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Abstract

Techniques of Krylov subspace iterations play an important role in computing �-spectra of large matrices.
To obtain results about the reliability of this kind of approximations, we propose to compare the position of
the �-spectrum of A with those of its diagonal submatrices. We give theoretical results which are valid for any
block decomposition in four blocks, A11; A12; A21; A22. We then illustrate our results by numerical experiments.
The same kind of problem arises when we compute the stability radius of a large matrix. In that context, we
propose a new su6cient condition for the stability of a matrix involving quantities readily computable such
as stability radius of small submatrices. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction and preliminaries

Before being a popular tool to study matrices and operators, the notion of �-spectra appears many
times in di=erent forms. Gustafson and Rao [4] quote a paper published in 1962 by Parter [11] which
is “an interesting predecessor paper to pseudoeigenvalue”. According to Trefethen [15], the notion
of pseudoeigenvalues, also called �-eigenvalues, seems to have been invented independently at least
Bve times: Landau [8], Varah [16], Godunov et al. (Kiriljuk, Kostin, Antonov) [1–3], Trefethen
[13], Hinrichsen and Kelb [6], Hinrichsen and Pritchard [7]. As Trefethen explains in [14], the
motivation for this concept comes from numerical eigenvalue computations: it is well known that in
problems involving nonnormal operators or matrices eigenvalue computations are ill-conditioned. In
this context, a generalization of the notion of the spectrum may be useful. Since an eigenvalue can
be deBned as a pole of the resolvent operator

z → R(z) = (A − zI)−1;
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we can focus our interest on the set of complex numbers z for which ‖R(z)‖ is “large”. This leads
to the notion of �-spectrum:

De�nition 1.1. Given �; the �-spectrum of A∈Cn×n is the set

��(A):=
{

z ∈ 	(A) : ‖R(z)‖2¿ 1
�

}
∪ sp(A);

where 	(A):=C \ sp(A) is the resolvent set of A; sp(A) is the spectrum of A and ‖ · ‖2 denotes the
subordinated matrix Euclidean norm. It can be deBned equivalently by

��(A):={z ∈ 	(A) :
min(A − zI)6 �} ∪ sp(A);

where 
min denotes the smallest singular value.

For a large matrix, Krylov subspace methods (or variations of these methods) are used to approx-
imate pseudospectra (see for example [12]).

Krylov subspace methods compute A11 ∈Cm×m, m�n and V1 ∈Cn×m such that AV1 =V1A11 +R1.
Using the following partitioned form

A:=

[
A11 A12

A21 A22

]
;

where A11 ∈Cm×m and A22 ∈C(n−m)×(n−m), the former equality can be written as

A = [V1 V2]

[
A11 A12

O A22

]
[V1 V2]∗ + R; (1)

where A11, V1 and ‖R‖2 = ‖A21‖2 are given by the method. The other matrices A22 ∈Cn−m×n−m and
V2 ∈Cn×n−m will not be computed.

Section 2 provides a new upper bound for the norm of the resolvent. Then, in order to understand
the relationship between ��(A) and ��(A11), we set up inclusions between ��(A), �f(�)(A11) and
�f(�)(A22) where f is a function of �, ‖A12‖2 and ‖A21‖2. This is done in Section 3.

Our purpose is not to propose a better algorithm to approximate an �-spectrum. We want to
prove a general result which can be helpful to analyse theoretically the approximations obtained in
practice. The numerical experiments of Section 4 are presented to illustrate this comparison. Our
results about �-spectra are of theoretical nature and cannot compete with existing tools for computing
them. Whereas our results about stability radius are useful in applications.

In stability analysis, the stability radius is a crucial notion and it measures the distance of a stable
matrix from the set of unstable matrices.

De�nition 1.2. A matrix A∈Cn×n is stable if for all �∈ sp(A); re(�)¡ 0; where re denotes the real
part of a complex number.

De�nition 1.3. The stability radius of a matrix A∈Cn×n is deBned by

rs(A):= min
re(z)=0


min(A − zI):
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It can be easily seen that

rs(A) =
1

maxre(z)=0‖R(z)‖2 :

In order to determine the stability radius of a large matrix, one can also use Krylov subspace
methods. They lead to decomposition (1).

The upper bound for the norm of the resolvent will lead to some interesting relationships between
the stability radii of A and A11. These results will give new su6cient stability conditions that are
proposed in Section 5.

