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Identification of a new uracil-DNA glycosylase family by
expression cloning using synthetic inhibitors
Karl A. Haushalter*, P. Todd Stukenberg†, Marc W. Kirschner†‡

and Gregory L. Verdine*‡

Background: The cellular environment exposes DNA to a wide variety of
endogenous and exogenous reactive species that can damage DNA, thereby
leading to genetic mutations. DNA glycosylases protect the integrity of the
genome by catalyzing the first step in the base excision–repair of lesions in DNA. 

Results: Here, we report a strategy to conduct genome-wide screening for
expressed DNA glycosylases, based on their ability to bind to a library of four
synthetic inhibitors that target the enzyme’s active site. These inhibitors, used in
conjunction with the in vitro expression cloning procedure, led to the
identification of novel Xenopus and human proteins, xSMUG1 and hSMUG1,
respectively, that efficiently excise uracil residues from DNA. Despite a lack of
statistically significant overall sequence similarity to the two established classes
of uracil-DNA glycosylases, the SMUG1 enzymes contain motifs that are
hallmarks of a shared active-site structure and overall protein architecture. The
unusual preference of SMUG1 for single-stranded rather than double-stranded
DNA suggests a unique biological function in ridding the genome of uracil
residues, which are potent endogenous mutagens.

Conclusions: The ‘proteomics’ approach described here has led to the
isolation of a new family of uracil-DNA glycosylases. The three classes of uracil-
excising enzymes (SMUG1 being the most recently discovered) represent a
striking example of structural and functional conservation in the almost
complete absence of sequence conservation.

Background
The covalent structure of the cellular genome is subject to
spontaneous alteration by a wide variety of endogenous
and exogenous reactants. The resulting lesions can
produce mutations by base-mispairing during DNA repli-
cation, or can decrease cell viability by interfering with the
template functions of DNA [1,2]. To counter these dele-
terious effects, all cells and even some viruses express pro-
teins that are responsible for surveillance of the genome
and repair of structural aberrations. At least five mechanis-
tically distinct pathways are known to be employed in the
eradication of DNA lesions: nucleotide excision–repair [3],
base excision–repair [4], recombinational repair [5], mis-
match repair [6] and direct reversion [7,8]. These path-
ways are highly conserved throughout evolution, from
bacteria to mammals. Extensive efforts have led to a
sophisticated molecular-level understanding of the DNA
repair pathways in bacteria and an emerging picture in
lower eukaryotes, but the corresponding pathways in
higher eukaryotes are now just coming into focus [9].
Progress on the latter front would be accelerated by the
isolation and cloning of all the protein components that
make up each pathway. Here, we report a potentially
general strategy that employs designed synthetic

inhibitors to conduct a whole-genome screen for the
encoded DNA repair proteins.

As the initial focus of these investigations, we chose the
base-excision DNA repair (BER) pathway, which is
responsible for the removal of damaged bases from DNA
and restoration of the original sequence. The key compo-
nents of the BER pathway are DNA glycosylases, lesion-
specific enzymes that locate aberrant bases and catalyze
their ejection through cleavage of the N-glycosidic bond
[10,11]. The resulting abasic sites in DNA or cleavage
products thereof — common intermediates generated by
all known DNA glycosylases — converge upon a series of
downstream repair proteins that excise the remainder of
the lesion from DNA, replace the missing nucleotide and
reseal the DNA backbone [12–14]. Detailed analyses of
the catalytic mechanism employed by DNA glycosylases
has led to the design of potent inhibitors that bind tightly
to the enzymes but cannot be processed by them [15].
These molecules have previously proven valuable for
mechanistic and structural studies on known DNA glyco-
sylases. As shown here, the inhibitors can also be used as
powerful tools in the isolation and cloning of previously
unknown enzymes. 
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In the past, DNA repair proteins have typically been iso-
lated on the basis of their ability to process a particular
substrate of interest, or by virtue of amino-acid sequence
similarity to another protein of known function. By con-
trast, the goal of this study was to screen as broadly as pos-
sible for DNA repair activities, irrespective of the lesions
they process. The possibility that entirely new classes of
DNA repair proteins might be present in vertebrate cells
ruled out screens based on sequence similarity to known
proteins. Furthermore, the low throughput of bioassay-
directed fractionation procedures made this strategy unat-
tractive for broad screening. Instead, a procedure that
could rapidly sort through libraries of expressed proteins
to detect DNA repair activity was most desirable. Such a
method, termed in vitro expression cloning (IVEC), has
recently been reported [16]. This method involves the
screening of proteins transcribed and translated in vitro —
first as pools, then as single proteins — for an activity of
interest. Previous uses of the IVEC strategy include the
identification of Xenopus proteins that undergo mitosis-
specific phosphorylation [17] or degradation [18], identifi-
cation of substrates for apoptotic proteases [19,20] and
isolation of sequence-specific DNA-binding proteins [21].
In this work, we have devised an IVEC screen that aims to
identify proteins having enzymatic activity. To overcome
the potential liabilities of screening directly on the basis of
enzymatic activity, however, we used a surrogate assay,
namely binding to mechanism-based inhibitors that target
the active-site chemistry of particular enzymes.

As detailed below, IVEC screening of a Xenopus cDNA
library using a cocktail of four generic inhibitors of DNA
repair led to the identification of a cDNA clone encoding a
31 kDa inhibitor-binding polypeptide that is not similar in
sequence to any known protein. Biochemical characteriza-
tion revealed that this protein is kinetically competent as a

monofunctional DNA glycosylase specific for uracil
residues, and has appreciable selectivity for single-
stranded rather than double-stranded DNA substrates,
hence the designation xSMUG1 (single-strand-selective
monofunctional uracil-DNA glycosylase). On the basis of
cloning and preliminary biochemical characterization, a
sequence-related human protein was established as the
human ortholog of xSMUG1, namely hSMUG1. Despite
having less than 10% sequence identity to the two other
established classes of uracil-DNA glycosylases (UDGs) —
classical UDGs and mismatch-specific uracil-DNA glyco-
sylases (MUGs), which themselves share less than 10%
sequence similarity — both xSMUG1 and hSMUG1
contain motifs that strongly suggest a conserved active-site
structure and overall protein architecture. These three
classes of uracil-excising enzymes thus represent a striking
example of structural and functional conservation in the
almost complete absence of sequence conservation. 

