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Let X be a finite set of size v, let ~. be a positive integer, and a~(4, )., v) be the minimum 
number of quadruples such that each pair of elements of X is contained in at least ~ of them. 
Mills [5, 6] has determined aft4, 1, v) for all v. In this paper aft4, )., v) is determined for all v 
and )~ > 1. 

1. Introduction 

1.1. Designs 

Let X be a finite set of points and let ~ = {Bi:i e I} be a family of--not  
necessarily distinct subsets Bi (called blocks) of X. The pair (X, ~ )  is called a 
hypergraph. When certain regularity conditions are imposed, the resultant object 
is called a design. 

1.2. Balanced incomplete block designs (BIBD) 

Let v t> k >t 2 and ). be positive integers. A design (X, ~ )  is called a balanced 
incomplete block design (BIBD) B[k, ;~; v] if 

(i) Ix l  = v ,  
(ii) the blocks are of size k; 

(iii) every 2-set {x, y } c X is contained in exactly ~. blocks of ~ .  
A well-known result states that a necessary condition for the existence of a 

BIBD B[k, A; v] is that ~.(v - 1) -= 0 (mod k - 1) and ~,v(v - 1) ~- 0 (mod k (k  - 
1)). 

We shall use the following 

Theorem 1.1 (H. Hanani [2]). Let ~, and v >t 4 be positive integers. A necessary 
and sufficient condition for the existence o f  a BIBD B[4, A; v] is that ;~(v - 1) -= 0 
(mod 3) and ~,v(v - 1) --- 0 (mod 12). 

1.3. Group divisible designs 

We shall consider designs of the form (X, ~, ~), where X is a finite set of 
points, ~3 is a parallel class of subsets of X called groups and ~ is a family of 
subsets of X called (proper) blocks. 
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Let m, k, I and v be positive integers. A design (X, ~, ~) is a group divisible 
design GD[k, I, m; v] if 

(i) l x l  = v ;  

(ii) IGil = m for every Gi • ~J; 
(iii) IB]I = k for every Bj e ~;  
(iv) IGi N B]l ~< 1 for every Gi ~ ~J and every Bj • ~;  
(v) every 2-subset {x, y} c X such that x and y belong to distinct groups; is 

contained in exactly I blocks of ~. 
A necessary condition for the existence of a group divisible design 

GD[k, i,  m; v] is that v -- 0 (mod m), l (v  - m) ~- 0 (mod k - 1), I v ( v  - m) =- 0 

(mod k (k  - 1)) and v >- km or v = m. 
We shall use the following 

Theorem 1.2 (Brouwer-Hanani-Schrijver [1]). Let m, i and v be positive 

integers. A necessary and sufficient condition for  the existence o f  a group divisible 
design GD[4, i , m ; v ]  /s that the design is not GD[4, 1,2;8] and not 

GD[4, 1, 6; 24] and that v =- 0 (mod m), Z(v - m) - 0 (mod 3), t v ( v  - m) =- 0 

(rood 12) and v >I 4m or v = m. 

1.4. Covering and packing designs 

A design (X, N) is called a covering design AD[k, i ,  v; b] (or, respectively, a 
packing design SD[k, I, v; b]) if 

(i) Ix l  = v ;  
(ii) the blocks are of size k; 

= b; 
(iv) every 2-subset {x, y } c X is included in at least (at most) 1 blocks of ~3. 
Naturally, we are interested in covering designs having a minimal number of 

blocks and, conversely, in packing designs with the maximal number of blocks. 
Denote by a~(k, t ,  v) the smallest number b of blocks for which AD[k, t ,  v; b] 

exists and by a(k, t ,  v) the greatest value of b for which SD[k, t ,  v; b] exists. 
Clearly 

a(k, I ,  v ) < - I v ( v -  1 ) / k ( k -  1)~< a~(k, t ,  v) 

and the equality sign on both sides holds if and only if a BIBD B[k, I ;  v] exists. 
Schonheim [7] introduced the notation 

¢ ( k , l , v )  [~ v - 1  Iv - 1 ~] 

where Ix] is the smallest and Ix] the largest integer satisfying [x] ~<x ~< Ix] and 
proved 
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Theorem 1.3 (Schonheim [7]). For every positive integer k, Z and v >1 k 

a(k,  3-; v) <<- ~p(k, 3-, v)  <~ 3-v(v - 1 ) / k (k  - 1) <~ q~(k, 3-, v) ~< a~(k, 3-, v). 

A design (X, ~ )  with X ' c X  is 
AD*[k, Z, v(t);  b] if 

(i) I g l -  v; 
(ii) the blocks are of size k; 

(iii) = b; 
(iv) Is'l = t 
(v) every pairset {x, y} c X such that 

blocks of ~ ;  

called an almost covering design 

{x, y}  ~: X '  is included in at least 3. 

