerr spacetime has been initiated in [54]. Instead of 
the usually used Schwarzschild like coordinates, we will exploit the 
ingoing Eddington–Finkelstein coordinates, where the partial dif-
ferential evolution equation is generically first order in time such 
that there is no need for one to introduce an auxiliary field for nu-
merical computation. In addition, compared to the finite difference 
method, the pseudo-spectral method has become an increasingly 
popular numerical technique to study the black hole physics in 
particular due to its higher computation efficiency. For example, 
the pseudo-spectral method has recently been used to calculate 
the quasinormal modes of asymptotically flat black holes in [55]
and to study the gravitational wave collapse in [56]. One can re-
fer to Ref. [57] for a review of this numerical method. With this in 
mind, we shall resort to the pseudo-spectral method in the spacial 
direction supplemented with the forth order Runge–Kutta method 
in time to numerically evolve an initial Gaussian wave packet. As 
a result, the unstable modes, obtained from the Fourier transform-
ing the evolution data, prove to be in good agreement with those 
computed from the frequency domain analysis. We also confirm 
the existence of the rapid growth modes, which makes the charged 
stringy black hole a good test ground to study the nonlinear devel-
opment of superradiant instability.

This paper is organized as follows. In Section 2, we describe 
the basic setup of a charged scalar field with mirror-like boundary 
condition in charged stringy black hole background. The involved 
partial differential equation that governs the evolution is also de-
rived. In Section 3, our numerical scheme is detailed. We present 
our numerical results and relevant discussions in Section 4. Final 
remarks are made in the last section.

2. Framework

The black hole background considered in the present paper is 
a static spherically symmetric charged black hole in the low en-
ergy effective theory of heterotic string theory in four dimensions, 

1 It should be noted that the boxed quasinormal mode is also called as quasi-
bound state in literature.
which was firstly found by Gibbons and Maeda in [58] as well 
as independently found by Garfinkle, Horowitz, and Strominger in 
[59] a few years later. The metric is explicitly given by

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2

+ r

(
r − Q 2

M

)
(dθ2 + sin2 θdφ2) , (1)

and the electric potential and dilaton field are given by

At = − Q

r
,

e2� = 1 − Q 2

Mr
. (2)

The parameters M and Q are the mass and electric charge of the 
black hole, respectively. The event horizon of black hole is located 
at r = 2M and the singularity is located at r = Q 2/M . We only 
consider the non-extremal case in which the parameters satisfy 
the condition Q <

√
2M .

For the latter convenience of numerical calculation, we would 
like to adopt the ingoing null coordinate defined by

v = t + r∗ , (3)

with r∗ being the tortoise coordinate

r∗ =
∫

dr

1 − 2M
r

= r + 2M ln
∣∣∣ r

2M
− 1

∣∣∣ . (4)

Then the metric in the ingoing Eddington–Finkelstein coordinates 
reads

ds2 = −
(

1 − 2M

r

)
dv2 + 2dvdr

+ r

(
r − Q 2

M

)
(dθ2 + sin2 θdφ2) , (5)

and the electric potential can be written as

Av = − Q

r
, (6)

where we have also performed a gauge transformation A →
A − ∇ψ with ψ = Q

∫ dr
r−2M .

For simiplicity, it is sufficient to consider the test charged mass-
less scalar field, the dynamics of which is governed by the Klein–
Gordon equation

(∇ν − iq Aν)(∇ν − iq Aν)	 = 0 , (7)

where q denotes the charge of the scalar field.
By taking the ansatz of the scalar field

	 =
∑
l,m

1√
r(r − 2M)

φlm(u, r)Ylm(θ,φ) , (8)

the Klein–Gordon equation is shown to be separable in this back-
ground. After some algebra, we can finally get the following partial 
differential equation

∂v∂rφ + r − 2M
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r
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2
φ = 0 , (9)
2r(r − Q /M)
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Fig. 1. Time evolution of scalar field with the initial Gaussian wave packet. The parameters are taken as rm = 30, l = 1, Q = 0.6, and q = 0.6, with M = 1 as our unit. The first 
panel shows the real part of the scalar field evolving with the time, while the second panel shows the logarithm of scalar field evolving with the time. Fourier transformation 
of the time evolution data is demonstrated in the third panel.
where we have dropped the mode number subscripts to simplify 
the notation.

We can now evolve the scalar field according to this partial dif-
ferential equation numerically with the initial condition. From the 
frequency domain analysis, we know that the mirror-like bound-
ary condition should be imposed to generate the superradiant in-
stability of charged scalar filed in the stringy charged black hole 
spacetime. This condition now can be explicitly expressed as

φ(v, rm) = 0 , (10)

where rm is the location of mirror. This condition should be satis-
fied during the whole time evolution process.

