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In directly addressing the question, ‘can flax replace E-glass as a reinforcement for structural compos-
ites?’, this manuscript adopts a novel comparative case study approach to investigate the manufacture
and mechanical testing of full-scale 3.5-m composite rotor blades (suitable for 11 kW turbines) built from
flax/polyester and E-glass/polyester.

The resin transfer moulded flax blade is 10% lighter (fibre mass saving of 45%) than the identical con-
struction E-glass blade. Static flap-bending tests, conducted in accordance to certification standards, con-
firm that like the E-glass blade, the flax blade satisfies the structural integrity requirements under
‘normal operation’ and ‘worst case’ loading. It is consequently claimed that flax is a potential structural
replacement to E-glass for similar composite small wind turbine blade applications.

The failure root bending moment and corresponding tip displacement of the flax blade are 11.6 kN m
and 2300 mm, respectively. The blades exhibit distinctly different load–deflection curves and failure
modes. The mean flexural rigidity of the flax and E-glass blades are estimated to be 24.6 kN m2 and
43.4 kN m2, respectively. It is interesting to find that although flax fibres and their composites are gener-
ally recognized for their stiffness, a flax blade cannot compete against an E-glass blade in terms of
stiffness.

� 2013 The Authors. Published by Elsevier Ltd. Open access under CC BY license.
1. Introduction

Plant fibres offer several economical, technical and ecological
advantages over synthetic fibres in reinforcing polymer composites
(Table 1) [1,2]. Due to the relative abundance, low cost of raw
material, low density, high specific properties, and positive envi-
ronmental profile of plant fibres like flax, hemp and jute, they have
been marketed as prospective substitutes to traditional composite
reinforcements, specifically E-glass [1–3]. As 87% of the 8.7 million
tonne global fibre reinforced plastic (FRP) market is based on E-
glass composites (GFRPs) [4], plant fibres and their composites
have a great opportunity for development and market capture.

Although the use of plant fibres (non-wood and non-cotton) in
reinforced plastics has tripled to 45,000 tonnes over the last decade
[5–7], plant fibre composites (PFRPs) make up only �1.9% of the
2.4 million tonne EU FRP market (Fig. 1) [6]. Notably, the use of car-
bon fibre composites is lower than the use of biocomposites and on
the same level as the use of PFRPs (Fig. 1) [4,6]. It is of interest to note
that while PFRPs were developed and are viewed as alternatives to
GFRPs [2,8], they have mainly replaced wood fibre reinforced ther-
mosets in the EU automotive industry [9,10]. By commercial applica-
tion, over 95% of PFRPs are being used for non-structural automotive
interior components (such as door and instrumental panels) [6,7,11–
13]. Other than automotive applications, PFRPs are being considered
for applications in (i) construction and infrastructure (such as
beams, roof panels, bridges) [7,12,14–21], (ii) sports and leisure
(for boat hulls, canoes, bicycle frames, tennis rackets)
[7,9,12,15,20,21], (iii) furniture and consumer goods (such as pack-
aging, cases, urns, chairs, tables, helmets, ironing boards)
[6,7,9,12,15,16,18–21], and (iv) pipes and tanks (for water drainage
and transportation) [7,12,14,19,21–23]. In many of these applica-
tions, plant fibres are being employed primarily as light, cheap and
‘green’ reinforcements, playing little or no structural role.

Interestingly, this is different to what was envisaged 70 years
ago, when the potential of plant fibres as structural reinforcing
agents was acknowledged by pioneers like Ford to manufacture
the first ‘green car’ with an all-plastic-body using 70 wt.% lignocel-
lulosic fibres in a soybean oil based phenolic matrix [24,25]. Ford
was even able to demonstrate the impact resistance of the material
by famously taking a sledgehammer onto the car’s deck lid [24]. At
the same time, Aero Research Ltd., developed Gordon Aerolite, a
flax/phenolic composite, to replace aluminium sheets for building
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Table 1
Comparison between plant fibers and E-glass [1].

