On Generalized Set-Valued Variational Inclusions

Li-Wei Liu and Yu-Qiang Li

Department of Mathematics, Nanchang University, Nanchang, Jiangxi, 330047, People's Republic of China

Submitted by William F. Ames

Received November 17, 1999

1. INTRODUCTION

In 1998, using the concept and technique of resolvent operators, Noor [6] introduced and studied a new class of variational inclusions, which is called the generalized set-valued variational inclusion, and constructed a new iterative algorithm to solve variational inclusions. The author proved the convergence of the iterative sequences generated by this algorithm under the assumption that $T : H \rightarrow C(H)$ (where $C(H)$ denotes the family of all nonempty subsets of H) is H-Lipschitz continuous and strongly monotone with respect to the first argument of a mapping $N(\cdot, \cdot)$ (see Theorem 3.2 in [6]). However, we can show that the monotone mapping $N(T(\cdot), \cdot)$ cannot be multivalued. Indeed, the mapping T in [6, Theorem 3.2] is a single-valued mapping. One of the purposes of this paper is to prove this result. Then, for solving a class of the generalized variational inclusions for set-valued mappings without compactness and monotonicity, we construct a new iterative algorithm and prove the convergence of the iterative sequence defined by the algorithm. Finally, for solving a class of the generalized single-valued variational inclusions, we study a new iterative algorithm, which is called the perturbed Ishikawa iterative process.
2. PRELIMINARIES

Let H be a real Hilbert space endowed with a norm $\| \cdot \|$ and inner product (\cdot, \cdot) and $CB(H)$ be a family of nonempty bounded closed subsets of H. Let $T, V : H \rightarrow CB(H)$ be the multivalued operators and $g : H \rightarrow H$ be a single-valued operator.

For a given maximal monotone operator $A : H \rightarrow H$ and nonlinear operator $N(\cdot, \cdot) : H \times H \rightarrow H$, we consider the problem of finding $u \in H, w \in Tu, y \in Vu$ such that

$$0 = N(w, y) + A(g(u)). \quad (2.1)$$

The problem (2.1) is called the general set-valued variational inclusion (see [6]).

If T, V are the single-valued mappings, the problem (2.1) can be replaced to finding $u \in H$ such that

$$0 = N(Tu, Vu) + A(g(u)). \quad (2.2)$$

If A is a maximal monotone operator on H, then for a constant $\rho > 0$, the resolvent operator associated with A is defined by

$$J_A(u) = (I + \rho A)^{-1}(u) \quad \text{for all } u \in H,$$

where I is the identity operator. It is also known that the operator A is maximal monotone if and only if the resolvent operator J_A is defined everywhere on the space [4]. Furthermore the resolvent operator J_A is single-valued and nonexpansive.

Definition 2.1 [6]. For all $u_1, u_2 \in H$, the set-valued operator $T : H \rightarrow CB(H)$ is said to be strongly montone with respect to the first argument of the operator $N(\cdot, \cdot)$, if there exists a constant $\alpha > 0$ such that

$$(N(w_1, \cdot) - N(w_2, \cdot), u_1 - u_2) \geq \alpha \|u_1 - u_2\|^2 \quad \text{for all } w_1 \in Tu_1, w_2 \in Tu_2.$$

In relation to problem (2.1), we consider the problem of finding $z, u \in H, y \in Vu$ such that

$$N(w, y) + \rho^{-1}R_Az = 0. \quad (2.3)$$

Here $\rho > 0$ is a constant and $R_A = I - J_A$. Equations of type (2.3) are called the resolvent equations.