2. A bound for resolvent

Let A∈Cn×n be as follows:

A:=

[
A11 A12

O A22

]
;

where A11 ∈Cm×m and A22 ∈C(n−m)×(n−m).
We shall Brst obtain an upper bound for ‖R(z)‖2 in terms of ‖(A11− zI)−1‖2 and ‖(A22− zI)−1‖2.
We set R1(z):=(A11 − zI)−1; R2(z):=(A22 − zI)−1, r1(z):=‖R1(z)‖2, and r2(z):=‖R2(z)‖2.

Lemma 2.1. Let B(z):=− R1(z)A12 and

�:=

(
I B(z)

O I

)
:

Then

‖�‖22 = 1 +
‖B(z)‖2

2
(‖B(z)‖2 +

√
‖B(z)‖22 + 4):

Proof. ‖�‖22 = 	(�∗�).
It is easy to see that

	(�∗�)6 	

[
1 b(z)

b(z) b(z)2 + 1

]

with b(z) = ‖B‖2. We have

	

[
1 b(z)

b(z) b(z)2 + 1

]
= 1 +

b(z)
2

(
√

b(z)2 + 4 + b(z)):
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Hence

	(�∗�)6 1 +
b(z)
2

(
√

b(z)2 + 4 + b(z)):

Let

D =

(
1 b(z)

0 1

)
;

we have

‖D‖2 = 1 +
b(z)
2

(
√

b(z)2 + 4 + b(z)) = d:

Let v = (�; �)t a unit vector in R2 such that ‖Dv‖2 = d.
Let x∈Rn−m and y∈Rm be units vectors such that B(z)x = b(z)y.
Then (�y; �x)t ∈Rn is a unit vector and ‖�(�y; �x)t‖2 = d.

Proposition 2.2. If a12:=‖A12‖2; rM (z):=max{r1(z); r2(z)} and rm(z):=min{r1(z); r2(z)} then the
following upper bound holds:

‖R(z)‖26 rM (z)

√
1 +

a12rm(z)
2

(
√

a212rm(z)2 + 4 + a12rm(z)): (2)

Proof. Without loss of generality we may assume rm(z) = r1(z).
Since

R(z) =

[
R1(z) −R1(z)A12R2(z)

0 R2(z)

]
=

[
I −R1(z)A12

0 I

][
R1(z) 0

0 R2(z)

]
;

it is enough to show that∣∣∣∣∣
∣∣∣∣∣
[

I −R1(z)A12

0 I

]∣∣∣∣∣
∣∣∣∣∣
2

=

√
1 +

a12rm(z)
2

(
√

a212rm(z)2 + 4 + a12rm(z)):

This follows from the Lemma 2.1.

3. Consequences for �-spectra

Our aim is to compare the �-spectrum of

A:=

[
A11 A12

A21 A22

]

with those of A11 and A22 by establishing a suitably Bne inclusion. We Brst treat the case where
A21 = 0 and then we consider the general case.
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Proposition 3.1. Suppose that

A =

[
A11 A12

O A22

]
:

Then

��(A11) ∪ ��(A22) ⊆ ��(A);

��(A) ⊆ ��(�)(A11) ∪ ��(�)(A22); (3)

where �(�) = �
√

1 + (a12=�) and a12 = ‖A12‖2.

Proof. By the interlace theorem for Hermitian matrices; we have

�min((A − zI)∗(A − zI))6 �min((A11 − zI)∗(A11 − zI));

where �min denotes the smallest eigenvalue. Hence;


min(A − zI)6 
min(A11 − zI)

and

��(A11) ⊆ ��(A):

As 
min(A − zI) = 
min(A − zI)∗; we prove similarly that ��(A22) ⊆ ��(A).
In order to prove the second inequality, let z ∈��(A).
Recall that ‖R(z)‖22¿ 1=�2. Using the bound (2), we have for z ∈��(A)

1
�2

− rM (z)2
(
1 +

rM (z)2a212
2

)
6

a12rM (z)3

2

√
a212rM (z)2 + 4: (4)

There are two cases depending upon whether the Brst member of the inequality is positive or not.
If

1
�2

− rM (z)2
(
1 +

rM (z)2a212
2

)
¿ 0;

then (4) implies that(
1− a212

�2

)
rM (z)4 − 2

�2
rM (z)2 +

1
�4
6 0: (5)

If a126 �, then

1
�

√
1

1 + a12
�

6 rM (z)6
1
�

√
1

1− a12
�

:

And if a12¿ �, then

1
�

√
1

1 + a12
�

6 rM (z):
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If

1
�2

− rM (z)2
(
1 +

rM (z)2a212
2

)
6 0;

then it is easy to prove that we also have

rM (z)¿
1
�

√
1

1 + a12
�

:

We give below generalization of Proposition 3.1.