Properties Plant fibres E-Glass fibre

Economy Annual global production (tonnes) 31,000,000 4,000,000
Distribution for FRPs in EU (tonnes) Moderate (40,000) High (600,000)
Cost of raw fibre (£/kg) Low (�0.5–1.5) Low (1.3)

Technical Density (g cm�3) Low (�1.35–1.55) High (2.66)
Tensile stiffness (GPa) Moderate (�30–80) Moderate (73)
Tensile strength (GPa) Low (�0.4–1.5) Moderate (2.0–3.5)
Tensile failure strain (%) Low (�1.4–3.2) Low (2.5)
Specific tensile stiffness (GPa/g cm�3) Moderate (�20–60) Low (27)
Specific tensile strength (GPa/g cm�3) Moderate (�0.3–1.1) Moderate (0.7–1.3)
Abrasive to machines No Yes

Ecological Energy consumption (MJ/kg of fibre) Low (4–15) Moderate (30–50)
Renewable source Yes No
Recyclable Yes Partly
Biodegradable Yes No
Toxic (upon inhalation) No Yes
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the structural members of Spitfire fuselages for British military air-
crafts during the Second Great War [26].

Despite the current growing interest in PFRPs for (semi-)struc-
tural applications and glimpses of their impressive mechanical per-
formance, to date, there are only limited scientific studies that
conclusively show the suitability of PFRPs over GFRPs for load-
bearing applications.
1.1. Reinforcements for rotor blades: plant fibres or E-glass?

The Wind Energy Materials Group (within the Polymer Compos-
ites Research Group) at The University of Nottingham has been in-
volved with the design and manufacture of composite wind
turbine blades. Recently, the Group has been investigating the po-
tential of sustainable plant fibre reinforcements as a replacement
to conventional E-glass reinforcements in small wind turbine
(SWT) blades. This investigation has large implications owing to
the unprecedented growth of the global SWT industry [27]. It is
estimated that by 2020, the total UK small wind turbine capacity
will exceed 1300 MW, through the installation of more than
�400,000 SWTs [27]. Assuming these are 3-bladed systems, more
than 1 million composite blades will need to be manufactured [27].

The blades ofa wind turbine are a critical and costlycomponentofa
wind turbine system. Having a service life of 20–30 years and cycling
in excess of 150 rpm, small rotor blades (U < 16 m, suitable for
<100 kW turbines) are designed against several major structural con-
ditions including strength, stiffness and tip deflection during opera-
tional loading (design wind speeds of 11.9 m s�1) and severe loading
(extreme wind speeds of 59.5 m s�1), as well as very high numbers
of fatigue cycles (>109 cycles) during service. Naturally, for certifica-
tion of the SWT blades, the structural integrity of the blade needs to
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Fig. 1. PFRPs accounted for �1.9% of the 2.4 m
be demonstrated by analysis and full-scale mechanical tests, as per
BS-EN 61400-2:2006 [28] and BS-EN 61400-23:2002 [29].

Recently, the authors of this article have shown that a PFRP SWT
blade can survive the design fatigue loads for the required 20-year
life [30,31]. This manuscript details a novel comparative case study
on the manufacture and mechanical testing of 3.5 m composite ro-
tor blades, suitable for an 11 kW SWT, built from flax/polyester and
E-glass/polyester. Firstly, this article compares the weight, cost and
manufacturing properties of the two blades. Secondly, through sta-
tic mechanical testing of the blades, in accordance to the certifica-
tion standards [28,29], their mechanical properties are compared.
2. Design and manufacture of blades

2.1. Blade design summary

The study blade is 3.50 m in length, with an average chord
length of 0.29 m. For improved blade efficiency, an aerodynami-
cally optimised blade shape, generated through an in-house devel-
oped design software (BladeShaper v2.0) considering (i) blade
element momentum theory including wake rotation, (ii) turbine
performance, and (iii) part manufacturability, was employed.

To achieve the desired structural performance, based on past
experience, a conventional blade construction is used (Fig. 2).
The blade consists of a CNC machined core and fibre reinforced
composite structural blister caps and constant-thickness outer
shell. The core provides resistance against buckling, the unidirec-
tional fibre reinforced blister caps provide maximum axial (tensile)
and bending (flexural) stiffness and strength, and the multiaxial fi-
bre reinforced outer skin provides resistance against torsion-
related shear loads. The composite material has a nominal fibre
%
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Fig. 2. Construction of the composite blade.
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volume fraction of 32–38%. The ratio of multiaxial reinforcement
(in the shell) to unidirectional reinforcement (in the blister caps)
is �180–250 wt.%.