Lemma 2.1 [6]. The function (u, w, y) is a solution of (2.1) if and only if (u, w, y) satisfies the relation

$$g(u) = J_A[g(u) - \rho N(w, y)]. \quad (2.4)$$
Lemma 2.2 [6]. The variational inclusions (2.1) have a solution \(u \in H, w \in Tu, y \in Vu \), if and only if the resolvent equations (2.3) have a solution \(z, u \in H, w \in Tu, y \in Vu \), where

\[
g(u) = J_A z \quad (2.5)
\]

and

\[
z = g(u) - \rho N(w, y). \quad (2.6)
\]

The resolvent equations (2.3) can be written as

\[R_A z = -\rho N(w, y)\]

which implies that

\[
z = J_A z - \rho N(w, y) = g(w) - \rho N(w, y), \quad \text{using (2.5)}.
\]

This fixed-point formulation allows us to suggest the following iterative method.

Algorithm 2.1. For given \(z_0 \in H \), we take \(u_0 \in H \) such that

\[g(u_0) = J_A z_0.\]

Let \(w_0 \in Tu_0, y_0 \in Vu_0 \), and \(z_1 = g(u_0) - \rho N(w_0, y_0) \).

For \(z_1 \), we take \(u_1 \) such that \(g(u_1) = J_A z_1 \). Then, by Nadler [5], there exist \(w_1 \in Tu_1 \) such that

\[
\|w_1 - w_0\| \leq (1 + 1)H(Tu_1, Tu_0),
\]

\[
\|y_1 - y_0\| \leq (1 + 1)H(Vu_1, Vu_0),
\]

where \(H(\cdot, \cdot) \) is the Hausdorff metric on \(CB(H) \). Let

\[
z_2 = g(u_1) - \rho N(w_1, y_1).
\]

By induction, we can obtain sequences \(\{z_n\}, \{u_n\}, \{w_n\}, \) and \(\{y_n\} \) as

\[
g(u_n) = J_A z_n
\]

\[
w_n \in Tu_n : \|w_{n+1} - w_n\| \leq \left(1 + \frac{1}{1+n}\right)H(Tu_{n+1}, Tu_n)
\]

\[
y_n \in Vu_n : \|y_{n+1} - y_n\| \leq \left(1 + \frac{1}{1+n}\right)H(Vu_{n+1}, Vu_n)
\]

\[
z_{n+1} = g(u_n) - \rho N(w_n, y_n).
\]

The following algorithm is called the perturbed Ishikawa iterative process.
Algorithm 2.2. For single-valued operators $T, V, g : H \to H$, define $Q : H \to H$ by

$$Qu = u - g(u) + J_A[g(u) - \rho N(Tu, Vu)].$$

For given $u_0 \in H$, the Ishikawa iterative scheme with error [4] is defined by

$$u_{n+1} = (1 - \alpha_n)u_n + \alpha_n Q u_n + e_n,$$
$$u_n = (1 - \beta_n)u_n + \beta_n Q u_n + f_n,$$

where $\{e_n\}, \{f_n\}$ are two summable sequences in H, and $\{\alpha_n\}, \{\beta_n\}$ are two real sequences in $[0, 1]$ satisfying

$$\beta_n \leq \alpha_n, \quad \sum \alpha_n = \infty, \quad \sum \alpha_n^2 < +\infty.$$

We recall the following results that will be needed later on.

Lemma 2.3 [2]. Let the single-valued operator $A : H \to H$ be maximal strongly monotone with constant $\alpha > 0$. Then the resolvent operator $J_A = (I + \rho A)^{-1}$ is Lipschitz continuous with constant $1/(1 + \rho \alpha)$ where $\rho > 0$ is a constant.

Lemma 2.4 [3]. Suppose X is an arbitrary real Banach space and $T : X \to X$ is a strongly accretive and Lipschitz continuous operator. For a fixed $f \in X$, define $S : X \to X$ by $Sx = f + x - Tx$ for each $x \in X$. Let $\{f_n\}, \{e_n\}$ be two summable sequences in X, and $\{\alpha_n\}, \{\beta_n\}$ be two real sequences satisfying

(i) $0 \leq \beta_n \leq \alpha_n < 1$,
(ii) $\sum \alpha_n = +\infty, \sum \alpha_n^2 < +\infty$.