Results
Design of DNA probes for IVEC screening
In considering various in vitro assays to detect the pres-
ence of DNA repair activities in IVEC protein pools, we
were attracted to the electrophoretic mobility shift assay
(EMSA) using oligonucleotide probes containing known
substrates for DNA repair enzymes. In the present case,
however, this approach would suffer from two drawbacks:
firstly, a repair enzyme would ordinarily be expected to
process the substrate and then dissociate from it rapidly,
leaving no stable complex to be detected by EMSA; and
secondly, the use of a defined repair substrate would bias
the screen toward cognate enzymes and against non-
cognate enzymes — this would run counter to our goal of
screening as broadly as possible for proteins that recognize
damaged DNA. A more powerful screen would instead
make use of probes that could form long-lived complexes
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Figure 1

Design of mechanism-based inhibitors used
to screen for DNA repair proteins by IVEC.
(a) The general mechanism of
monofunctional DNA glycosylases. The
structure indicated in brackets represents the
transition state, in which substantial partial
positive charge accumulates on the 
2′-deoxyribose ring, especially at the
positions denoted by δ+. (b) The structure of
the four components comprising the inhibitor
library used in IVEC screening.
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with a potentially wide variety of DNA repair proteins; for
example, earlier work in these laboratories led to the
mechanism-based design of abasic site analogs that bind
tightly to numerous base-excision DNA repair proteins
[15,22]. As illustrated in Figure 1, two of these analogs
(pyrrolidine (Pyr) and ring-opened pyrrolidine (roPyr))
were designed to mimic the positive charge developed in

the transition state of the glycosylase reaction. In addition
to these, we included in this study two abasic site analogs
(tetrahydrofuran (THF) and reduced abasic (rAb)) devel-
oped by others to resemble the product of the glycosylase
reaction [15]. A library comprising an equimolar mixture of
these four inhibitors incorporated into 25-residue double-
stranded DNA (duplex 25-mers) was generated and radio-
labeled for EMSA screening of IVEC protein pools.

IVEC screening
The availability of a subdivided Xenopus embryo cDNA
library constructed specifically for expression cloning [23]
led us to carry out initial screening for DNA repair pro-
teins expressed by this organism. To our knowledge, no
DNA glycosylases have previously been isolated from
Xenopus, despite the characterization of several enzymes
which process the abasic site product of the glycosylase
reaction [24–27]. A schematic diagram of the IVEC
screening protocol [16] is shown in Figure 2a. Briefly, 120
pools, each containing roughly 100 cDNAs, were tran-
scribed and translated in vitro to produce corresponding
pools of proteins. These pools were then incubated with
the library of four 32P-labeled inhibitors and the resulting
mixtures were subjected to native polyacrylamide gel
electrophoresis. As shown in Figure 2b, most of the
protein pools exhibited an identical pattern of bands, pre-
sumably arising from binding activities present in the
rabbit reticulocyte lysate used to program in vitro tran-
scription and translation. One pool (Figure 2b, lane 11),
however, clearly contained a distinct probe-binding activ-
ity that was not present in the other pools. The cDNA
encoding this binding activity was obtained by deconvolu-
tion as described [16]. The final stage of IVEC screening,
in which single cDNAs were analyzed, yielded a clone
(referred to as TD12 based on its position in the screening
grid) encoding a strong binding activity for the library of
DNA probes (Figure 2c, lane 7). 

Sequencing of the TD12 cDNA clone revealed a single
open reading frame encoding a protein of 281 amino acids
with a calculated molecular mass of 31 kDa (Figure 3).
This mass is in the range expected on the basis of the dif-
ference in position of EMSA bands for the TD12-encoded
protein and that of the 39 kDa murine Ogg1 protein
(compare the mOgg1 lane with lane 11 in Figure 2b).
BLAST searching revealed that the TD12-encoded
protein showed no significant sequence similarity to any
known protein, but did show extensive homology to
several human expressed sequence tags (ESTs). Three of
these human ESTs were sequenced and two appeared to
be full-length, allowing a complete composite sequence to
be generated (Figure 3). This composite sequence con-
tains an open reading frame encoding a predicted protein
of 270 amino acids (30 kDa). The amino-acid sequences of
the Xenopus TD12-encoded protein and its human coun-
terpart are 60% (163 out of 270) identical and 71% (191 out
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Figure 2

Identification of the TD12 clone by IVEC screening of a Xenopus
cDNA library. (a) Schematic overview of the IVEC screening procedure
[16]. A Xenopus cDNA library is subdivided into several hundred
pools, each comprising about 100 clones. These cDNA pools are
converted to corresponding protein pools via in vitro transcription and
translation, and the protein pools are screened for activity, in this case,
binding to a library of four 32P-labeled generic DNA repair inhibitors.
Positive cDNA pools are ‘cloned out’ (deconvoluted) to obtain single
cDNAs encoding the inhibitor-binding activity. (b) EMSA on native
polyacrylamide gels of the protein pools generated as shown in (a).
Whereas lanes 1–10 and 12–15 have a nearly identical appearance,
an extra band is evident in lane 11; the pool corresponding to lane 11
was therefore scored positive for inhibitor-binding activity. The mOgg1
lane is a positive control and size standard containing the inhibitor-
bound form of the 39 kDa murine 8-oxoguanine DNA glycosylase
enzyme, generated by in vitro transcription and translation of an
mOgg1 cDNA [36]. (c) EMSA of single proteins generated by in vitro
transcription and translation of monoclonal cDNAs obtained through
deconvolution of the positive pool in (b). The assay giving a positive
result (lane 7) contained the TD12 clone.