2.2. Blade manufacture

Two identical blades were manufactured using flax and E-glass
as reinforcements, employing the same stacking sequence. Low-
twist (20 tpm, 400 tex) wet-spun flax rovings were sourced from
Safilin (France). Prior to spinning, the dew-retted flax slivers were
soaked in a hot dilute solution of caustic soda. This process not
only improves roving regularity, but would also promote better fi-
bre/matrix adhesion and thus composite mechanical properties by
removing surface impurities (wax, oil, pectin, lignin), revealing
individual fibrils (‘defibrillation’) and generating a rough surface
topography [32]. Formax (UK) Ltd., produced stitched aligned fab-
rics (unidirectional [0] and balanced multiaxials ([±45], [0,±45]))
with these flax rovings. Stitched aligned fabrics of E-glass were also
sourced from Formax (UK) Ltd. The E-glass fibres were surface
treated with an epoxy size, that is suited to both polyester and
epoxy resin systems. For blade manufacture, the reinforcements
were employed as-received, without any preconditioning.

The tensile and fatigue properties of polyester composites made
from these reinforcements have been previously examined in
[33,34]; some of the characterised properties are presented in Ta-
ble 2. It is observed that while unidirectional E-glass composites
have significantly better mechanical properties than unidirectional
flax composites, the specific tensile stiffness of the composites and
the effective tensile stiffness of the fibres are comparable.

The blades were manufactured using an unsaturated polyester
resin in a light resin transfer moulding (LRTM) process. Both blades
Table 2
Tensile and fatigue properties of unidirectional flax/polyester and E-glass/polyester comp

Property

Physical Fibre volume fraction %
Density g cm�

Tensile Composite stiffness GPa
Composite specific stiffness GPa/g
Effective fibre stiffnessa GPa
Composite strength MPa
Composite specific strength MPa/g
Effective fibre strengtha MPa
Composite failure strain %

Physical Fibre volume fraction %
Density g cm�

Fatigue (R = 0.1) Single cycle strength MPa
Fatigue strength at 106 cycles MPa

a The effective fibre properties are ‘back-calculated’ using the rule of mixtures.
took�1.5 h to infuse showing that using plant fibre reinforcements
does not significantly alter infusion times. Post cure was conducted
at 40 �C for 2 h. The manufactured flax/polyester and E-glass/poly-
ester blades are shown in Fig. 3. A manufacturing advantage of
using flax over E-glass is that the former do not cause itching dur-
ing handling and are non-hazardous if inhaled.

Note that as the flax reinforcements were in the form of rovings
(rather than twisted yarns), they were loose (rather than compact).
The bulkiness of the fabric layers implied that closing the tool after
placing the fabric was difficult, particularly at the maximum chord
length where there is also a large variation in cross-sectional thick-
ness. Nonetheless, as increasing yarn twist has several detrimental
effects on PFRP performance including lowered permeability, hin-
dered impregnation, formation of impregnation related voids and
significant loss in orientation efficiency; rovings are preferred for
PFRP components [35].
2.3. Comparison of mass properties

Fig. 4a shows the difference in mass of the flax and E-glass
blades. Weighing at 23.3 ± 0.1 kg, the flax blade is 10% lighter than
the E-glass blade (25.8 ± 0.1 kg). Interestingly, the density of the
flax reinforcement was measured to be 1.57 g cm�3, which is 60%
that of E-glass (2.66 g cm�3) [33]. The reason why the flax blade
is only 10% lighter than the E-glass blade is that the fibre accounts
for only 18% and 30% of the flax and E-glass blade masses. Directly
comparing the fibre masses allows to appreciate the weight sav-
ings that flax provides; while the E-glass blade has 7.7 kg of fibre,
the flax blade has only 4.2 kg of fibre. That is, using flax, rather than
E-glass, reduces the fibre mass by 45%.

As Fig. 4a illustrates, the mass of the core is identical in both
blades and accounts for 32–36% of the blade mass. Interestingly,
the resin accounts for 38% of the E-glass blade mass but 46% of
the flax blade mass. The intake of 1 kg more resin in the flax blade
is possibly due to (i) the slightly lower volume of fibre (accounting
for �0.3 kg of extra resin), and (ii) a cavity forming over certain re-
gions of the blade (specifically, at the maximum chord length)
resulting from the deflection of the mould tool.

Note that the volume of fibre reinforcement used in both blades
is similar at 0.0027–0.0029 m3. The fibre volume fraction in the
composite part of the blades is calculated to be 23–26% (Table 3).
The lower fibre weight fraction of the flax composite, compared
to the E-glass composite (Table 3), is solely due to the difference
in densities of the flax and E-glass fibres. Therefore, the difference
in fibre weight fraction cannot be avoided (if the composites have
the same fibre volume fraction).
osites (from [33,34]).