Then for any $x_0 \in X$, the iteration sequence $\{x_n\}$ in X is defined by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n S y_n + e_n,$$
$$y_n = (1 - \beta_n)x_n + \beta_n S x_n + f_n,$$

which converges strongly to the unique solution x^* of the equation $Tx = f$.

Remark 2.1. If X is a Hilbert space, the accretive operator in Lemma 2.4 is a monotone operator.
3. MAIN RESULTS

THEOREM 3.1. Let the operator $N(\cdot, \cdot)$ be Lipschitz continuous with constant $\beta > 0$ with respect to the first argument. If T is H-Lipschitz continuous with constant $\mu > 0$ and monotone with respect to the first argument of the operator $N(\cdot, \cdot)$ and, for each fixed $k \in H$, $\text{int} \, D(N(T(\cdot), k)) \neq \emptyset$, then $N(T(\cdot), k)$ cannot be multivalued in $\text{int} \, D(N(T(\cdot), k))$.

Proof. We first note that the operator $N(T(\cdot), \cdot)$ is Lipschitz continuous with constant $\beta, \mu > 0$ with respect to the first argument by assumptions.

Assume now that $N(T(\cdot), k)$ is a multivalued monotone mapping for some $k \in H$. Then exist $u_0 \in \text{int} \, D(N(T(\cdot), k))$ and $v_1, v_2 \in N(Tu_0, k)$ such that $v_1 \neq v_2$. So there exist $w_1, w_2 \in Tu_0$ such that $v_1 = N(w_1, k), v_2 = N(w_2, k)$. Since $N(T(\cdot), k)$ is Lipschitz continuous, for $\epsilon = \|v_1 - v_2\|$ we can take $\delta = \epsilon/4B\mu$, so that for any $u_1 \in H$, when $\|u_1 - u_0\| < \delta$, we have

$$d(v_1, N(Tu_1, k)) \leq H(N(Tu_0, k), N(Tu_1, k)) \leq \beta\mu\|u_0 - u_1\| < \epsilon/4,$$

where $d(v_1, N(Tu_1, k)) = \inf\{\|u_1 - z\| : z \in N(Tu_1, k)\}$. Therefore there exists $v(u_1) \in N(Tu_1, k)$ such that

$$\|v(u_1) - v_1\| < \epsilon/2. \quad (3.1)$$

By monotonicity of T with respect to $(N(\cdot, k))$, we have

$$v(u_1) - v_1, u_1 - u_0 \geq 0 \quad (3.2)$$

$$v(u_1) - v_2, u_1 - u_0 \geq 0. \quad (3.3)$$

Now, we take $0 < \delta_0 < \delta$ and $u_1 = \delta_0(v_2 - v_1)/\|v_2 - v_1\| + u_0$. Then $\|u_1 - u_0\| = \delta_0 < \delta$. Thus, we can choose the number $v(u_1) \in N(Tu_1, \cdot)$ as an inequality in (3.2) and (3.3). Using (3.2), (3.3), and $v_1 - v_2 = (\|v_2 - v_1\|/\delta_0)(u_1 - u_0)$, we obtain

$$v(u_1) - v_1, v_2 - v_1 \geq 0 \quad (3.4)$$

$$v(u_1) - v_2, v_2 - v_1 \geq 0. \quad (3.5)$$

By (3.5), we have

$$(v(u_1) - v_1, v_2 - v_1) \geq (v_2 - v_1, v_2 - v_1) = \|v_2 - v_1\|^2. \quad (3.6)$$

From (3.4) and (3.6), we get $2(v(u_1) - v_1, v_2 - v_1) \geq \|v_1 - v_2\|^2$. Hence

$$\|v(u_1) - v_1\| \geq \|v_1 - v_2\|/2 = \epsilon/2. \quad (3.7)$$

Thus, we obtain a contradiction to (3.1). Hence $N(T(\cdot), k)$ cannot be a multivalued mapping.
Remark 3.1. If the operator T in [1, Theorem 3.2] is single-valued, then Theorem 3.2 in [1] remains valid.