Theorem 3.2. If

A:=

[
A11 A12

A21 A22

]
;

then

��(A) ⊆ �!(�)(A11) ∪ �!(�)(A22); (6)

where

!(�) = (� + a21)
√

1 +
a12

� + a21
:

If; moreover; a216 �; we get

��−a21(A11) ∪ ��−a21(A22) ⊂ ��(A):

Proof. Setting

A0 =

[
A11 A12

0 A22

]
and � =

[
0 0

A21 0

]
;

we have A = A0 + �. Thus


min(A0 − zI)6 
min(A − zI) + 
max(�)

and


min(A − zI)¿ 
min(A0 − zI)− a21:

Consequently ��(A) ⊆ ��+a21(A0) and the Brst inclusion is obtained by Proposition 3.1.
The second inclusion follows from the inequality


min(A − zI)6 
min(A0 − zI) + 
max(�):
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4. Numerical examples

This section has two parts. First, we compare our inclusion (3) with an inclusion suggested in [9]
through an example. Then we give numerical examples illustrating the sharpness of our result. We
do not intend to prove that our inclusion is a tool to compute �-spectra but that our inclusion can
be sharp for some matrices.

In [9], LavallNee suggests the following results:
When a matrix is of the form

A:=

[
A11 A12

O A22

]
;

and when sp(A11)∩ sp(A22) = ∅, one can easily eliminate the o=-diagonal block A12 by the transfor-
mation given in the next proposition:

Proposition 4.1. If sp(A11) ∩ sp(A22) = ∅; then

A = S

[
A11 O

O A22

]
S−1

with

S =

[
I −R

O I

]
;

where R is the solution of the Sylvester equation A11R − RA22 = A12.

This suggests the following inclusion:

Proposition 4.2. If

A =

[
A11 A12

O A22

]

and sp(A11) ∩ sp(A22) = ∅; then

��(A) ⊆ �f(�)(A11) ∪ �f(�)(A22); (7)

where

f(�) = �
(
1 +

‖R‖2
2

(
√
‖R‖22 + 4 + ‖R‖2)

)
:

Proof. As A = S diag(A11; A22)S−1; we have ��(A) ⊆ ��k2(S)(A11) ∪ ��k2(S)(A22) with k2(S) =
‖S‖2‖S−1‖2.

S =

[
I −R

O I

]
;
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so that k2(S) = ‖S‖22. Therefore; using Lemma 2.1

k2(S) = 1 +
‖R‖2
2

(
√
‖R‖22 + 4 + ‖R‖2):

Example 1. We compare inclusion (3) and inclusion (7) using the following simple example:

A =

[
� M

0 � + $

]
:

Then we have

S =

[
1 l

0 1

]
;

with l = |M |=$.
Hence

f(�) = �

(
1 +

|M |
2$

(√
|M |2
$2

+ 4 +
|M |
$

))
:

Our result (3) implies that

�(�) = �

√
1 +

|M |
�

:

In the following Bgure (Fig. 1) the curve f(�) = �(�) is plotted as a function of $ and M .

Remark. To the left of the curve f = � we have �(�)¡ f(�) so that ��(�)(A11) ∪ ��(�)(A22) ⊂
�f(�)(A11) ∪�f(�)(A22). This means that ��(�)(A11) ∪��(�)(A22) is closer to ��(A) than �f(�)(A11) ∪
�f(�)(A22). In this region we Bnd values of M and $ corresponding to an ill-conditioned matrix A.
If $ ¡ 2�; then whatever may be the value of M; our bound (3) is better than (7). For a Bxed value
of $ ¿ 2� and when the departure from normality M is big enough; our bound (3) is better than
(7).

For the following examples, the computations were performed in MATLAB 5.1 on a PC Pen-
tium200 and on a SUN SPARCSTATION 4. In order to draw the �-spectrum, we use the routine
pscont.m from the test matrix toolbox [5] or the program given by Trefethen in [15] which permits
to treat large matrices.