Flax E-glass Flax/E-glass

30.9 42.8
3 1.31 1.79 0.732

23.4 36.9 0.634
cm�3 17.9 20.6 0.869

67.6 81.6 0.828
277 826 0.335

cm�3 213 461 0.462
883 1920 0.460
1.70 1.90 0.895

26.9 30.0 0.897
3 1.29 1.64 0.787

236 567 0.416
115 204 0.564



Fig. 3. Images of the (a) flax/polyester and (b) E-glass/polyester blades.
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Fig. 4. Comparison of the (a) mass and (b) materials cost of the flax and E-glass blades.

Table 3
Calculated overall fibre weight and volume fractions in the composite part of the
blades (excluding the core).

Flax blade E-glass blade

Density (g cm�3) 1.28 1.59
Fibre weight fraction (%) 28.2 44.3
Fibre volume fraction (%) 22.9 26.4

Table 4
Flax is costlier than E-glass at every stage. Costs for raw fibre, yarn/roving and aligned
fabrics are obtained from materials suppliers (and assumed indicative of the market
prices) as of December 2012. Costs for non-woven mats are from [37].

Cost of reinforcement Flaxa E-glass Flax/E-glass

Raw fibre (£/kg) 1.5 1.3 1.2
Yarn/roving (£/kg) 10.0–13.0 1.3 7.7–10.0
Aligned fabric (£/kg) 36.7–45.9 3.0–6.0 6.1–15.3
Non-woven mat (£/kg) 1.5 2.2 0.7

a Note that the prices of the flax reinforcements quoted here are based on small
quantities and should only be used as guidelines. Prices reduce significantly with
higher quantities (>5 tonnes), but also depend on other factors such as market
conditions and fibre quality.
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The centre of gravity Cg from the blade root is 1.26 ± 0.01 m for
the flax blade and 1.29 ± 0.01 m for the E-glass blade. The Cg is
fairly similar for both blades, as the blade construction and fabric
stacking sequence is identical.
2.4. Comparison of materials cost

Fig. 4b presents the difference in material cost of making the
flax and E-glass blades. The materials cost for the flax blade
amounts to �£240, making it approximately three times more
expensive than the E-glass blade. The material cost of the core
(at 5.28 £/kg) and the polyester resin (at 2.20 £/kg) are almost
identical for the two blades, amounting to �£65. Fig. 4 shows that
despite requiring less fibre in a flax blade, the fibre cost of the flax
blade is 8 times that of the E-glass blade.

Unlike E-glass, costs of flax reinforcements increase tremen-
dously with processing steps. This is because (i) E-glass reinforce-
ments are an established mature market, and (ii) the processing
(and incurred costs) of flax and E-glass reinforcements is different.
As Table 4 highlights, under current market conditions, aligned flax
reinforcements are more expensive than aligned E-glass reinforce-
ments at every stage: raw fibre, yarn/roving and aligned fabric.
Raw flax itself is barely cost-competitive against raw E-glass
[17,36]. Interestingly, the cost of non-woven mats of flax fibres is
comparable to (or even lower than) that of E-glass (Table 4). This
is possibly a result of the fact that naturally discontinuous plant fi-
bres are readily (without much processing) useable in the produc-
tion of non-wovens. It is thus not surprising that current industrial
applications of PFRPs are principally based on non-woven precur-
sors [6]. However, to make aligned fabric reinforcements, staple
plant fibres like flax need to be first processed into yarns/rovings,
unlike E-glass which is a synthetic filament. Flax rovings/yarns
are up to 10 times more expensive than E-glass. Madsen [37] have
also commented on the high market price of such plant fibre yarns.
In addition, the actual cost associated with aligned fabric manufac-
ture needs to be accounted. The flax reinforcements were specially
produced for this study; the costs for the multi-axial fabrics (300–
600 gsm) ranged from 13.8 £/m2 to 22.0 £/m2. E-glass fabrics (300–
600 gsm) were off-the-shelf items, which typically cost 1.80 £/m2.
By weight, the cost of aligned flax fabric is 6–15 times greater than
that of aligned E-glass fabric. In essence, the development of
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low-cost aligned plant fibre semi-products is a critical and poten-
tially limiting factor in encouraging the future industrial use of
PFRPs, as an alternative to GFRPs.
3. Mechanical testing of blades

Upon the design and manufacture of the two blades, their struc-
tural integrity was assessed through design load analysis and full-
scale mechanical tests, as per BS-EN 61400-2:2006 [28] and BS-EN
61400-23:2002 [29]. This section details the flap-wise static test-
ing of the two blades.