Remark 3.2. According to Theorem 3.1 and its proof, the Lipschitz continuous set-valued operator cannot be monotone. Therefore, from the assumptions of Theorem 4.1 of [7], Theorem 4.1 of [10], Theorem 3.5 of [11], and Theorems 3.4 and 3.5 of [1], we know that all the set-valued monotone mappings in these theorems are single-valued mappings indeed.

Theorem 3.2. Let the operator \(N(\cdot, \cdot) \) be Lipschitz continuous with constant \(\beta > 0 \) with respect to the first argument and Lipschitz continuous with constant \(\eta > 0 \) with respect to the second argument. Let the single-valued operator \(g : H \to H \) be strongly monotone with constant \(\sigma > 0 \) and Lipschitz continuous with constant \(\delta > 0 \). Assume that \(V : H \to CB(H) \) is \(H \)-Lipschitz continuous with constant \(\xi > 0 \), and \(T : H \to CB(H) \) is \(H \)-Lipschitz continuous with constant \(\mu > 0 \). If \(A \) is a maximal strongly monotone operator with constant \(\alpha > 0 \) and either (i)

\[
\rho \frac{2k\alpha - s}{2\alpha(s - k\alpha)} \leq \frac{\sqrt{4k\alpha(s - k\alpha) + (s - 2k\alpha)^2}}{2\alpha(s - k\alpha)} = \frac{s}{2\alpha(s - k\alpha)}, \quad s > k\alpha,
\]

or (ii) \(s = \eta \xi + \beta \mu, k = 1 - \sqrt{1 - 2\sigma + \delta^2} \in (0, 1) \), then there exist \(u, z \in H, w \in Tu, y \in Vu \) satisfying the set-valued resolvent inclusion (2.3) and (2.6), and the sequences \(\{z_n\}, \{u_n\}, \{w_n\}, \) and \(\{y_n\} \) generated by Algorithm 2.1 converge, respectively, to \(z, u, w, \) and \(y \) strongly in \(H \).

Proof. From Algorithm 2.1, we have

\[
\|z_{n+1} - z_n\| = \|g(u_n) - g(u_{n-1}) - \rho N(w_n, y_n) + \rho N(w_{n-1}, y_{n-1})\| \\
\leq \|g(u_n) - g(u_{n-1})\| + \rho\|N(w_n, y_n) - N(w_{n-1}, y_{n-1})\| \\
\leq \rho\|N(w_n, y_n) - N(w_{n-1}, y_{n-1})\|.
\]

By (2.5) and Lemma 2.3, we obtain

\[
\|g(u_n) - g(u_{n-1})\| = \|J_A z_n - J_A z_{n-1}\| \\
\leq \frac{1}{1 + \rho\alpha}\|z_n - z_{n-1}\|.
\]

From the assumptions of \(T \) and \(V \), we get

\[
\|N(w_n, y_{n-1}) - N(w_{n-1}, y_{n-1})\| \leq \eta \xi (1 + 1/n)\|u_n - u_{n-1}\|, \quad (3.10) \\
\|N(w_n, y_{n-1}) - N(w_{n-1}, y_{n-1})\| \leq \beta \mu (1 + 1/n)\|u_n - u_{n-1}\|. \quad (3.11)
\]
Also, using the strong monotonicity and Lipschitz continuity of the operator g and (2.5), we find that

$$\|u_n - u_{n-1}\| = \|u_n - u_{n-1} - (g(u_n) - g(u_{n-1})) + J_A z_n - J_A z_{n-1}\|$$

$$\leq \|u_n - u_{n-1} - (g(u_n) - g(u_{n-1}))\| + \frac{1}{(1 + \rho \alpha)} \|z_n - z_{n-1}\|$$

$$\leq \sqrt{1 - 2\sigma + \delta^2} \|u_n - u_{n-1}\| + \frac{1}{(1 + \rho \alpha)} \|z_n - z_{n-1}\|,$$

which implies that

$$\|u_n - u_{n-1}\| \leq \frac{1}{(1 - \sqrt{1 - 2\sigma + \delta^2})(1 + \rho \alpha)} \|z_n - z_{n-1}\|. \quad (3.12)$$