(vi) no pairset {x, y } c X '  is included in any block of ~.  
For k = 3 and for every 3- and v Hanani [2, p. 367] determined tr(3, 3-, v) and 

o(3, 3-, v). 

2. Covering designs with k = 4 

In the case k = 4 and 3- = t Mills [5, 6] proved 

Theorem 2.1. For every positive integer v >1 4 

a~(4, 1, v) = tp(4, 1, v), v ¢ 7, 9, 10, 19 

tr(4, 

o:(4, 

e(4, 

a~(4, 

1, 7 ) =  9(4, 1, 7 ) +  1, 

1, 9) = 9(4, 1, 9) + 1, 

1, 10)= q~(4, 1, 10)+ 1, 

1, 19)= tp(4, 1, 19) + 2, 

We shall obtain analogous results for 3- > 1. 
following results of Hanani and Mills. 

For our proofs we need the 

Lemma 2.1 (Hanani [2]). For given integers k, 3- and m let GD[k, 3-, m, ran] exist 
f o r  every integer n >i k. I f  in addition for  u = m + t (0 <~ t <~ m)  both designs 

AD[k, 3-, u, (Zu 2 + alu + a o ) / k ( k -  !)] 
and 

AD*[k,  3-, u(t), m(3-(u + t) + a l ) / k ( k  - 1)] 

exist, then 

a~(k, 3-, v) <~ (Zv 2 + alv + ao)/k(k  - 1), 

for  every v = mn  + t. 
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Lemma 2.2 (Mills [6, p. 139]). Let  X be a set o f  order 4w + u where w = 0 or 1 

(mod 4) and 0 < u < w. Then there exists a collection ~ o f  w 2 + 5 subsets o f  X such 
that: 

(i) the collection ~ covers all pairs o f  X exactly once; 

(ii) @ consists o f  w ( w  - u) sets o f  order 4, wu sets o f  order 5, four  sets o f  order 
w and one set o f  order u. 

Theorem 2.2 (Mills [5, p. 161]). ff v -= 7 or 10 (mod 12) and i f  ~¢ is a collection o f  

@(4, 1, v)  quadruples that covers all pairs o f  a set X o f  order v, then there is one 

pair which occurs four  times in these quadruples, while all other pairs occur exactly 

once. 

3. Constructions 

We proceed to prove the following 

Theorem. For every positive integer Z > 1 and v >t 4, tr(4, ~,, v) = @(4, )., v) 
holds. 

For all values of v for which a~(4, 1, v) = @(4, 1, v) it is sufficient to prove, by 
Theorem 1.1, our theorem for 2~ ,~<5 .  For the few cases that a~(4, 1, v ) >  
@(4, 1, v), i.e., v = 7, 9, 10, 19 we have to prove also that a~(4, 7, v) = @(4, 7, v). 

First we need the following two lemmas. 

Lemma 3.1. For v = 6 and ~, = 3 there exists AD[4, 3, 6; 8]. 

Proof. Let X = Z6, then the blocks are 

(0 ,1 ,4 ,5 )  (1 ,3 ,4 ,5 )  

(2 ,3 ,4 ,5 )  (0 ,2 ,4 ,5 )  

(0 ,3 ,4 ,5 )  

(1,2,4,5) 
(o, 1,2,3) 
(o, 1,2,3) 

Lemma 3.2. for  v = 7 and 2~ = 3 there exists AD[4, 3, 7; 11]. 

Proof. Let X = ZT, then the blocks are 

(0 ,1 ,2 ,4 )  

(1 ,2 ,5 ,6 )  

(3 ,4 ,5 ,6 )  

(1 ,2 ,3 ,4 )  (2 ,4 ,5 ,6 )  (0 ,2 ,3 ,6 )  

(0, 1, 3, 4) (1, 3, 5, 6) (0, 4, 5, 6) 

(0 ,2 ,3 ,5 )  (0 ,1 ,5 ,6 )  

In order to solve our problem, we divide it into several cases. 
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3.1. v - 1 or  4 (mod 12) 

In this case a:(4, 3., v) = tp(4, 3., v) follows from Theorem 1.1. 

3.2. v =--- 7 or 10 (mod 12) 

In this case a~(4, ~., v) = 9(4, )., v). 

Proof. For ~ = 2, we haveB[4, 2; v]. 