In order to investigate the tightness of the inclusion (6), we compare the �-spectrum of A, with
the �-spectrum and !(�)-spectrum of

B:=

[
A11 0

O A22

]
:

Most of the examples are taken from the test matrix toolbox [5].

Example 2. Let A be a Wilkinson matrix W (n) deBned as follows (Figs. 2 and 3):

wi; i = i; wi; i+1 = n; wi; j = 0 ∀j �= i; j �= i + 1:
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Fig. 1. Comparison of �(�) with f(�).
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Fig. 2. n = 20; m = 10.



462 L. Grammont, A. Largillier / Journal of Computational and Applied Mathematics 147 (2002) 453– 469

_5 0 5 10 15 20 25
_8

_6

_4

_2

0

2

4

6

8
tightness of the inclusion  with ε=10 _8

∆τ(ε)(B)

∆ε(B)

∆ε(A)

Fig. 3. n = 20; m = 10.

Remark. We observe that when � decreases; �!(�)(B) becomes a better approximation of ��(A) than
��(B). For � = 10−12; we cannot even see the shape of ��(B).

Example 3. Let

A =

[
Frank(m) �I

O Frank(n − m)

]
;

where Frank(n) is deBned in [5]; �∈R and I = eye(m; n − m) (Figs. 4 and 5).
�!(�)(B) is a better approximation of ��(A) than ��(B) when � = a12 increases.

Example 4. Let A be the matrix

[
Frank(m) ones

O Frank(m)

]
;

where Frank(n) is deBned in [5] and m = 200 (Fig. 6).

Remark. Large sizes amplify the di=erences between ��(B) and �!(�)(B). �!(�)(B) is a good approx-
imation of ��(A). On the other hand ��(B) is close to the eigenvalues and far from ��(A).
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5. Application to matrix stability theory

Systems of ordinary di=erential equations are often used as a mathematical model in Physics,
Biology and Economics. The equilibrium properties or asymptotic behaviour of such systems are of
main interest. A useful tool for this analysis is matrix stability analysis (see DeBnition 1.3).

When dealing with practical applications, we are led to handle large matrices for which there is
obviously no way to compute all its eigenvalues. For such a case, Malyshev and Sadkane propose
to combine Krylov methods and standard methods in the case of Lyapunov stability. More precisely,
A∈Cn×n can be partitioned in the following way:

A = [V1 V2]

[
A11 A12

O A22

]
[V1 V2]∗ + R; (8)

where A11 ∈Cm×m, m�n, V1 ∈Cn×m and ‖R‖ are given by a Krylov method followed by a reBne-
ment scheme such as Arnoldi plus inverse iterations or polynomial acceleration. The other matrices
A22 ∈Cn−m×n−m and V2 ∈Cn×n−m will not be computed. The question is: if A11 is stable according
to the standard stability analysis, can we be sure that A is also stable?

It is interesting to give a lower bound for this radius that guarantees the stability of the matrix A.
Malyshev and Sadkane propose a lower bound of rs(A) involving rs(A11) (computed by a bisection
method for example) and the smallest eigenvalue of −(A22 + A∗

22)=2 (in [10]).
Let

A0 = [V1 V2]

[
A11 A12

O A22

]
[V1 V2]∗;
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R = [V1 V2]

[
O O

A21 O

]
[V1 V2]∗;

+ = �min

(
−A22 + A∗

22

2

)
;

s1 = rs(A11);

a21 = ‖R‖2:
The following proposition recalls the bound obtained in [10]:

Proposition 5.1. Let

t1 = max
(
1
+

;
1
r1

+
a12
+r1

)
;

t2 = max
(
1
r1

;
1
+

;+
a12
+r1

)
;

t3 =

√(
1
r21

+
1
+2 +

a212
+2r21

)
:

If A11 is stable, (A22 + A∗
22)=2 is negative de=nite, and

a21 ¡
1

min(
√

t1t2; t3)

then A is stable and

rs(A)¿
1

min(
√

t1t2; t3)
− a21: (9)

In this section, we propose another lower bound and a su6cient condition for a matrix to be
stable.

We quote the following lemma from [10].