3.1. Description and derivation of test loads

3.1.1. Design loads
The SWT, for which the blades are to be used, is an 11 kW Class-

II horizontal axis 3-bladed upwind stall regulated turbine, with a
rigid hub, cantilever blades, active yaw mechanism and fixed pitch.
Hence, design loads for the blades can be determined using simpli-
fied conservative load equations in [28]. For the flap-wise static
testing of the blade, as per [29] it is the blade root bending moment
MyB (acting to bend the blade tip downwind) that is of interest. [29]
acknowledges that stresses caused by radial loads (FzB) are rela-
tively low. This is confirmed through a simple stress analysis at
the blade root. At the design wind speed (11.9 m s�1) and design
rotor speed (170 rpm) under normal operating conditions (Load
Case A in [28]), the flax and E-glass blade experience a radial load
of 23.6 kN and 26.2 kN, respectively (due to difference in masses).
The resultant mean stress at the blade root is only 1.22–1.35 MPa.

Typically, the blade is tested against the calculated blade root
bending moment MyB under normal operating conditions (Load
Case A in [28]) and worst case loading. Note that this turbine has
an active yaw mechanism which ensures that when subjected to
extreme gusts (Load Case H in [28] at extreme wind speed of
59.5 m s�1), the turbine is parked at 90� yaw angle, leading to min-
imal exposure. Using known values for constants, blade/turbine
parameters and wind condition parameters, the design loads on
the blade have been determined for the several load cases [38].
For this particular turbine setup, the worst case loading was found
to occur when there is a yaw error of 30� (Load Case C in [28] at de-
sign wind speed of 11.9 m s�1). Conveniently, blade root bending
moment MyB at Load Case A and Load Case C are not a function of
blade mass, and hence are the same for both the blades.

3.1.2. Target test loads
To determine the target test loads, partial safety factors have to

be incorporated with the design loads. In particular, BS-EN 61400-
2:2006 [28] and BS-EN 61400-23:2002 [29] require the inclusion of
the product of the following partial safety factors: load cf, conse-
quence of failure cn and blade to blade manufacturing variations
cs. It appears that the recommended combined safety factor is sim-
ilar in various certification standards [39].

As is later revealed, a single-point test method is employed,
where a single concentrated point load is applied at l m from the
blade root. The target point load F (F = MyB/l), associated with the
target blade root bending moment MyB, at the normal operation
and worst case loads is 1.48 kN and 3.99 kN, respectively.

3.2. Experimental set-up

3.2.1. Test equipment
For the static flap-bending test, a single point test method was

employed. The blade root was fixed to a specially designed rigid
steel test rig (Fig. 5a) via a simple bolted connection. No inserts
or studs are used; rather, the bolts go through holes in the
composite sandwich (skin/cap/core/cap/skin). The test rig mimics
the real blade root to hub connection, with the same square bolt
pattern, plate thickness and plate local geometry. The test rig
was attached to two structural poles. The blade was fixed horizon-
tal (flap-wise up) and was loaded by an overhead crane. A compos-
ite saddle was specially built to enclose the blade’s cross-section at
the desired load point. This is presented in Fig. 5b.

The overall loading arrangement is presented in Fig. 6. The
external sleeves of the saddle have eyebolts which are used to con-
nect to a 12 kN calibrated load cell. The load cell rests on a spreader
beam and is attached to a 5 tonne overhead crane. As the blade de-
flects, the load direction relative to the blade orientation can
change. To ensure that the load is perpendicular to the load appli-
cation point on the blade, the overhead crane is periodically moved
towards the blade root after releasing some load. A spring-loaded
marker, attached at the blade tip, provides in situ tip displacement
monitoring.

3.2.2. Test regime
To systematically achieve the target point test loads F, a loading

sequence was developed (Fig. 7). The test has three stages: (i) load-
ing up to the 100% normal operation load (F = 1.48 kN), (ii) loading
up to the worst case load (F = 3.99 kN, i.e. 270% (=3.99/1.48) of nor-
mal operation load), and (iii) loading to failure. To ensure steady
loading, small steps of 0.01–0.03 kN are used. Regular load dwells
are incorporated to allow the blade to settle.