Free probe

Protein–DNA
complexes

Free probe

Current Biology   

Protein–DNA
complexes

1 2 3 4 5 6 87 1211109

mOgg
1

1 2 3 4 5 76 111098 12 13 14

13 14

15

Plasmid pools

Protein pools

Assay

Subdivide

Positive protein pool identified

cDNA clone of interest isolated

Xenopus 
cDNA library

Deconvolute

Transcribe and
translate in vitro

(a)

(b)

(c)



of 270) similar, allowing for conservative substitutions.
The complete human nucleotide sequence was used to
search the human sequence tag site (STS) database. Three
STSs were identified which were identical in sequence to
three overlapping segments of the 3′ untranslated region
of our sequenced clone. These STSs (WI-6928, Cda0ub02
and stSG3258) have been mapped to the long arm of chro-
mosome 12 in a region bounded by the D12S325 and
D12S1691 loci [28,29].

The TD12-encoded protein is a uracil-DNA glycosylase
The TD12-encoded protein was isolated as a result of its
binding to a library of four radiolabeled probes containing
generic forms of DNA damage, rather than as a result of its
ability to catalyze a reaction. Thus, it was unclear at first
whether the protein had enzymatic activity, and indeed
whether it had any relevance to DNA repair. In an attempt
to identify a function for this ‘orphan’ protein, we took into
account the fact that it bound tightly to molecules that had
been designed to inhibit DNA glycosylases. We therefore
tested its ability to interact with several DNA lesions that
are known substrates for DNA glycosylases. Specifically, a
series of competition EMSA experiments were carried out
in which the gel-shift complex — comprising a radiola-
beled inhibitor and the TD12-encoded protein — was
challenged by coincubation with an excess of unlabeled
oligonucleotide competitors containing various alkylated,
oxidized and deaminated DNA lesions (Figure 4a). As pos-
itive controls, two of the four inhibitors present in the orig-
inal IVEC screening library paired to cytosine residues
(rAb:C and Pyr:C) were also tested and, as expected, these
were found to compete efficiently with the radiolabeled
inhibitor for binding to the TD12-encoded protein. Of the
base lesions tested, neither 8-oxoguanine paired to cyto-
sine (OG:C) or adenine (OG:A), 8-oxoadenine paired to
thymine (OA:T), N7-methylguanine paired to cytosine
(meG:C), N1,N6-ethenoadenine paired to thymine (εA:T),
nor thymine glycol paired to adenine (TG:A) showed an
appreciable ability to compete with the radiolabeled
inhibitor. But uracil paired to either guanine (U:G) or

adenine (U:A) nearly abolished binding of the TD12-
encoded protein to the radiolabeled inhibitor probe. Thus
we concluded that the TD12-encoded protein is capable
of recognizing uracil residues in DNA.

To determine whether the TD12-encoded protein cat-
alyzes endonucleolytic cleavage at uracil residues in DNA,
we performed DNA strand scission assays (Figure 4b). A
radiolabeled oligonucleotide containing a single uracil
residue was used in these assays, either alone (ssU) or
base-paired to a complementary strand containing either
adenine (U:A) or guanine (U:G) at the corresponding posi-
tion on the opposite strand. One class of uracil-DNA gly-
cosylases, typified by the human G:T glycosylase, is
capable of processing both uracil and thymine residues
mispaired to guanine; to test for such an activity in the
TD12-encoded protein, we included a substrate contain-
ing a G:T mismatch that was radiolabeled on the T-con-
taining strand. These substrates were incubated with
either the Xenopus in vitro transcribed and translated
TD12-encoded protein or its human counterpart, after
which the DNA was treated with aqueous sodium hydrox-
ide to effect strand scission at abasic sites. Both the human
and the Xenopus proteins clearly processed uracil residues
in the DNA, as evidenced by DNA strand scission at these
positions (Figure 4b). The proteins acted upon U:A and
U:G with no preference for either, but, interestingly, they
processed uracil residues in single-stranded DNA much
more efficiently than in double-stranded DNA. Neither
the Xenopus nor human protein showed any enzymatic
activity toward G:T mismatches. 

To further characterize TD12, the Xenopus TD12-
encoded protein was overexpressed in Escherichia coli with
a carboxy-terminal hexahistidine tag and purified in a two-
step chromatography procedure. The overexpressed
protein contained significant uracil-excision activity,
which could not be inhibited by the PBS1 bacteriophage
uracil-glycosylase inhibitor protein, UGI (data not shown).
As the endogenous E. coli uracil-DNA glycosylase (UDG)
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Figure 3

Deduced amino-acid sequence of the Xenopus
protein encoded by the TD12 clone (xSMUG1)
and its human ortholog (hSMUG1). The two
active-site motifs that are characteristic of
uracil-DNA glycosylases are boxed. 
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is potently inhibited by UGI, the single-stranded DNA
glycosylase activity observed in the presence of UGI must
derive from the Xenopus protein. All assays using the
recombinant Xenopus enzyme were therefore run in the
presence of UGI to abolish any contaminating E. coli
UDG activity.