For ~. = 3, the blocks of AD[4, 3, v; b] are the blocks of B[4, 2; v] with the 
blocks of AD[4, 1, v; b] by Theorem 2.1. This method does not work for v = 7 
and 10. For v = 7 see Lcmma 3.2, for v = 10, [4], let X = {a, b} U (Z4 x Z2), then 
the required blocks are: 

(a, b, (0, 0), (0, 1)) (mod(4, - ) )  

(a, (0, 0), (0, 1), (1, 1)) (mod(4, - ) )  

(b, (0, 0), (2, 1), (3, 1)) (mod(4, - ) )  

(a, b, (0, 0), (2, 0)) (+(i, - )  i =0, 1) 

((0, 1), (1, 0), (2, 0), (3, O) ) 
(mod(4, - ) )  

((0, 0), (1, 0), (0, 1), (2, 1)) 
(mod(4, - ) )  

((0, 1), (1, 1), (2, 1), (3, 1)) 

For v = 19, let X = Z13 [.J {a, b, c, d, e, f } ,  then the blocks that cover each pair of 
X at least three times are 

(0, 1, 6, a) (modl3) 

(0, 2, 5, b) (mod 13) 

(0, 3, 7, c) (mod 13) 

(0, 4,5, d) (modl3) 

For the last blocks apply Lemma 3.1. 
For ~ = 4 it follows from Theorem 1.1. 

(0, 2, 6, e) (mod 13) 

(0, 1, 3, f )  (mod 13) 

( a , b , c , d , e , f )  

For 3. = 5, then the blocks of AD[4, 5, v; b] are the blocks of B[4, 2; v] with the 
blocks of AD[4, 3, v; b]. 

3.3. v --= 0 (mod 12) 

In this case c~(4, Z, v )=  tp(4, Z, v). 

Proof. For ~ - 2, the blocks of AD[4, 2, v; b] are the blocks of AD[4, 1, v; b], 

taken twice. 
For ~ = 3, it follows from Theorem 1.1. 
For ~ = 4, then the blocks of AD[4, 4, v; b] are the blocks of B[4, 3; v] with the 

blocks of AD[4, 1, v; b]. 
For ;t = 5, then the blocks of AD[4, 5, v; b] are the blocks of B[4, 3; v] with the 

blocks of AD[4, 2, v; b]. 
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3.4. v = 2 (mod 12) 

In this case a~(4, Z, v) = 9(4, 4, v). 

Proof. (1) For ~. = 2, apply Lemma 2.1 with m = 12 and t = 2. According to this 
lemma it is sufficient to prove the existence of AD*[4,2,14(2);31], 
AD[4, 2, 14; 32], AD[4, 2, 26; 111] and AD[4, 2, 38; 238]. 

For AD*[4, 2, 14(2); 31], take the blocks of B[4, 1; 13], and further, take the 
blocks of AD[4, 1, 15; 19] as they appeared in Mills' paper [5, p. 71] with the 
following changes: we interchange 1 with 13, 2 with 14 and 3 with 15; then we 
eliminate the block (13, 14, 15 ) and in all the remaining blocks we change 15 to 
14. 

The blocks of AD[4, 2, 14; 32] can be constructed in the following way: 
(a) taking the blocks of B[4, 1; 13]; 
(b) taking the blocks of AD[4, 1, 15; 19] as above by interchanging 15 with 7, 

and then changing 15 to 14 in all the blocks except the block (6, 15, 10, 14) from 
which we drop only the point 15. 

For AD[4, 2, 26; 111] we take the blocks of B[4, 1; 25] and then we take the 
blocks of AD[4, 1, 27; 61] as given by Mills [5, p. 71]. What is essential in this 
construction is that we have the block ((2, 2), (2, 3), (2, 6), (2, 7)} which contains 
the pairs ((2, 2), (2, 6)) and ((2, 3), (2, 7)), which appear once more elsewhere, so 
we can drop the point (2, 7) from this block and in the remaining blocks we 
change (2, 7) to (2, 6). 

For AD[4, 2, 38; 238]: since in the construction of AD[4, 1, 39; 127], [5, p. 72] 
we have the block ((2, 1), (2, 2), (2, 7), (2, 8)) which contains, two pairs that 
appear once more, we can apply the method as above to get the blocks of 
AD(4, 2, 38; 238]. 

(2) For ). = 3, again apply Lemma 2.1 with m = 12 and t = 2. Accordingly, it is 
sufficient to prove the existence of AD*[4,3,14(2);45], AD[4,3,14;46], 
AD[4, 3, 26; 163] and AD[4, 3, 38; 352]. 

For AD*[4, 3, 14(2); 45] we take the blocks of B[4, 2; 13] and the blocks of 
B[4, 1; 16], dropping the block {13, 14, 15, 16) and changing in the remaining 
blocks both points 15 and 16 to 14. 
For AD[4, 3, 14; 46], [4] let X = Za2 U {a, b} and take the blocks 

(0, 1, 3, 7) (mod 12), 

(0, 2, 3, 5) (rood 12), 

(a, b, 0, 6) 

(a, 0, 1, 5) 

(+i, ieZ6), 
(+2i, i e Z6), 

(b, 1, 2, 6) 

(a, O, 4, 8) 

(b, 1, 5, 9) 

For AD[4, 3, 26; 163], let X = Z19 

( 0 , 4 , 7 , 9 )  

(0,6,  8, a)  

(0, 1,7, b)  