3.3. Results and discussion

The flax and E-glass blades were subjected to flap-bending tests
according to the experimental set-up and loading regime described
in Section 3.2. Fig. 8 presents graphs of test load and tip displace-
ment as a function of test duration, for both the blades. It is ob-
served that both the blades survive the normal operation load
without any superficial failure and survive the worst case load
without any functional/catastrophic failure. As both the blades sat-
isfy the ultimate strength requirements of BS-EN 61400-23:2002
[29], the flax blade can be viewed as a potential replacement to
the E-glass blade. The failure load and corresponding tip displace-
ment of the flax blade is 4.14 kN and 2300 mm, respectively. The
failure data of the E-glass blade is not disclosed. BS-EN 61400-
23:2002 [29] does not formally require measuring the failure load
and tip deflection.

Table 5 presents useful information from the graphs in Fig. 8,
enabling direct comparison of the performance of the E-glass and
flax blades. At normal operation loads, the E-glass blade has a tip
deflection of 270 mm while the flax blade has a 40% higher tip
deflection of 388 mm. The tip deflections are 8–11% of the blade
length. While the flax blade survives the worst case loading like
the E-glass blade, the flax blade is significantly more flexible than
the E-glass blade. The E-glass and flax blades have a tip displace-
ment of 743 mm and 2025 mm under worst case loading, which
is 22% and 60% of the blade length, respectively. To avoid tower
strike, BS-EN 61400-23:2002 [29] requires that the tip displace-
ment should be less than the clearance provided between the blade
tip and the tower, even at worst case loading. As the traditional
practise in designing a turbine is to accommodate the require-
ments of the blade (i.e. blade-centered design), a turbine can be de-
signed so that a generous clearance is available to accommodate
the large tip deflection of the flax blade. A possible design solution
is to increase the distance between the rotor centre and tower axis,
and use a yaw drive mechanism (or thicker flanges) to balance the
increased overturning moment of the rotor. In addition, a modified
flax blade design incorporating a spar (with shear webs/caps) will
enable major reductions in tip deflection by increasing the flexural
rigidity of the blade.



Fig. 5. Image showing the (a) test rig and (b) composite saddle.
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Fig. 8. Test load and tip displacement as a function of time, for the (a) flax and (b) E-
glass blades. The point of functional failure has been indicated. Load values (y-axis)
are normalised by the normal operation load (of 1.48 kN).
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The load curves in Fig. 8 show relaxation in loads during dwells.
It is observed that load relaxation is much higher in the flax blade
than the E-glass blade. In fact, in stage 2, the magnitude of load
relaxation averages 0.03 kN for the E-glass blade but 0.18 kN for
the flax blade. Interestingly, during periods of load relaxation, the
blade tip displacement remains fairly constant. The greater load
relaxation in the flax blade implies reducing blade stiffness. This
could possibly be due to a poorer fibre/matrix interface resulting
in gradual plastic deformation through progressive micro-
mechanical damage mechanisms such as fibre/matrix debonding
and pull-out. This is common in PFRPs [2,33,40]. In addition, it
has been shown that plant fibre composites have a non-linear
stress–strain curve, resulting from a very small elastic strain limit
of �0.15%, implying that plastic deformation from micro-damage
occurs very early in the load curve [41,42].
3.3.1. Displacement–load curves
Fig. 9 presents tip displacement versus load curves for the flax

and E-glass blades. Interestingly, while the tip displacement in-
creases at a constant rate with load (linear growth, R2 = 0.996) for
the E-glass blade, the tip displacement increases at an increasing
rate with load (quadratic growth, R2 = 0.989) for the flax blade. This
is in agreement with the load–displacement curve of the different
materials. E-glass composites have a linear load–displacement



Table 5
Loads and corresponding tip displacements of the E-glass and flax blades, at the end of test stages 1, 2 and 3.

Flax blade E-glass blade

Load Tip displacement Load Tip displacement

Stage of test loading kN % Of NOa load mm % Of blade length kN % of NOa load mm % Of blade length

Normal operation 1.48 100 388 11 1.48 100 270 8
Worst case 3.99 270 2030 60 3.99 270 743 22
Failure 4.14 280 2300 68 N/Ab N/Ab N/Ab N/Ab

a NO load is ‘normal operation’ load.
b Non-disclosable data.
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Fig. 9. Tip displacement versus load curves for the flax and E-glass blades. Images
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and (iv) failure load, are also presented. Load values (x-axis) are normalised by the
normal operation load (of 1.48 kN).
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curve, while plant fibre composites have a non-linear load–dis-
placement curve [41–44]. In particular, plant fibre composites exhi-
bit softening (i.e. decreasing stiffness with increasing strain/load)
[41,43]. Shah et al. [41] have shown that the stiffness of flax/poly-
ester composites reduces by up to 30% in the 0–0.25% strain range,
while the stiffness of E-glass composites is fairly constant. This
highlights the differing stress–strain accumulation and damage-
growth mechanisms in E-glass reinforced composites and plant fi-
bre reinforced composites, particularly due to the differing fibre
structure and morphology and fibre/matrix interactions.