The DNA strand scission assay shown in Figure 4b does
not differentiate between the possible modes of enzyme

action. One possibility is that the enzyme simply catalyzes
phosphodiester bond cleavage at the uracil-containing
site. A second, more likely, possibility is that the enzyme
acts as a DNA glycosylase, catalyzing scission of the glyco-
sidic bond linking the uracil base to its sugar moiety. Two
different processing mechanisms are employed by the two
known classes of DNA glycosylases: monofunctional DNA
glycosylases use an activated water molecule to displace
the aberrant base, leaving behind an abasic site; whereas
bifunctional DNA glycosylases/lyases use an activated
amine moiety on the enzyme for the initial displacement,
and then catalyze subsequent degradations of the
enzyme-linked sugar, ultimately leading to DNA-strand
cleavage [30–32]. To distinguish unambiguously between
these modes of action, we used the recombinant Xenopus
TD12-encoded enzyme to process a single-stranded 13-
mer substrate, the products of which were directly ana-
lyzed by MALDI-TOF mass spectrometry. The use of a
single-stranded substrate and the UGI inhibitor in the
reaction buffer eliminated any activity arising from possi-
ble contaminant E. coli MUG and UDG, respectively. In a
time-dependent manner, the approximately 3,900 Da
peak arising from the starting 13-mer was replaced by a
single product peak at 3,809.8 Da (Figure 5b,c), the
expected mass for an abasic site product. The observed
decrease in mass of approximately 94 Da corresponds to
the loss of uracil (111 Da) and the gain of a hydroxyl group
(17 Da). Identical results were obtained with the known
monofunctional glycosylase E. coli UDG (data not shown).
We thus conclude that the TD12-encoded protein acts as
a monofunctional DNA glycosylase specific for uracil
residues in DNA and has a preference for single-stranded
DNA substrates. On the basis of these functional charac-
teristics, we designated the enzyme as single-strand-selec-
tive monofunctional uracil-DNA glycosylase, SMUG1. 

The preference of SMUG1 for single-stranded DNA 
was further characterized through measurement of
Michaelis–Menten kinetics using recombinant Xenopus
SMUG1 (xSMUG1) with a single-stranded uracil-contain-
ing oligonucleotide substrate (ssU), or with the same
strand base-paired to its complement (U:G mismatched
duplex) (Table 1). The value of kcat for the processing of
the single-stranded substrate by xSMUG1 was more than
1,500-fold greater than the kcat for the processing of the
duplex DNA substrate by xSMUG1. The Km for the
duplex substrate was about 20-fold lower than the Km for
the single-stranded DNA substrate, however, suggesting
that the protein binds double-stranded DNA more tightly
than single-stranded. Thus, the overall catalytic efficiency
(kcat/Km) of SMUG1 is about 60-fold greater for a single-
stranded substrate than for a duplex substrate.

SMUG1 is localized to the nucleus
In order to function as a DNA repair protein, SMUG1
should co-localize to the same intracellular compartments
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Figure 4

Substrate specificity of the TD12-encoded protein. (a) Competition
EMSA analyzing the effect of excess unlabeled competitors on the
binding of a radiolabeled rAb-containing duplex to the TD12-encoded
protein. Reaction products from in vitro transcription and translation of
the TD12 clone were added to all lanes with the indicated competitors
except 0, to which no protein was added; no competitor was added to
the – lane. Abbreviations: ns, undamaged duplex DNA; rAb, reduced
abasic; Pyr, pyrrolidine; OG, 8-oxoguanine; OA, 8-oxoadenine; meG,
N7-methylguanine; εA, N1,N6-ethenoadenine; TG, thymine glycol; U,
uracil. (b) DNA cleavage assays using in vitro transcribed and
translated reaction products generated from the Xenopus or human
TD12 clone. The 25-mer band corresponds to the full-length DNA
substrate, and the 12-mer represents the cleavage product generated
by enzymatic processing followed by hydroxide-catalyzed strand
scission. The four lanes on the left were from control in vitro
transcription and translation reactions in which no cDNA was present.
The radiolabel was present on the uracil-containing (ssU, U:A, U:G
lanes) or thymine-containing (T:G lanes) strand. (c) The data from (b)
are represented as the percentage of each DNA substrate processed
by the TD12-encoded proteins.
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in which DNA is located. In the case of mammalian
UDG, differential RNA splicing directs two variant
forms to either the nucleus or mitochondria [33]. To
ascertain the sub-cellular localization of the human
SMUG1 (hSMUG1), the cDNA was fused in-frame to
green fluorescent protein (GFP) and transiently trans-
fected into HeLa cells, which were then analyzed by
confocal microscopy. As shown in Figure 6, the
hSMUG1–GFP fusion protein localizes predominantly to
the nucleus, whereas GFP alone is distributed through-
out the cell. These initial experiments could not rule out

the possibility that a small fraction of hSMUG1 also
localizes to the mitochondria.

Discussion
In this work, we have used IVEC to isolate a protein that
binds a library of four synthetic DNA repair inhibitors.
Biochemical characterization of this protein revealed that
it catalyzes excision of uracil residues from DNA through
hydrolysis of the N-glycosidic bond. Given the apprecia-
ble preference of the protein for uracil residues in single-
stranded DNA rather than double-stranded DNA, we
have designated it as single-strand-selective monofunc-
tional uracil-DNA glycosylase, or SMUG1. 

The proteomics-based approach used to isolate SMUG1
offers an alternative to the genetic and biochemical strate-
gies employed in the past. Although of proven value,
gene-based approaches relying on the reversion of mutator
phenotypes or on homology to known DNA repair activi-
ties sometimes fail for subtle phenotypes or in cases of
insufficient sequence similarity. Protein-based strategies
employing bioassay-directed purification have also figured
prominently in the isolation of DNA repair proteins, but
these can often be labor-intensive and expensive, espe-
cially for mammalian proteins present in low abundance.
IVEC, the proteomics procedure employed here, offers a
rapid, systematic screen of all expressed proteins on the
basis of their biochemical activity. Because this functional
property is linked throughout the assay to its genetic
encoding, IVEC enables regeneration and amplification of
the protein through successive rounds of screening and
directly yields a cDNA clone encoding the activity of
interest. Whereas traditional isolation methods may
involve screening mixtures comprising tens of thousands
of proteins or genes, IVEC reduces the number being
evaluated simultaneously in any one test tube, because
the cDNA pools being transcribed and translated in vitro
have been pre-sorted to contain approximately 100 clones
or less. A general concern regarding IVEC might be that
random cDNA sorting could lead to separation of protein
subunits that are required together for function; in the
present case, however, we were aware that most, if not all,
known base-excision DNA repair proteins are monomeric. 