(rood 19), 

(mod 19), 

(mod 19), 

(+2i, i ~ Z6), 

(+2i, i e Z2), 

(+2i, i ~ 7-,2). 

tO {a, b, c, d, e, f, g} then the blocks are 

(0, 5, 7 , f )  (rood 19), 

(0, 3, 4 ,g)  (rood 19), 

(a,b,c,d,e,f,g), 

(0, 5, 8, c) (mod 19), 

(0,4, 10, d) (rood 19), 
{0, 1, 9, e) (mod 19), 

and for the last block apply Lemma 3.2. 
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For AD[4, 3, 38; 352], apply Lemma 2.2:38 = 4- 8 + 6 where 8 = 0 (mod 4) and 
6 < 8 .  

According to this lemma, there is a covering of the pairs of the 38 points such 
that each pair is contained in exactly one block. The blocks are of sizes 4, 5, 8 and 
one block of size 6. On the blocks of sizes 4, 5, 8 we construct BIBD with Z = 3, 
and for the block of size 6 we use Lemma 3.1. 

(3)'For ~ = 4 ,  first we give the construction of AD[4, 1, v; b], where v = 2  
(mod 12). Take the blocks of B[4, 1; v -  1], then divide the v -  1 points into 
triples and to each triple add the point v. Since v - 1 ~ 1 (mod 12), then when 
dividing the ( v -  1) points to triples, there will be a point ( v -  1) left out and 
when adding the point v to this point, we will have a block of order two. 

Now the construction of AD[4, 4, v; b], v = 2 (mod 12) can be done by taking 
the blocks of AD[4, 3, v; b] which has a pair that occurs six times, say (v - 1, v) 
and the blocks of AD[4, 1, v; b] which has a block of order two iv - 1, v) and 
drop this block. The remaining blocks are the blocks of AD[4, 4, v; b]. 

(4) For ~, = 5, apply Lemma 2.1 with m = 12, t = 2 and ~. = 5. It is sufficient to 
construct AD*[4, 5,~14(2); 76], AD[4, 5, 14; 77], AD[4, 5, 26; 273] and AD[4, 5, 
38; 589]. 

For AD*[4, 5, 14(2); 76] we take the blocks of AD*[4, 3, 14(2); 45] and 
AD*[4, 2, 14(2); 31]. 

For AD[4, 5, 14; 77] we take the blocks of AD[4, 3, 14; 46], B[4, 1; 13] and the 
following blocks 

(3 ,4 ,5 ,12)  (1 ,8 ,9 ,13)  (1 ,3 ,7 ,10)  

(6 ,7 ,8 ,12)  (0 ,3 ,9 ,13)  (2 ,3 ,8 ,11)  

(9,10,11,12) (0,7,11,13) (2 ,4 ,7 ,9)  

(0 ,1 ,2 ,12)  (1,4,11,13) (0,4, 8, 10) 

(3 ,4 ,6 ,13)  (5,7,.8,13) (1 ,5 ,6 ,9)  

(2 ,5 ,10,13)  (2, 6, 10,'13) (0 ,5 ,6 ,11)  

For AD[4, 5, 26; 273], apply Lemma 2.1 with m = 6, t = 2 and ). = 5. According 
to this lemma we have to prove the existence of AD*[4,5,8(2);23] and 
AD[4, 5, 8; 24]. 

For AD*[4, 5, 8(2); 23] let X = Z6 t3 {a, b}, then the blocks are 

(0, 1, 3, a) (mod 6), (3, 4, 5, a),  (0, 1, 5, b),  

(0, 1, 4, b) (mod 6), (1, 2, 3, b),  (0, 1, 3, 4), 

(0, 2, 4, a) ,  (0, 4, 5, b), (1, 2, 4, 5), 

(1, 3, 5, a) ,  (2, 3, 4, b), (0, 2, 3, 5), 

(0,1,2, a), 
For AD[4, 5, 8; 24], let X = 7-,8, then the blocks are 

( 0 , 1 , 3 , 4 )  (mod8), (0 ,2 ,4 ,5 )  (mod8), (0 ,1 ,2 ,4 )  (mod 8). 
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For AD[4,5, 38;589], again apply Lemma 2.1 with m- -6 ,  t - 2  and ~. = 5 .  
According to this lemma we have to prove the existence of AD*[4, 5, 8(2); 23] 
and AD[4, 5, 8; 24] which we have done above. 

3.5. v - 3 (mod 12) 

(1) For Z = 2, then the blocks of AD[4, 2, v; b] are the blocks of AD[4, 1, v; b] 
taken twice. 