Fig. 9 clearly demonstrates the significantly higher deflection of
the flax blade in comparison to the E-glass blade. Fig. 9 also pre-
sents images of the flax blade under (i) no load, (ii) normal opera-
tion load, (iii) worst case load, and (iv) failure load.

3.3.2. Flexural rigidity of blades in the flap-wise direction
Two strategies are available to estimate the flexural rigidity (EI)

of a blade. The first technique involves assuming that the blade can
be considered as a uniform cross-section cantilever beam sub-
jected to a single concentrated load at l m from the blade root.
Assuming small deflections and applying appropriate boundary
conditions at the ends of the cantilever beam, the mean flexural
stiffness EImean of a blade can be then estimated by applying simple
static analysis using Macaulay’s method (Eq. (1)). In Eq. (1), ytip/F is
the slope of the tip displacement to load curve, ztip (=3.50 m) is the
length of the blade and l is the distance between the point of load
application along the blade from the blade root. Importantly, this
simple analysis conveniently shows that the blade flexural stiffness
is inversely proportional to the slope of the tip displacement to
load curve.

EImean ¼
K

ytip=F
; K ¼ ½ztip � l�3

6
�

z3
tip

6
þ

lz2
tip

2
ð1Þ

Using the slope (ytip/F) of the linear tip displacement–load curve for
the E-glass blade (181.6 mm/kN) and the flax blade (408.8 mm/kN)
from Fig. 9 and substituting the relevant constants in Eq. (1), the
mean flexural stiffness EImean of the E-glass and flax blades is found
to be 53.1 kN m2 and 23.6 kN m2, respectively. That is, the flax blade
is 2.25 times more flexible than the E-glass blade. As the displace-
ment–load curve for flax is non-linear and follows a quadratic equa-
tion better, a better approximation of EImean can be obtained if the
differential of the best-fit quadratic equation is taken as ytip/F. The
mean flexural stiffness EImean of the flax blade is then a function
of load, and is found to reduce with increasing load. For instance,
EImean at loads of 0 kN, 1.48 kN (normal operation load) and
3.99 kN (worst case load) is 96.9 kN m2, 25.1 kN m2 and
11.1 kN m2, respectively.

An alternate, and more rigorous, method to estimate the flex-
ural rigidity of the blade involves measuring the vertical deflection
(using the video footage) of a blade subjected to normal operation
loads at various points along the blade. 18 points along the leading
and trailing edges are used for deflection measurement. From the
vertical deflections, the bending angle h = dy/dz, and bending rate
per unit length dh/dz can be calculated using finite difference
methods. The flexural rigidity at different points along the blade
can then be determined by using Eq. (2) [45]. The results for the
E-glass and flax blades are presented in Fig. 10. The curves ob-
served have a similar profile to those found in literature for larger
GFRP wind turbine blades [45].

EI ¼ M
dh=dz

; dh=dz ¼ d2y=dz2 ð2Þ

Fig. 10a shows the applied bending moment along the blade
length z due to the point load at l m from the blade root. Note that
the applied bending moment is null beyond the load application
point. In addition, the bending moment at the blade root is the re-
quired target blade root bending moment MyB of 4.15 kN m. The
resulting vertical deflection along the blade length of the E-glass
and flax blades can be observed in Fig. 10b. The deflection profile
for both blades is observed to follow a quadratic equation
(R2 > 0.995). It is clearly observed that the flax blade deflects more
than the E-glass blade. The calculated bending angle along the
blade lengths for the two blades is presented in Fig. 10c. The
bending angle is observed to increase fairly linearly with blade
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Fig. 11. The E-glass blade, failing at the blade root, exhibited extensive
delamination.
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length up to the load application point, after which it becomes
constant. This is because beyond this load application point there
is no bending moment (Fig. 10a).

Fig. 10d illustrates the variation in estimated flexural rigidity EI
along the blade length for both the blades. The higher flexural
rigidity at close to the blade root is due to the higher bending mo-
ment of area and presence of more layers of unidirectional rein-
forcement. Sudden dips in the flexural rigidity along the blade
length are possibly due to step-changes in the stacking sequence
of the blade.