IVEC with mechanism-based inhibitors
In previous studies, IVEC has been used to isolate sub-
strates for mitotic kinases [17], for mitotic protein degrada-
tion pathways [18] and for apoptotic proteases [19,20].
This method has also been used to isolate Mix-related
sequence-specific DNA-binding proteins, using an assay
method much like the one employed here [21]. The
present report, however, is the first in which IVEC has
been used to isolate an enzyme on the basis of its activity.
This application presented a unique challenge, namely
how to detect the interaction of an enzyme with a sub-
strate, when the two are ordinarily bound for only the
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Figure 5 

Products of the reaction catalyzed by the TD12-encoded enzyme
SMUG1. (a) Calculated masses of the 13-mer single-stranded DNA
substrate containing a single, centrally located uracil residue, and of
the DNA product generated by hydrolysis of the N-glycosidic bond to
this uracil residue. Representative MALDI-TOF spectra of (b) the
starting 13-mer and (c) the product mixture obtained by incubation
with the recombinant TD12-encoded protein for 10 min. Relative
masses in MALDI-TOF spectra are more accurately determined than
absolute masses. 
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fleeting instant during which catalysis takes place. To
solve this problem, we turned to mechanism-based
enzyme inhibitors, which can be recognized specifically
but not processed by DNA repair enzymes; these charac-
teristics enabled a screen based on the formation of long-
lived enzyme–inhibitor complexes to be performed. Such
inhibitors had not previously been employed in expres-
sion-based cloning of DNA repair enzymes, but had found
extensive use in affinity purification, mechanistic studies
and high-resolution structural analysis [15,34]. 

Although one class of such inhibitors contains an attached
base, which confers exquisite selectivity for cognate DNA
repair enzymes, the four inhibitors that comprised our
screening library belong to a second class, which lacks a
base and is therefore less restricted in specificity for target
proteins. Notwithstanding this broad substrate scope, the
highly stringent conditions employed in our screen led to
the isolation of a single positive clone, TD12, through
screening 120 pools (approximately 1% coverage of the
total library). Thus, while it remains to be demonstrated
experimentally, one would expect that further screening
of the Xenopus cDNA library with the abasic inhibitors
would identify several other DNA glycosylases. These
might include well-characterized enzymes that are known
to be widely distributed throughout evolution, such as
those that process 8-oxoguanine (xOgg1) and 3-methy-
ladenine (xAag); the orthologous human glycosylases bind
tightly to inhibitors present in our screening panel [35,36].

SMUG1 is a uracil-DNA glycosylase enzyme
Deamination of cytosine residues generates uracil, which
can cause mutations. The biochemical data presented here
demonstrate that SMUG1 can initiate the repair of these
mutagenic lesions by catalyzing excision of uracil from
DNA. Several other vertebrate proteins have been shown
or suggested to have uracil-DNA glycosylase activity: the
predominant enzyme in vertebrates, UDG, is similar to
SMUG1 in its exquisite specificity for uracil over thymine
and its preference for single-stranded DNA (Table 1). 
A more recently described enzyme, thymine-DNA 

glycosylase (TDG), shows less preference for uracil than for
thymine, but does exhibit apparently absolute specificity for
double-stranded substrates, especially those containing U:G
and T:G mismatches (Table 1). The catalytic efficiency
(kcat/Km) of SMUG1 is 10-fold lower than UDG for single-
stranded substrates and about 70-fold lower for double-
stranded substrates; on the other hand, SMUG1 is nearly
identical to TDG in its efficiency for repairing double-
stranded DNA (Table 1). Reports of uracil-DNA glyco-
sylase activity in two other polypeptides [37,38] remain
unconfirmed and the proteins have not been sufficiently
characterized to allow detailed comparison with SMUG1.

Although we have not undertaken an exhaustive search
for potential SMUG1 substrates, the following properties
of the enzyme are fully consistent with uracil being a
physiological substrate of this enzyme. First, the catalytic
efficiency of SMUG1 for uracil in single-stranded DNA
compares favorably with that of most DNA glycosylases
operating on their cognate substrates [39–42] and is within
an order of magnitude of the exceptionally efficient
human UDG. Second, the catalytic efficiency of xSMUG1
for double-stranded DNA, its less preferred substrate, is
still above the well-characterized TDG (Table 1) on its
optimal substrates. Third, the preference to process
single-stranded DNA is a unique and characteristic prop-
erty of UDGs from many organisms, and SMUG1 is the
only other DNA glycosylase known to exhibit this prop-
erty. Finally, SMUG1 activity is virtually abrogated by
changing uracil to thymine — the addition of a single
methyl group. This property is essential for an enzyme
that can process single-stranded DNA.

Mouse cells bearing a homozygous targeted disruption of
the gene encoding UDG retain residual uracil-DNA
glycosylase activity attributable to the product of another
gene (T. Lindahl, personal communication). SMUG1
may be responsible for this activity, as may TDG. The
differences in biochemical activity of these two candi-
dates should make it straightforward to differentiate
between the two.
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Table 1

Michaelis–Menten kinetic parameters for uracil removal by recombinant Xenopus SMUG1, human UDG and human TDG.

Enzyme Substrate Km (µM) kcat (s–1) kcat/Km (s–1 M–1) Reference

xSMUG1 ssU 1.09 2.5 2.3 × 106 This work

xSMUG1 U:G 0.035 0.0014 3.9 × 104 This work

hUDG ssU 0.40 9.1 2.3 × 107 [66]*

hUDG U:G 10016 4.6 2.8 × 106 [66]*

hTDG U:G 0.012 0.00035 2.9 × 104 [50]†

*The values listed here (units converted) are for 10 mM NaCl, the concentration of salt that gave the maximal kcat/Km. †See also [67].