(2) For Z = 3, the blocks of AD[4, 3, v; b] for every v-= 3 (mod 12) can be 
constructed in the following way: 

(a) take the blocks of B[4, 1; v - 2]; 
(b) take the blocks of B[4, 1; v + 1] with assumption that the points v - 1, v 

and v + 1 are not included in one block, hence, there are two blocks (a, b, v; v + 
1) and (c, d, v - 1; v + 1). The point v + 1 we change to v in all the blocks of 
B[4, 1; v + 1] except the block (a, b, v, v + 1). In this block we change (v + 1) to 
( v -  1); 

(c) again take the same blocks of B[4, 1; v + 1], interchange v - 1 ~ v. Now in 
the block (a, b, v -  1, v + 1) we change v + 1 to v and in all other blocks of 
B[4, 1; v + 1] we change v + 1 to v - 1. 

(3) For X = 4, the blocks of AD[4, 4, v; b] are the blocks of AD[4, 3, v; b] and 
AD[4, 1, v;b]. 

(4) For ~. = 5, apply Lemma 2.1 with m = 12, t = 2 and ~ = 5. According to this 
lemma we have to prove the existence of AD*[4, 5, 15(3); 87], AD[4, 5, 15; 90], 
AD[4, 5, 27; 297], and AD[4, 5, 39; 624]. 

For AD*[4, 5, 15(3); 87], take the blocks of AD*[4, 3, 15(3); 51] and the blocks 
of AD*[4, 2, 15(3); 36]. The blocks of AD*[4, 3, 15(3); 51] can be constructed by 

(a) taking the blocks of B[4, 1; 13]; 
(b) taking the blocks of B[4, 1; 16] twice, without the blocks (13, 14, 15, 16), 

in the first by changing 16 to 14, and secondly by changing 16 to 15. The blocks of 
AD*[4, 2, 15(3); 36] can be constructed by 

(a) taking the blocks of B[4, 1; 16] without the block (13, 14, 15, 16); 
(b) by taking the blocks of AD[4, 1, 14; 18], [6, p. 139] without the block 

(13,14).  
For AD[4, 5, v; b], v = 15, 27, 39: 
(a) take the blocks of AD[4, 3, v; b]. According to this construction there is a 

pair which appears six times. Assume this pair is (1, 2): 
(b) take the blocks of AD[4, 1, v; b] v = 15, 27, 39 given by Mills [5, p. 71]. 

This construction contains a triple; let us assume the triple is (1, 2, 3) which we 
drop; 

(c) again we take the blocks of AD[4, 1, v; b], v = 15, 27, 39. Here we assume 
the triple to be (1, 2, 4). To this triple we add the point 3, so we get back the two 
pairs (1 ,3) , (2 ,3)  which we lost in (b). This gives the construction of 
AD[4, 5, v; b], v ~ 3 (mod 12). 
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3.6. v - 5  (rood 12) 

(1) For 3. = 2, the blocks of AD[4,  2, v; b] can be constructed in the following 
way: 

(a) We take the blocks of AD[4,  1, v + 2; b] given by Mills. According to this 
construction there is exactly one pair which occurs exactly four times [6, p. 161]. 
Let us assume this pair is (v - 1, v). We can also assume that we have the block 
( v -  1, v, v + 1, v + 2) ;  we drop this block and in the remaining blocks of 
AD[4,  1, v + 2; b] we change v + 2 to v and change v + 1 to v - 1. 

(b) We take the blocks of AD[4,  1, v - 2; b]. 
The above construction does not work for v = 5, 17. For v = 5 and ~. = 2 let 

X = Zs, then the blocks are (0, 1, 2, 3 ) (+i, i e Z4). 
The blocks of AD[4,  2, 17; 47] can be achieved in the following way: 
(a) take the blocks of B[4, 1; 16]; 
(b) take the blocks of AD[4,  1, 18; 27] given by Mills [5, p. 67]. 
According to this construction there is a block which contains tWO pairs which 

have appeared.  Assume this block is (5, 18; 6, 17} and the two pairs which have 
appeared are (5, 18) and (6, 17). From this block we drop the point 18 and in the 
other blocks we change 18 to 17. 

(2) For ,k = 3, there exists B[4, 3; 2]. 
(3) For  3. = 4, the blocks of AD[4,  4, v; b] are the blocks of AD[4,  3, v; b] with 

the blocks of AD[4,  1, v; b]. 
(4) For 3. = 5, the blocks of AD[4,  5, v; b] are the blocks of AD[4,  3, v; b] with 

the blocks of AD[4,  2, v; b]. 

3.7. v --- 6 (mod 12) 

(1) For X = 2, the blocks of AD[4,  2, v; b] are the blocks of AD[4,  1, v; b] each 
block taken twice. 

(2) For ~. = 3, we have 0~(4, 3, v) = ~(4, 3, v). To prove this we distinguish two 

cases: 

Case A. v ---- 6 or 42 (mod 48); then let v = 4w + 6 where w = 0 or 1 (mod 4); then 
by Lemma 2.2 there exists a collection of w2+ 5 blocks of sizes 4, 5, w and one 
block of size 6. 