Combining (3.8)–(3.12), we obtain

$$\|z_{n+1} - z_n\| \leq \frac{1}{(1 - \sqrt{1 - 2\sigma + \delta^2})(1 + \rho \alpha)} \times [1/(1 + \rho \alpha) + \rho(\eta \xi + \beta \mu)(1 + 1/n)] \|z_n - z_{n-1}\|$$

$$= \theta_n \|z_n - z_{n-1}\|, \quad (3.13)$$

where

$$\theta = \frac{1}{(1 - \sqrt{1 - 2\sigma + \delta^2})(1 + \rho \alpha)} \times [1/(1 + \rho \alpha) + \rho(\eta \xi + \beta \mu)(1 + 1/n)].$$

Let

$$\theta_n = \frac{1}{(1 - \sqrt{1 - 2\sigma + \delta^2})(1 + \rho \alpha)} [1/(1 + \rho \alpha) + \rho(\eta \xi + \beta \mu)].$$

We know that $\theta_n \downarrow \theta$. It follows from (i) or (ii) that $\theta \in (0, 1)$. Hence $0 \leq \theta_n < 1$ for n sufficiently large. Therefore, (3.13) implies that $\{z_n\}$ is a Cauchy sequence in H and we can suppose that $z_n \to z \in H$. From (3.12), we know that the sequence $\{u_n\}$ is a Cauchy sequence in H, that is, there exists $u \in H$ with $u_n \to u$.

Now we prove that $w_n \to w \in Tu$ and $y_n \to y \in Vu$. In fact, it follows from Algorithm 2.1 that

$$\|w_n - w_{n-1}\| \leq \left(1 + \frac{1}{n}\right) \mu \|u_n - u_{n-1}\|,$$

$$\|y_n - y_{n-1}\| \leq \left(1 + \frac{1}{n}\right) \xi \|u_n - u_{n-1}\|,$$
that is, \(\{w_n\} \) and \(\{y_n\} \) are also Cauchy sequences in \(H \). Let \(w_n \to w \in H \), \(y_n \to y \in H \). By using the continuity of the operators \(T, N, g, V, J_A \), and Algorithm 2.1, we have

\[
z = g(u) - \rho N(w, y) = J_A z - \rho N(w, y) \in H.
\]

Now we show that \(y \in Vu \). In fact,

\[
d(y, Vu) = \inf \{ \|y - z\| : z \in Vu \}
\leq \|y - y_n\| + d(y_n, Vu)
\leq \|y - y_n\| + H(Vu_n, Vu)
\leq \|y - y_n\| + \xi \|u_n - u\| \to 0.
\]

Hence, \(y \in Vu \). Similarly, \(w \in Tu \). This completes the proof of Theorem 3.1.

Remark 3.3. Theorem 3.2 is a correction and improvement of Theorem 3.2 in [6].

Theorem 3.3. Let the operator \(N(\cdot, \cdot) \) be Lipschitz continuous with constant \(\beta > 0 \) with respect to the first argument and Lipschitz continuous with constant \(\eta > 0 \) with respect to the second argument. Let the single-valued operator \(g : H \to H \) be strongly monotone with constant \(\sigma > 0 \) and Lipschitz continuous with constant \(\delta > 0 \). Assume that mapping \(T : H \to H \) is single-valued Lipschitz continuous with constant \(\mu > 0 \) and strongly monotone with constant \(\alpha > 0 \) with respect to first argument of \(N(\cdot, \cdot) \). Let the operator \(V : H \to H \) be single-valued Lipschitz continuous with constant \(\xi > 0 \). If the following conditions hold,