Two critical motifs are present in SMUG1 
Of all the base-excision DNA repair proteins known,
UDGs stand alone as the most highly conserved, being
the only DNA glycosylases encoded by the primitive bac-
terium Mycoplasma genitalium [43] and even being encoded
by certain viruses [44]. Despite the evolutionary space
separating these enzymes, their protein sequences are suf-
ficiently homologous to permit ready alignment and to
allow one to infer a high degree of structural similarity.
Indeed, the X-ray structure of the human UDG is nearly
identical to that of the herpes simplex virus-1 (HSV-1)
enzyme, as would be expected on the basis of the 39%
sequence identity between the two. Given the striking
parallels between the biochemical properties of these
UDGs and SMUG1, it is perplexing to note that there is a
virtually complete absence of statistically significant
sequence similarity between these two classes of uracil-
excising enzymes. For example, the sequences of
hSMUG1 and hUDG are less than 8% identical to one
another, far below the level of statistical significance. 

A similar but perhaps less compelling paradox had been
raised by the discovery of a class of uracil-DNA glycosy-
lases, exemplified by TDG, members of which are spe-
cific for U:G mismatches but are less than 10%
homologous to UDGs. The dramatic resolution to this
TDG–UDG paradox came with the X-ray structure of a
bacterial U:G-mismatch-specific uracil-DNA glycosylase,
MUG, bound to DNA. Comparison of the MUG–DNA
structure [45] with that of HSV-1 UDG [46] bound to
DNA revealed that the two protein folds are virtually
superimposable on one another (root-mean-square devia-
tion, 3.4 Å), in a striking example of structural conserva-
tion in the absence of sequence conservation.
Furthermore, an unpublished structure of MUG bound to
an inhibitor-containing duplex (R. Savva, O.D. Schärer,
G.L.V. and L. Pearl, unpublished observations) reveals
that the two proteins interact in fundamentally similar

ways with the uracil base and DNA backbone. Compari-
son of these structures led to the identification of two
active-site motifs (Figure 7), in which residues that are
particularly important for substrate recognition and cataly-
sis are located. Inspection of the SMUG1 sequence
reveals that it too contains these two motifs (see Figure 3).

Motif I in E. coli MUG has the sequence GINPG-N9-F
(single-letter amino-acid code). Crystallographic evidence
strongly implicates the asparagine at the third position as
the residue that positions and perhaps activates the
nucleophilic water molecule for attack on the N-glycosidic
bond, and the terminal phenylalanine stacks up against
the uracil base (Figure 7a). In HSV-1 UDG, motif I has
the sequence GQDPY-N10-F. In this case, it is an aspartic
acid rather than an asparagine residue at the third position
that activates the water molecule. Furthermore, the pres-
ence of a tyrosine at position 5 of the motif sterically
blocks the thymine methyl group from binding in the
enzyme active site; MUG, which contains a glycine at this
position, binds both uracil and thymine. Motif I of
SMUG1 has the sequence GMNPG-N10-F, which is
closer to that of MUG than that of UDG. Interestingly,
SMUG1 is able to discriminate strongly against thymine,
despite the presence of a glycine at position 5 of motif I.

The structure of motif II is shown in Figure 7b. In the
sequence of MUG motif II, NPSGLS, noteworthy
residues are: the asparagine at position 1, which forms
hydrogen bonds, either directly or through a tightly bound
water molecule, with the uracil base; and the glycine at
position 4, which forms hydrogen bonds with the guanine
residue of the U:G mismatch. In motif II of HSV-1 UDG,
the asparagine is replaced by a histidine having the same
presumed function, and the glycine residue is replaced by
a proline, which is consistent with the lack of specificity in
UDG for the base opposite uracil. Motif II of SMUG1 has
the sequence HPSPRN, which is more closely related to
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Figure 6

Intracellular localization of SMUG1.
Fluorescence data from confocal microscopy
were superimposed on differential
interference contrast images to produce the
composite images shown. (a) HeLa cells
transfected with a hSMUG1–GFP expression
construct. (b) Control HeLa cells transfected
with a GFP expression construct.

(a) (b)
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UDG than to MUG. Thus, with regard to active-site func-
tionality, SMUG1 can be viewed as a chimera of MUG
and UDG, having a motif I that is MUG-like and a motif
II that is UDG-like.

A unique role for SMUG1?
The demonstration that SMUG1 is a kinetically competent
uracil-DNA glycosylase raises the question as to why verte-
brate cells contain at least three such enzymes. Because
each of the three enzymes exhibits unique biochemical
properties, it seems unlikely that they serve redundant
functions. It is more likely that each uracil-DNA glycosy-
lase has evolved to fulfil a specific role in protecting verte-
brate cells from the deleterious effects of cytosine
deamination. Owing to its abundance and high kinetic effi-
ciency on both single- and double-stranded DNA, UDG is
probably responsible for initiating the repair of most uracil
residues, at least in cycling cells [47]. The strong prefer-
ence of TDG for U:G and T:G mismatches, wherein the
substrate base is flanked on the 3′ side by a guanine [48],
has led to the proposal that this enzyme is primarily dedi-
cated to the repair of CpG sites that have undergone
methylation followed by deamination or methyltrans-
ferase-catalyzed deamination [49]. The non-redundant
function of uracil-DNA glycosylases may extend to the
processing of lesions other than uracil; for example, human
TDG has been found to process N3,N4-ethenocytosine
(εC) almost as well as U:G and better than T:G [50].