It is observed that the E-glass blade exhibits a higher flexural
rigidity at almost all points along the blade length. In particular,
the flexural rigidity of the E-glass blade is 2–3 times more than
the flax blade, along the first meter of the blade. Using the trape-
zium rule, an indicative value of the mean flexural stiffness for
the blades can be determined. EImean is found to be 43.4 kN m2

for the E-glass blade and 24.6 kN m2 for the flax blade. These val-
ues are fairly similar to those calculated previously through the
simple static analysis method.

In comparing the mechanical properties of flax and E-glass com-
posites in Table 2, it was found that the stiffness of flax composites
is 83% that of E-glass composites (at vf = 100%). On the other hand,
the mean flexural rigidity of the flax blade is 57% that of an identi-
cal construction E-glass blade. Hence, it is interesting to see that
while flax fibres and their composites are recognized for their stiff-
ness [2,33,46], a flax blade (i.e. component/structure) cannot com-
pete against an E-glass blade in terms of stiffness. Furthermore,
despite the well-documented poor strength properties of flax com-
posites (in comparison to GFRPs; Table 2), the flax blade, like the E-
glass blade, is able to withstand the worst case loads. This shows
that more studies are required to understand the behaviour of
PFRPs when employed in specific applications/structures, rather
than limiting materials analysis to data extracted from coupon
testing.
3.3.3. Failure modes of blades
The E-glass and flax blades failed under different modes, as is

depicted by Figs. 11 and 12. The E-glass blade failed due to crack
formation at the root-hub junction. Upon further loading, the
crack grew across the blade cross-section causing extensive
delamination. Fig. 11 shows how the composite laminates have
peeled from the core. The crack eventually grows to such an ex-
tent that the trailing edge, along the maximum chord length, split
open.



Fig. 12. Images of the fractured flax blade showing (a) the region of failure, and (b) wrinkle formation due to buckling.
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On the other hand, the flax blade failed �1 m along the blade
length from the blade root (Fig. 12a) which corresponds to a step-
change in the stacking sequence. This point of step-change is a pos-
sible stress-raiser. Hence, as the load exceeded 4 kN and the tip
deflection approached 70% of the blade length, the stress concentra-
tion increased substantially. Initially, matrix cracking/peeling was
observed (Fig. 12b) – a sign of resin richness. Then, the top surface,
experiencing compressive loads, buckled. The wrinkles and delam-
ination resulting from the compressive failure of the composite
laminate can be seen in Fig. 12b. Further loading led to complete
buckling, delamination and eventually collapse of the blade.

4. Conclusions

Through this novel comparative case study, the manufacture
and mechanical testing of 3.5 m composite rotor blades (suitable
for an 11 kW turbine) built from flax/polyester and E-glass/polyes-
ter has been investigated. The lower density of plant fibres expect-
edly enables component weight savings; it is found that the flax/
polyester blade is 10% lighter than the E-glass/polyester blade (fi-
bre mass saving of 45%). Static flap-wise testing of the blades, in
accordance to certification standards, confirmed that like the E-
glass/polyester blade, the flax/polyester blade satisfies the design
and structural integrity requirements for an 11 kW turbine, under
normal operation and worst case loading. While the displacement–
load curve is linear for the E-glass blade, it is non-linear for the flax
blade, highlighting the varying stress–strain accumulation mecha-
nisms in natural materials. The mean flexural rigidity of the flax
and E-glass blades are 24.6 kN m2 and 43.4 kN m2. Design solutions
have been offered to overcome the larger tip deflection of the flax
blade. For instance, to improve the rigidity of the flax blade, it is
suggested that an improved blade design, which incorporates a
spar (with shear webs/caps), is trialled. The flax and E-glass blades
are found to fail in a different manner. The failure load and corre-
sponding tip displacement of the flax blade is 4.14 kN and
2300 mm, respectively.

In conclusion, it is proposed that flax is a suitable structural
replacement to E-glass for similar composite small wind turbine
blade applications. In view of the findings of this research, it is sug-
gested that (i) the development of low-cost aligned plant fibre
semi-products is a limiting factor to the industrial uptake of PFRPs
in structural applications, and (ii) more ambitious studies are re-
quired to understand the behaviour of PFRPs when employed in
specific applications/structures, rather than limiting materials
analysis to data extracted from coupon testing.
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