3. Numerics

We use the method of lines in the forth order Runge–Kutta 
scheme to integrate in time. The space direction is then approx-
imated by using the pseudo-spectral method instead of the finite 
difference method. To be more specific, we first use a linear trans-
formation

z = 2(r − 2M)

rm − 2M
− 1 , (11)

to map the r coordinate interval [2M, rm] into an interval [−1, 1]. 
We then expand the scalar field in a basis of Chebyshev polyno-
mials in the space direction. The scalar field function is discretized 
by the values of the expansion on the Gauss–Lobatto collocation 
points. The spatial derivative of the scalar field is computed by 
multiplying the Gauss–Lobatto derivative matrix. In the time di-
rection, we use the standard fourth order Runge–Kutta scheme to 
evolve the scalar field. To be more precise, we first evolve the 
space derivative of the scalar field according to (9) and then inte-
grate out the scalar field by multiplying the integral matrix with 
the built in mirror-like boundary condition (10). Therefore the 
mirror-like boundary condition is automatically maintained in the 
whole evolution process. The above procedure can be realized in 
the software of MATHEMATICA. It is noteworthy that the similar 
numerical trick has also been used in [60] to study the holographic 
vortex dynamics in the context of AdS/CFT correspondence.

4. Result

Fig. 1 shows a generic evolution of scalar field. The initial con-
figuration at v = 0 is a Gaussian wave packet centered at rcg , i.e.,

φ(0, r) = φ0e
− (r−rcg )2

σ2 , (12)

with φ0 = 3 × 10−5, rcg = 15M , σ 2 = 30M2. From the first panel 
in Fig. 1, we find that at early stage of evolution the amplitude of 
scalar field oscillatorily decays with the time. This is mainly caused 
Table 1
Boxed quasinormal modes for the first 2 mirrored states with 
M = 1, rm = 30, l = 1, Q = 0.6, q = 0.6. The second column is 
taken from the frequency domain analysis, while the third col-
umn is read off from the Fourier transformation of evolution data, 
i.e. the third panel in Fig. 1.

n ω Re[ω]
0 0.158905 + 5.69687 × 10−7 i 0.159
1 0.254763 − 1.79498 × 10−5 i 0.255

by the absorption of the high-frequency modes of scalar field by 
the black hole horizon. These components are not superradiant. 
The low-frequency components satisfying the superradiant condi-
tion get amplified when scattered by the black hole. So, in the 
following stage, the field amplitude oscillatorily grows very slowly. 
The reason is that the imaginary part of unstable mode in this case 
is very small, which is shown in Table 1. The second panel shows 
the logarithm of scalar field amplitude evolving with the time. 
The third panel is the corresponding Fourier transformation of the 
evolution data, where some peaks show up at a set of distinct 
frequencies with the unstable mode dominant. As further demon-
strated in Table 1, the magnitude of these distinct frequencies 
is in good agreement with the boxed quasinormal modes in the 
frequency domain analysis. We find the consistency between the 
modes from two sides. The growth time scale is set by the inverse 
of the imaginary part. So only after a long time evolution of order 
of v/M ∼ 107 can a significant growth of scalar field amplitude be 
observed in this case. In what follows we will focus on the case in 
which the unstable mode has a much bigger imaginary part.

By calculating the boxed quasinormal modes, we find that the 
imaginary parts of l = 0 unstable modes are generically three or-
ders of magnitude greater than that of l = 1 unstable modes. This 
indicates that the l = 0 unstable modes have a much faster growth 
rate than the l = 1 unstable modes, which is confirmed by Fig. 2
for the real time evolution of the l = 0 case. In particular, the ex-
ponential growth rate can be estimated as 5 × 10−4 or so by the 
time evolution of logarithm of scalar field amplitude, which co-
incides with the imaginary part of the unstable mode in Table 2. 
Furthermore, as shown in Table 2, the real part of unstable mode 
read off from the Fourier transformation of evolution data is also 
consistent with the frequency domain analysis.

In the above two cases, we have chosen the parameters to make 
the black hole–mirror system possess only one unstable mode. 
Note that the superradiant critical frequency is given by [61]

ωc = qQ

2M
. (13)

The critical frequency for the above two cases, separating growing 
modes (ω < ωc) from decreasing modes (ω > ωc), is given by 0.18, 
consistent with the above numerical results. In order to see more 
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Fig. 2. Time evolution of scalar field with the initial Gaussian wave packet. The parameters are taken as M = 1, rm = 30, l = 0, Q = 0.6, and q = 0.6. The first panel shows 
the real part of the scalar field evolving with the time, while the second panel shows the logarithm of scalar field evolving with the time. Fourier transformation of the time 
evolution data is demonstrated in the third panel.