What then is the unique role of SMUG1 in the repair of
uracil residues? It is not possible at present to answer this
question conclusively, but the appreciable selectivity of
SMUG1 for single-stranded DNA may provide a clue. It is
possible that the enzyme might be involved in surveillance
of transiently single-stranded intermediates in the cells,
such as those that arise during transcription, recombination
and replication; in this regard, it is noteworthy that the rate
of cytosine deamination in single-stranded DNA is more
than 100-fold greater than that for the duplex form of
DNA [51,52]. It is also attractive to speculate that SMUG1
might act in concert with an ATP-dependent motor

protein that unpairs the DNA, thereby presenting single-
stranded DNA to the SMUG1 active site. Whether the
endogenous substrate of SMUG1 is single-stranded or
duplex DNA, it is possible that the enzyme functions as a
dedicated repair subunit of a larger multiprotein complex,
as has been suggested for UDG and the replication
machinery [53]. The fact that SMUG1 was not isolated in
earlier biochemical studies of uracil-DNA glycosylase
activity in extracts might be taken to suggest that SMUG1
has a highly restricted pattern of expression, but this is
inconsistent with the identification of hSMUG1 ESTs in
cDNA libraries derived from a wide variety of tissues,
including breast, ovary, lung, placenta, prostate, brain,
liver, heart, kidney, colon and whole embryos.

Conclusions
We have described the isolation and cloning of a unique
uracil-DNA glycosylase enzyme, SMUG1, on the basis of its
biochemical activity. Kinetic measurements and product
analysis by mass spectrometry reveal SMUG1 to be a mono-
functional DNA glycosylase, specific for uracil residues and
selective for single-stranded DNA. The discovery of this
enzyme presents an especially compelling argument for pro-
teomics-based gene discovery, because the level of
sequence similarity between SMUG1 and its functional rel-
atives is too low (less than 8%) to be detected by current
computer algorithms that detect similarity in either
sequence or structure. The observation that three classes of
uracil-DNA glycosylases — UDG, TDG/MUG and now
SMUG — have arrived at a similar function and (presum-
ably, in the case of SMUG1) structure, despite such remark-
able dissimilarity in sequence, highlights the relevance of
function-based genome-wide screening technology, in addi-
tion to raising fascinating questions about convergency
versus divergency in the evolution of these enzymes. 

Materials and methods
Oligonucleotide probes and substrates
Oligonucleotides were synthesized and purified by standard methods,
and radiolabeled using T4 polynucleotide kinase (New England
Biolabs) and [γ-32P]ATP (New England Nuclear). The phosphoramidite
required for incorporation of uracil into DNA was purchased from Glen
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Figure 7

SMUG1 contains two active-site motifs that
are characteristic of uracil-DNA glycosylases.
(a) Motif I; (b) Motif II. Red and gray tubes
represent the main-chain backbone of E. coli
MUG (R. Savva, O.D. Schärer, G.L.V. and 
L. Pearl, unpublished observations) and 
HSV-1 UDG [46]. Certain key side-chains are
shown in yellow licorice, and the uracil base of
the substrate is shown in blue. Identical
residues are boxed. Circled residues denote
functionally important residues that differ
between the two motifs; see the text for
specific details.
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Research. The phosphoramidites for THF [54] and Pyr [55] were pre-
pared by published methods. The rAb phosphoramidite was a gift of
Huw M. Nash (H.M.N. and G.L.V., unpublished) and the roPyr phos-
phoramidite was a gift from Steve D. Bruner (S.D.B. and G.L.V., unpub-
lished). Oligonucleotides containing the base lesions OG [56,57], OA
[58], meG [59], TG [60] and εA [61] were prepared by published
methods. Radiolabeled duplex oligonucleotides (Table 2) were pre-
pared by annealing the radiolabeled strand with a 10-fold molar excess
of the complementary strand in annealing buffer (1 × TE, 100 mM
NaCl). Non-radiolabeled duplex DNA competitors were made by
annealing equimolar amounts of the two complementary strands. 

Electrophoretic mobility shift assays
Radiolabeled inhibitor-containing duplex DNA substrates (5 fmol in 1 µl
annealing buffer each) were mixed with 5 µl of in vitro transcription/transla-
tion reaction mixture (TNT Coupled Reticulocyte Lysate System, Promega)
programmed with either pooled or single cDNA clones as described [16].
The mixture was adjusted to a final volume of 20 µl in 1 × EMSA buffer
(50 mM Tris, 250 mM NaCl, 3 mM EDTA, 500 µM DTT, 5% glycerol,
100 µg/ml BSA, pH 7.4) by appropriate additions of 5 × EMSA buffer and
deionized, distilled water. The mixture was allowed to incubate for 20 min
at room temperature and was then loaded onto a pre-run 10% native poly-
acrylamide gel (Protogel, National Diagnostics). The gel was run at 250 V
for 1.5 h, then dried and exposed to a phosphorimaging plate (Fuji BAS
1000 s). Competition EMSA assays followed a similar protocol, except
that a 100-fold molar excess of unlabeled competitor was mixed together
with the radiolabeled inhibitor (10 fmol, rAb) immediately prior to incuba-
tion with the in vitro transcription/translation products.

DNA cleavage assays
Radiolabeled substrates were incubated at 37°C in 20 µl of 1 × UDG
reaction buffer (20 mM Tris, 1 mM EDTA, 1 mM DTT, 50 mM NaCl,

0.5 U uracil-glycosylase inhibitor (New England Biolabs), 100 mg/ml
BSA, pH 8.0) for 10 min with varying amounts of either in vitro tran-
scription/translation reaction mixture (programmed with either the
xSMUG1 or hSMUG1 cDNA) or purified recombinant protein
(xSMUG1). The reaction was stopped, cleavage of abasic sites was
effected by the addition of 15 µl stop solution (70% formamide, 0.3 M
NaOH, 1 × TBE), and the mixture was then heated at 95°C for 15 min.
The reaction mixtures were then loaded onto a pre-run 20% denaturing
polyacrylamide gel (Sequagel, National Diagnostics). The gel was run
at 250 V for 4 h and imaged (wet) using a phosphorimaging plate (Fuji
BAS 1000 s). Band intensities were quantified using the MacBas soft-
ware package (Fuji). Michaelis–Menten parameters were determined
by measurement of initial rates (< 30% conversion) at various concen-
trations of substrate (250–3000 nM, ssU; 12.5–500 nM, U:G), fol-
lowed by non-linear regression analysis using the software program
EnzymeKinetics (Trinity Software).