\[
|\rho - \frac{\alpha - k \eta \xi}{\beta^2 \mu^2 - \eta^2 \xi^2}| < \sqrt{\frac{1}{(\alpha - k \eta \xi)^2} - (\beta^2 \mu^2 - \eta^2 \xi^2)(1 - k^2)}
\]

\[
\beta^2 \mu^2 - \eta^2 \xi^2
\]

\[
\alpha > k \eta \xi + \sqrt{(\beta^2 \mu^2 - \eta^2 \xi^2)(1 - k^2)}
\]

\[0 < \sigma < 1, \quad \rho \eta \xi < k, \quad k = \sigma - \sqrt{1 - 2 \sigma + \delta^2}.
\]

then the sequence \(\{u_n\} \) generated by Algorithm 2.2 converges to the unique solution of problem (2.2).

Proof. It follows from Lemma 2.2 that the problem (2.2) is equivalent to the resolvent equation

\[
g(u) = J_A [g(u) - \rho N(Tu, Vu)],
\]

that is,

\[
0 = g(u) - J_A [g(u) - \rho N(Tu, Vu)] = Q(u).
\]
According to Lemma 2.3, we need only prove that the operator $Q : H \rightarrow H$ is strongly monotone with constant $\theta \in (0, 1)$ and Lipschitz continuous. From the assumption of the Theorem, it is easy to see that the operator Q is Lipschitz continuous.

Let $u, v \in H$. Then by the strong monotonicity and Lipschitz continuity of g and $N(T(\cdot), \cdot)$, we have

\[
\|u - v - g(u) + g(v)\|^2 \leq (1 - 2\sigma + \delta^2)\|u - v\|^2
\]
\[
\|u - v - \rho N(Tu, Vu) + \rho N(Tv, Vu)\|^2 \leq (1 - 2\rho\sigma + \rho^2\beta^2\mu^2)\|u - v\|^2.
\]

By the Lipschitz continuity of V, we also have

\[
\|N(Tv, Vu) - N(Tv, \hat{V}u)\| \leq \eta\|u - v\|.
\]

Thus,

\[
(Qu - Qv, u - v) = (g(u) - g(v), u - v) - (J_A[g(u) - \rho N(Tu, Vu)] - J_A[g(v) - \rho N(Tv, \hat{V}u)], u - v)
\]
\[
\geq \sigma\|u - v\|^2 - \|J_A[g(u) - \rho N(Tu, Vu)] - J_A[g(u) - \rho N(Tu, Vu)]\|\|u - v\|
\]
\[
\geq \sigma\|u - v\|^2 - \|g(u) - g(v) - \rho N(Tu, Vu)\|\|u - v\|
\]
\[
\geq \sigma\|u - v\|^2 - \|u - v - g(u) + g(v)\| - \|u - v - \rho N(Tu, Vu) + \rho N(Tv, Vu)\|
\]
\[
\geq \sigma\|u - v\|^2 - \|u - v - g(u) + g(v)\| - \|u - v - \rho N(Tu, Vu) + \rho N(Tv, Vu)\|
\]
\[
\geq \left(\sigma - \sqrt{1 - 2\sigma + \delta^2} - \sqrt{1 - 2\rho\sigma + \rho^2\beta^2\mu^2}
\right)
\]
\[
- \rho\eta\xi\|u - v\|^2
\]
\[
= \left(k - \sqrt{1 - 2\rho\sigma + \rho^2\beta^2\mu^2 - \rho\eta\xi}\right)\|u - v\|^2
\]
\[
= \theta\|u - v\|^2,
\]

where \(\theta = k - \sqrt{1 - 2\rho\sigma + \rho^2\eta^2\xi^2 - \rho\eta\xi}\). Therefore, $Q : H \rightarrow H$ is a strongly monotone operator with constant θ and from (3.14)–(3.16), it follows that $\theta \in (0, 1)$. Thus, Lemma 2.4 is applicable where $f = 0$ and the proof is complete. \[\]
REFERENCES