Fig. 3. Time evolutions of scalar field for different black hole charges. From top to bottom, Q = 0.8, 1.1, and 1.4, individually. The parameters are taken as M = 1, rm = 30, 
l = 0, and q = 0.6. The left three panels show the real part of the scalar field evolving with the time, while the right three panels show the Fourier transformation of the time 
evolution data. In fact, the last panel shows the logarithm of Fourier transformation, otherwise the other modes would be much overshadowed by the most unstable mode.
Table 2
Boxed quasinormal modes for the first 2 mirrored states taking 
M = 1, rm = 30, l = 0, Q = 0.6, q = 0.6. The second column is 
taken from the frequency domain analysis, while the third column 
is read off from the Fourier transformation of evolution data, i.e. 
the third panel in Fig. 2.

n ω Re[ω]
0 0.119962 + 4.85725 × 10−4 i 0.120
1 0.211098 − 7.12823 × 10−4 i 0.212

unstable modes show up, it is reasonable to increase the critical 
frequency by cranking up either the charge of the black hole or 
scalar field.

We first compare the time evolutions of scalar field for differ-
ent values of black hole charge Q . As discussed above, in order 
to observe the distinct growth of scalar field amplitude, we have 
also chosen the parameter l = 0. Keeping M = 1, rm = 30, and 
q = 0.6, in the following we take three cases with Q = 0.8, 1.1, 
and 1.4 on top of the previous case of Q = 0.6. The superradi-
ant critical frequencies in these three cases are 0.24, 0.33, and 
0.42, individually. In Fig. 3, we display the time evolutions of the 
scalar field amplitude (left three panels). The first 3 boxed quasi-
normal modes are displayed in Table 3. As expected before, the 
number of unstable modes increases with the black hole charge. 
When Q = 0.8 and Q = 1.1, there are two unstable modes. When 
Q = 1.4, there are three unstable modes. These unstable modes 
are all displayed in the Fourier transformation of the evolving data 
(right three panels). It is also shown that the mode dominates 
the evolving is always the one with the largest positive imagi-
nary part in Table 3. However, there is no general rule of the 
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Fig. 4. Time evolutions of scalar field for different values of the field charges. From top to bottom, q = 0.4, 0.65, 1.0, individually. The parameters are taken as M = 1, rm =
30, l = 0, and Q = 0.8. The left three panels show the real part of the scalar field evolving with the time, while the right three panels show the Fourier transformation of 
the time evolution data. The last panel also shows the logarithm of Fourier transformation.

Table 3
Boxed quasinormal modes for the first 3 mirrored states taking M = 1, l = 0, rm = 30, q = 0.6.

n Q = 0.8 Q = 1.1 Q = 1.4

0 0.128718 + 7.03969 × 10−4 i 0.141096 + 8.61972 × 10−4 i 0.15229 + 6.23948 × 10−4 i

1 0.223744 + 2.33795 × 10−4 i 0.24119 + 5.9991 × 10−4 i 0.257199 + 1.24213 × 10−4 i

2 0.309293 − 2.52535 × 10−3 i 0.331962 − 2.75849 × 10−5 i 0.352634 + 4.42053 × 10−5 i

Table 4
Boxed quasinormal modes for the first 3 mirrored states taking M = 1, rm = 30, l = 0, Q = 0.8.

n q = 0.4 q = 0.65 q = 1.0

0 0.117342 + 3.09664 × 10−4 i 0.131452 + 8.03298 × 10−4 i 0.149771 + 1.62917 × 10−3 i

1 0.207633 − 1.04707 × 10−3 i 0.227552 + 4.26772 × 10−4 i 0.252281 + 1.29866 × 10−3 i

2 0.289823 − 7.09925 × 10−3 i 0.314069 − 1.76193 × 10−3 i 0.345103 + 8.61385 × 10−4 i
instability of black hole–mirror system depending on the black 
hole charge Q . In other words, the fast or the slow growth of 
scalar field is not determined by the large or the small black hole 
charge.

Next, we compare the time evolutions of scalar field for differ-
ent values of the field charge q, keeping the same initial Gaussian 
wave packet as before with M = 1, rm = 30, l = 0, and Q = 0.8. 
In Fig. 4, we display the time evolutions of the field amplitude 
(left three panels) and the Fourier transformation of the evolu-
tion data (right three panels). The boxed quasinormal modes for 
the first 3 mirrored states are displayed in Table 4. The superra-
diant critical frequencies in these three cases are 0.16, 0.26, and 
0.40, individually. As expected, the number of unstable modes also 
increases with the charge of scalar field. When q = 0.4, there is 
only one unstable mode. When q = 0.65, there are two unstable 
modes. When q = 1.0, there are three unstable modes. Similarly, 
the Fourier transformation of the evolution data shows that the 
dominant mode is always the one with the largest positive imag-
inary part in Table 4. In addition, consistent with the previous 
analytic result [44], we also observe that when the field charge 
q increases, the black hole–mirror system becomes more unstable 
and exhibits a more rapidly growing behavior.