Bacterial overexpression and purification of xSMUG1
The xSMUG1 coding sequence, PCR-amplified from the xTD12 cDNA,
was cloned into pET30b (Novagen) as a NdeI–KpnI fragment so as to
express the protein as a fusion containing a carboxy-terminal hexahisti-
dine tag. The resulting expression construct (pET30b-xSMUG1) was
transformed into E. coli BL21-DE3 cells (Novagen) and expression was
induced in mid-log phase by the addition of ispropyl-β-D thiogalactopyra-
noside to 1 mM. The cells were induced for 4 h at 30°C and then har-
vested by centrifugation. The induced cell pellet was resuspended in
buffer A (30 mM Tris, 250 mM ammonium acetate, 10 mM 2-mercap-
toethanol, pH 8.0) containing a cocktail of standard protease inhibitors.
The cells were lysed in a French press and the resulting lysate was clari-
fied by centrifugation. To the supernatant was added 2 ml Talon resin
(Clontech), preequilibrated in buffer A and Triton X-100 (1% v/v). The
cell lysate and Talon resin were allowed to mix for 30 min using a
mechanical rotary platform and then transferred to a disposable gravity-
flow column. The resin was washed with three column volumes of buffer
A and one volume of 10 mM imidazole in buffer A, and then eluted with
200 mM imidazole in buffer A. The eluate was exchanged into buffer B
(30 mM Tris, 50 mM ammonium acetate, 10 mM 2-mercaptoethanol,
pH 8.0) by centrifugal dialysis (Centriprep-10, Amicon) and then loaded
onto a MonoQ FPLC column (Pharmacia), washed with buffer B, and
then eluted with a linear gradient of elution buffer (30 mM Tris, 10 mM 2-
mercaptoethanol, pH 8.0) from 0 to 1 M ammonium acetate over 20 ml.
Fractions containing xSMUG1 eluted at ~300 mM ammonium acetate.
After concentration by centrifugal dialysis (Centriprep-10), the combined
xSMUG1-containing fractions were supplemented with DTT (1 mM final
concentration) and stored at 4°C. xSMUG1 can be stored under these
conditions for up to one month without any significant loss of activity. 

MALDI-TOF mass spectrometry
The 13-mer dU substrate (300 pmol) was incubated with 500 ng
recombinant xSMUG1 in 20 µl of 1 × UDG reaction buffer at 37°C. At
various time points, 1 µl aliquots were removed and added to 1 µl reac-
tion-quenching matrix (2 parts 2,4,6-trihydroxyacetophenone (300 mM
in ethanol), 1 part diammonium citrate (100 mM in water), and 1 part
acetonitrile). MALDI-TOF mass spectra were acquired as described
[62] using a Bruker BIFLEX spectrometer.

Green fluorescent protein fusion 
The hSMUG1 coding sequence, PCR-amplified from the hTD12
cDNA, was cloned into pEGFP-N1 (Clontech) as an EcoRI–BamHI
fragment to express the protein as a fusion containing a carboxy-
terminal green fluorescent protein tag. Transient transfection of cul-
tured adherent HeLa cells grown with coverslips was done with
TransfectAMINE (GIBCO-BRL). At 36 h post-transfection, samples
were fixed and mounted on slides. Images were obtained using a Zeiss
LSM410 confocal microscope equipped with a Krypton/Argon laser.

Expressed sequence tags and cloning hSMUG1
The full-length hSMUG1 cDNA clone (ATCC clone number 101881), a
product of the EST sequencing effort of the Institute for Genomic

Table 2

Oligonucleotide sequences.

ss dU 5´ GGATAGTGTCCA U GTTACTCGAAGC 3´

Duplex 5´ GGATAGTGTCCA X GTTACTCGAAGC 3´
3´ CCTATCACAGGT Y CAATGAGCTTCG 5´

U:G X=U Y=G

U:A X=U Y=A

THF:C X=THF Y=C

roPyr:C X=roPyr Y=C

OG:C X=OG Y=C

OG:A X=OG Y=A

OA:T X=OA Y=T

εA:T X=εA Y=T

ns X=A Y=T

rAb:C 5´ GTGATCCTGAGC rAb TAGCTCAGTAAC 3´
3´ CACTAGGACTCG  C  ATCGAGTCATTG 5´

dG:dT 5´ GGATAGTGTCCAA G TTACTCGAAGC 3´
3´ CCTATCACAGGTT T AATGAGCTTCG 5´

meG:C 5´ CGC meG AATT  C  GCG 3´
3´ GCG  C  TTAA meG CGC 5´

TG:A 5´ CGCAG TG CAGCC 3´
3´ GCGTC A  GTCGG 5´

Wherever relevant, the radiolabeled strand is the upper one in the
sequences shown.



Research [63], was purchased from ATCC. The cDNA clones with
IMAGE clone numbers 415608 and 726197 were products of the
IMAGE Consortium sequencing effort [64] and were purchased from
Research Genetics. The clone 415608 contained the complete coding
sequence, but lacked a portion of the 5′ untranslated region. The clone
726197 contained a portion of the 5′ untranslated region and a portion
of the coding sequence. The hSMUG1 coding sequence, PCR-ampli-
fied from the clone 415608, was cloned into pCS2 [65] as a
EcoRI–XbaI fragment so as to allow expression by in vitro transcrip-
tion/translation.

GenBank accession numbers
The sequence data for xSMUG1 and hSMUG1 have been submitted to
the GenBank database under accession numbers AF125181 and
AF125182, respectively.
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