On these blocks we construct covering with X = 3. For v = 4, 5 and w we have 
balanced incomplete block design. For v = 6 see Lemma 3.1. 

Case B. v =-18 or 30 (mod 48), v :/: 18, 30 and 66; then let v = 4w + 14 where 
w---0 or 1 (mod 4). Again apply Lemma 2.2 and the proof of Case B is exactly 
the same as Case A. Remember  that we have constructed AD[4,  3, 14; 46]. 
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For AD[4, 3, 18; 77], [4], let X =  {a, b) t_j (({oQ O Z3) × Z4) then the blocks are 

Ca, b, (0, 0), (0, 2)) 

Ca, (0% 0), (0, 0), (1, 1)) 

C(o, 0), (0,1), (1, 0), (1,2)) 

C(oo, 0), (o% 1), (oo, 2), (oo, 3)) 

C (0% 0), (0, 2), (0, 3), (1, 1)) 

C (0% 0), (0, 0), (1, 0), (2, 0)) 

Ca, b, (0, 1), (0, 3)) 

Cb, (0% 0), (0, 2), (1, 3)) 

For AD[4, 3, 30; 218] let X = Z23 U {a, 

(mod(3, - ) ) ,  

(mod(3, 4)), 

(mod(3, 4)), 

(3 times), 

(mod(3, 4)twice), 

(mod(- ,  4)twice), 

(mod(3, - ) ) ,  

(mod(3, 4)). 

b, c, d, e, f, g }, then the required blocks 
are 

C0, 2, 8, 11) (mod 23), Co, 10, 11, d) (mod 23), 

C0, 3, 8, 10) (mod 23), C0, 8, 11, e) (mod 23), 

C0,4,9, a) (mod 23), C0,7,9,f) (mod 23), 

C0,6,7, b) (mod 23), C0,4,5, g) (mod 23), 

C0,4,10, c) (mod 23), Ca, b , c , d , e , f , g ) .  

For the last block see Lemma 3.2. 
In order to construct AD[4, 3, 66; 1073] we need the concept of a resolvable 

design. A resolvable design RB(4, ~; v) is a balanced incomplete block design 
B(4, ~; v) the blocks of which can be partitioned into parallel classes. Hanani, 
Ray-Chandhuri and Wilson [3] proved that for every v = 4 (mod 12) there exists 
RB(4, 1; v). 

Now for AD[4, 3, 66; 1073] take the blocks of RB[4, 1; 52) and from the blocks 
of RB(4, 1, 52) take fourteen parallel classes, and to each class we add a point. In 
this way we add fourteen distinct points. On the blocks of size 5 we construct a 
coveting with Z = 3, on the block of size 14 we construct AD[4, 3, 14, 46], and the 
remaining blocks of RB(4, 1; 52) take each block three times. 

(3) For Z = 4, the blocks of AD[4, 4, v; b] are the blocks of AD[4, 3, v; b] and 
the blocks of AD[4, 

(4) For ~. = 5, the 
the blocks of AD[4, 

1, v;b]. 
blocks of AD[4, 5, v; b] are the blocks of AD[4, 3, v; b] and 
2, v;b]. 

3.8. v = 8 (mod 12) 

(1) ~ = 2, then the blocks of AD[4, 2, v; b] can be constructed in the following 
way: 

(a) take the blocks of AD[4, 1, v - 2 ;  b] on the set X =  {3, 4 , . . . ,  v}; 
(b) take the blocks of AD[4, 1, v + 2; b] on the set A = {1, 2 , . . . ,  v + 1, v + 
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2} with the following changes: Since v + 2 = 10 (mod 12) we have a pair which 
occurs exactly four times. Let this pair be (1, 2). Assume also that we have the 
block (1, 2, v + 1, v + 2). We drop this block and in the other blocks we change 
v + 1 to 1 and v + 2  to 2. 

The above construction does not work for v = 8. Hence for AD[4, 2, 8, 10] let 
X = Zs, then the blocks are: 

(1 ,2 ,3 ,4 )  (0 ,1 ,6 ,7 )  (1 ,3 ,5 ,7 )  (0 ,2 ,4 ,7 )  (2 ,5 ,6 ,7)  

(3 ,4 ,6 ,7 )  (1 ,4 ,5 ,6 )  (0 ,1 ,2 ,5 )  (0 ,3 ,4 ,5 )  (012,3,6).  

(2) For 3. = 3, 
(3) For Z = 4, 

blocks of AD[4, 

we have B[4, 3; v]. 
the blocks of AD[4, 4, v; b] are the blocks of B[4, 3; v] and the 
1, v;b]. 

(4) For ~ = 5, then the blocks of AD[4, 5, v; b] are the blocks of B[4, 3; v] and 
the blocks of AD[4, 2, v; b]. 