We also show the time evolutions of scalar field for differ-
ent values of mirror radius rm in Fig. 5. The corresponding boxed 
quasinormal modes for the first 3 mirrored states are also dis-
played in Table 5. As expected, Fourier transformation of time 
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Fig. 5. Time evolutions for different values of mirror radius. From top to bottom, rm = 20, 15, and 10, individually. The parameters are taken as M = 1, l = 1, Q = 1, and 
q = 2. The left three panels show the real part of the evolving scalar field, while the right three panels show the Fourier transformation of the evolution data.

Table 5
Boxed quasinormal modes for the first 3 mirrored states taking M = 1, l = 1, Q = 1, q = 2.

n rm = 20 rm = 15 rm = 10

0 0.365882 + 1.48242 × 10−4 i 0.47635 + 1.75276 × 10−4 i 0.67915 + 2.08701 × 10−4 i

1 0.53467 + 1.13535 × 10−4 i 0.686655 + 1.29391 × 10−4 i 0.947995 + 1.0283 × 10−4 i

2 0.684008 + 9.61229 × 10−5 i 0.868147 + 1.01999 × 10−4 i 1.15524 − 4.12335 × 10−3 i
evolution data is in good agreement with the frequency domain 
analysis.

It is shown in the work [62,63] that there exists rapid growth 
unstable modes in the charged Reissner–Nordstrom black hole. 
Motivated by this, we would like to end this section by demon-
strating a very rapidly growing time evolution in our model. As 
such, we take the parameters as M = 1, rm = 5, l = 1, Q = 1, 
and q = 30, for which the most unstable mode is given by ω =
8.01818 + 0.0573857i. Fig. 6 displays such a time evolution of 
scalar field the Fourier transformation of the evolution data for the 
initial Gaussian wave packet

φ(0, r) = 3 × 10−5e
− (r−2.5M)2

0.03M2 . (14)

Obviously the real part of scalar field evolves with the time very 
rapidly. Fig. 6(a) and (c) represent the growth of the real part 
of scalar field and its logarithm. It can be easily estimated from 
Fig. 6(c) that the growth rate is about 0.05, which is in good 
agreement with the imaginary part of the above unstable mode. 
In addition, we also zoom in on the time evolution to illustrate 
the oscillating behavior of the scalar field in Fig. 6(b). To read off 
the precise value of this oscillating frequency, we further take the 
Fourier transformation of the evolution data and the resultant real 
part of dominant unstable modes is 8.015, which is also consistent 
with the frequency domain analysis as well. Our numerical results 
show that the rapidly growing evolution process is dominated by 
the most unstable mode and other unstable modes are much sup-
pressed.

5. Conclusion

In this paper, we have presented a time domain analysis of 
long time evolution of charged scalar field configuration in charged 
stringy black hole background by imposing the mirror-like bound-
ary condition. The numerical scheme we have used is pseudo-
spectral method in the space direction supplemented with Runge–
Kutta method in the ingoing Eddington–Finkelstein time direction. 
As a result, this numerical scheme turns out to be highly efficient 
and amenable to a long time evolution. In particular, our numer-
ical results confirm the superradiant instability of scalar field in 
this background when the black hole is enclosed in a cavity. Fur-
thermore, it is shown that Fourier transforming the evolution data 
coincides with the unstable modes calculated from the frequency 
domain analysis. This paper may provide an alternative method to 
study the time evolution question of field perturbations in black 
hole background.
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Fig. 6. Rapidly growing time evolution. The parameters are taken as M = 1, rm = 5, l = 1, Q = 1, and q = 30. (a) Real part of the scalar field evolving with the time.
(b) Oscillating behavior of real part. (c) Logarithm of scalar field evolving with the time. (d) Logarithm of Fourier transformation of the evolution data.
In the present work, the backreaction of scalar field on the 
background geometry is not considered. During the superradiant 
process, the field extracts energy from the black hole and its en-
ergy grows exponentially. Then the nonlinear interaction between 
the field and black hole is required to be taken into account in 
particular for the case in which there is a very rapidly growing 
mode. We demonstrate there exists the rapid growth mode in the 
charged stringy black hole–mirror system. To see what final state 
this superradiant instability leads to, the fully nonlinear evolution 
of the coupled system of scalar field and black hole is required, al-
though it is supposed to much involved. We hope to address this 
challenging issue in the near future.
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