3.9. v = 9 (mod 12) 

(1) For 3. =2, the blocks of AD[4, 2, v; b] are the blocks of AD[4, 1, v; b], 
each block taken twice. 

(2) For Z = 3, we have a B[4, 3; v]. 
(3) For 3. = 4, the blocks of AD[4, 4, v; b] are the blocks of B[4, 3; v] together 

with the blocks of AD[4, 1, v; b]. 
(4) For 3. =5, the blocks of AD[4, 5, v; b] are the blocks of B[4, 3; v] and 

AD[4, 2, v; b]. 
The above construction does not work for v = 9, 3. = 2, 4. For AD[4, 2, 9; 14] 

the 12 quadruples 

(A, B, D, E) (A, B, G, H) (D, E, G, H)  (A, C, E, I)  

(A, C, D, F)  (A, C, G, I) (D, F, G, I)  (S, E, F, G) 

(B, C, E, F) (B, C, H, I) (E, F, H, I) (C, D, G, H) 

and the two triples (A, F, H); (B, D, I) cover all pairs twice. This construction 
was given by Mills. 

For AD[4, 4, 9; 25], [4], let X = {a} t.J (Z4 x Z2) then the blocks are: 

(a, (0, 0), (1, 0), (2, 0)) 

(a, (0, 0), (0, 1), (1, 1)) 

(a, (0, 0), (2, 1), (3, 1)) 
((0, 0), (1, 0), (0, 1), (2, 1)) 

((0, 0), (2, 0), (0, 1), (1, 1)) 

( (0, 1), (1, 1), (2, 1), (3, 1) ). 

(mod(4, - ) ) ,  

(mod(4, - ) ) ,  

(mod(4, - ) ) ,  

(mod(4, -)twice), 

(mod(4, - ) ) ,  
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3.10. v -= 11 (mod 12) 

(1) For Z = 2, the blocks of AD[4, 2, v; b] can be constructed in the following 
way: 

(a) Take the blocks of AD[4, 1, v + 1;b] and assume they contain the block 
Cx, y, v, v + 1) (x, y < v - 2), and the pair (v, v + 1) is contained in exactly one 
block. 

(b) take the blocks of AD[4, 1, v - 1; b]. Since v - 1 -=- 10 (mod 12) we have a 
pair which occurs exactly four times and all the other pairs occur exactly once. 
Assume we have the block Cx, y, v - 2, v - 1) and the pair (v - 2, v - 1) occurs 
four times. Now we change the point v + 1 to v - 1 in the block (x, y, v, v + 1) 
and in the block (x, y, v -  2, v -  1) we change v -  1 to v. In the remaining 
blocks of AD[4, 1, v + 1; b] we change v + 1 to v. 

For AD[4, 2, 11; 20] let X = Z10 U {oo} then the required blocks are: 

Coo, 0 , 1 , 4 )  (modl0) ,  C0,1 ,3 ,5)  (modl0) .  

(2) For ;t = 3 we distinguish two cases: 

Case A .  v =- 11 or 23 (mod 48), then or(4, 3, v) = cp(4, 3, v). 

Proof. Set v = 4 w  +7 ,  then w = 0  or 1 (mod4) and 7 < w  for every v >23.  
According to Lemma 2.2 there are w2+ 4 blocks of order 4, 5, w and one block 
of order 7. On these blocks we construct covering with ~. = 3. It is clear that for 
v = 4, 5 and w we have balanced incomplete block design. For v = 7, Z = 3 see 
Lemma 3.2. 

For v = 11 and Z = 3, let X = {a, b} U (({oo} U Z-z) x Z3), then the required 
blocks are [4]: 

Ca, b, (0% 0), (0% 1)) 

Ca, b, (0, 0), (1, 0)) 

Ca, (oo, 0), (0, 0), (1, 0)) 

(b, (°% 0), (0, 2), (1, 2)) 

Ca, (0, 0), (0, 1), (0, 2)) 

( m o d ( - ,  3)), 

( m o d ( - ,  3)), 

(mod( - ,  3 )), 

(mod( - ,  3 )), 

(mod(2, - ) ) ,  

Cb, (0, 0), (0, 1), (0, 2)) 

C(~, 0), (~, 1), (0, 1), (1,2))  

(( oo, 0), (0% 1), (0,2),  (1, 1)) 

C (% 0), (0, 0), (0, 1), (1, 2)) 

C(oo, 0), (0, 2), (1, 0), (1, 1)) 

(mod(2, - ) ) ,  

( m o d ( - ,  3)), 

( m o d ( - ,  3)), 

( m o d ( - ,  3)), 

( m o d ( - ,  3)). 

For v = 23 and ~. = 3, let 
a r e :  

X = Za7 U {a, b, c, d, e, f } .  Then the required blocks 

(0, 1, 3, 8) (mod 17), (0, 5, 8, d)  (mod 17), 

(0, 4, 6, a)  (mod 17), (0, 4, 6, e) (mod 17), 

(0, 7, 8, b)  (mod 17), (0, 5, 6 , f )  (mod 17), 

(0, 3, 7, c) (mod 17), (a, b, c, d, e, f ) .  

For the last block see Lemma 3.1. 

Case B. v =-35 or 47 (mod 48), then oc(4, 3, v) = ~p(4, 3, v). 
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Proof. Set v = 4w + 15, then w -= 0 or 1 (mod 4) and for v > 71 we have w > 15. 
Apply Lemma 2.2 we have w 2 + 4 blocks of order 4, 5, w and one block of order 
15. On these blocks we construct covering with A = 3. 

For v = 35, A = 3 let X = Z29 t_J (a, b, c, d, e, f}, then the required blocks are 

(0, 2, 6, 13) (mod 29), (0, 8, 12, a) (rood 29), 
(0,1,11,14) (mod29), (0,10,13, b) (rood29), 
(0,5,12,14) (mod 29), (0, 4, 9, c) (mod 29), 
(0,8,9,14) (mod 29), (0, 6, 8, d) (mod 29), 

(0, 3, 10, e) (rood 29), 

(0, 11, 12 , f )  (mod29),  

(a, b,  c, d, e, f ) .  

For the last block apply Lemma 3.1. 
For v = 47, A = 3 let X = Z41 t.J (a, b, c, d, e, f )  the required blocks are 

(0 ,9 ,17 ,20)  (moda l ) ,  (0 ,4 ,14 ,15)  (modal ) ,  (0 ,15 ,17 ,c )  (moda l ) ,  

(0 ,7 ,12 ,16)  (moda l ) ,  (a ,b ,c ,d ,e , f ) ,  (0 ,7 ,21,  d)  (moda l ) ,  

(0 ,6 ,16 ,18)  (moda l ) ,  (0 ,6 ,15 ,19)  (modal ) ,  (0 ,8,20,  e) (moda l ) ,  

(0 ,5 ,13 ,19)  (moda l ) ,  ( 0 ,16 ,19 , a )  (modal ) ,  ( 0 , 2 , 3 , f )  (modal ) .  

(0 ,1 ,11 ,18)  (moda l ) ,  ( 0 ,13 ,18 ,b )  (modal ) ,  

For the block of size 6 apply Lemma 3.1. 
(3) For ). = 4, then the blocks of AD[4,  4, v; b] are the blocks of AD[4, 3, v; b] 

and the blocks of AD[4, 1, v; b]. 
(4) For ~. = 5 we have a~(4, 5, v) = ¢(4, 5, v). 
The construction of AD[4, 5, v; b] can be done in the following way: 
(a) Take the blocks of SD[4, 3, v; b] where v-= 11 (rood 12) which can be 

constructed by taking the blocks of B[4, 2; v - 1] and the blocks of B[4, 1; v + 2], 
dropping the block (v - 1, v, v + 1, v + 2) and changing both the points v + 1 
and v + 2 to v. According to this construction there is a pair which is not included 
in any block of SD[4, 3, v; b]. Assume this pair is (v - 2, v - 1). 

(b) Take the blocks of AD[4, 1, v - 1; b]. Since v - 1 - 10 (mod 12) we have 
one pair which occurs exactly four times. Assume this pair is ( v -  2, v -  1). 
Assume also that we have the block (1, 2, v - 2, v - 1). In this block we change 
v - 2 t o  v. 

(c) Take the blocks of AD[4,  1, v + 1; b] and assume that the pair (v - 2, v - 1) 
occurs twice. Assume also that we have the block { 1, 2, v, v + 1), and assume the 
pair (v, v + 1) occurs only once. In this block we change v + 1 to v - 2. In the 
other blocks of AD[4, 1, v + 1; b] we change v + 1 to v. 

For AD[4, 5, 11; 47], [4], let X = {a, b, c} U Z8 then the required blocks are 

(a ,b ,c) ,  (b ,c ,O,  4) (+i,i~Za), (a, 0 , 1 , 3 )  (mod8), 

( a , b ,O ,  1) (+2i, ieZa), ( 0 , 2 , 4 , 6 )  (+i, ieZz), (b, 0 , 1 , 3 )  (rood8), 

( a , c ,  1 ,2)  (+2i, i~Za), ( 0 , 1 , 3 , 5 ) ( r o o d S ) ,  (c, 0 , 1 , 4 )  (moO8). 
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In order 
a~(4,7, v )=0(4 ,7 ,  v) for v=7,9 ,10 ,19 .  For v=7 ,10 ,19  the blocks 
AD[4, 7, v; b] are the blocks of AD[4, 3, v; b] and the blocks of B[4, 4; v]. 

For AD[4,7,9;43], take the blocks of AD[4,4,9;25] and the blocks 
B[4,3;91. [] 

to complete the proof of our theorem we have to show that 
of 

of 
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