Lemma 5.2.

s2¿ �min

(−A22 − A∗
22

2

)
:

It will be used in the proof of the following theorem:

Theorem 5.3. Let set s =max(s1; +). If A11 is unstable; then A0 is unstable and

rs(A)6 a21:



466 L. Grammont, A. Largillier / Journal of Computational and Applied Mathematics 147 (2002) 453– 469

If A11 is stable and (A22 + A∗
22)=2 is negative de=nite; then

rs(A0)¿min{s1; +} s√
s2 + a212

2 + a12
2

√
4s2 + a212

: (10)

If moreover

a21 ¡min{s1; +} s√
s2 + a212

2 + a12
2

√
4s2 + a212

;

then A is stable and

rs(A)¿min{s1; +} s√
s2 + a212

2 + a12
2

√
4s2 + a212

− a21: (11)

Proof. We have 
min(A0 − zI)6 
min(A11 − zI). If minre(z)=0 
min(A11 − zI)6 0 then
minre(z)=0 
min(A0− zI)6 0 and then A0 is unstable. Since A=A0 +R; 
min(A− zI)=
min(A0− zI +
R)6 
min(A0 − zI) + 
max(R). But 
max(R) = ‖R‖2 = a21; so 
min(A− zI)6 
min(A0 − zI) + a21 and
minre(z)=0 
min(A − zI)6minre(z)=0 
min(A0 − zI) + a216 a21. Hence; rs(A)6 a21.

Let us assume that A11 is stable and that (A22+A∗
22)=2 is negative deBnite. According to DeBnition

1.3,

1
rs(A0)

= max
re(z)¿0

‖(A0 − zI)−1‖2:

But V = [V1 V2] is unitary, so

‖(A0 − zI)−1‖2 =
∣∣∣∣∣∣
∣∣∣∣∣∣
([

A11 A12

O A22

]
− zI

)−1
∣∣∣∣∣∣
∣∣∣∣∣∣
2

:

Taking the maximum of the set re(z)¿ 0 and taking into account

max
re(z)¿0

r1(z) =
1

rs(A11)
=

1
s1

and

max
re(z)¿0

r2(z) =
1

rs(A22)
=

1
s2

;

we have

1
rs(A0)

6
1

min(s1; s2)

√√√√√1 +
a12

2max(s1; s2)


 a12
max(s1; s2)

+

√
a212

max(s1; s2)2
+ 4


:

By the previous lemma we have max(s1; s2)¿ s and min(s1; s2)¿min(s1; +).
These relations lead to the inequality (10).
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Table 1

Quantity Computation

+ 4:91 · 10−2

s1 2:71 · 10−3

a12 0.65
t1 1:01 · 104
t2 9:83 · 103
t3 9:81 · 103
s 4:91 · 10−2

From following


min(A0 − zI)6 
min(A − zI) + a21;

we have inequality (11) and the su6cient condition on the stability of A.

5.1. Numerical experiment

We illustrate the theoretical results of Theorem 5.3 on a practical test problem taken from [10]
in order to compare our results with the results obtained in [10].

We test the bounds on the Orr–Sommerfeld operator deBned by

1
�R

L2y − i(ULy − U ′′y)− �Ly = 0;

where � and R are positive parameters, � is a spectral parameter number, U =1−x2, y is a function
deBned on [− 1; 1] with y(±1) = y′(±1) = 0, L = (d2=dx2)− �2. The discretization

xi =−1 + ih; h =
2

n + 1
;

Lh =
1
h2

Tridiag(−1;−2− �2h2; 1);

Uh = diag(1− x21 ; : : : ; 1− x2n)

with � = 1; R = 1000; n = 400 yields to the eigenvalue problem

Au = �u; A =
1
�R

Lh − iL−1
h (UhLh + 2In):

The block decomposition (1) of A is performed by Arnoldi method combined with complex
Chebyshev acceleration (see [10]). Arnoldi iterations are stopped at m = 10. The results of the
computations of the quantities involved in the inequalities (11) and (9) are taken from [10] for the
sake of comparison.

Using the quantities given in the above Table 1, we obtain from inequality (9)

rs(A)¿ 1:01 · 10−4 − a21
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and from inequality (11)

rs(A)¿ 2:24 · 10−4 − a21:

For this example, our lower bound of rs(A0) is more than twice as the one of [10].

6. Conclusion

We give a new upper bound for the norm of the resolvent. From it, we deduce an approximation
of ��(A) which contains ��(A). As, in general, the �-spectrum is approximated from below, our
result is interesting. Also the only approximation of that kind which we know seems to be worse
than ours in the case of ill-conditioned matrices (see Fig. 1). As the numerical examples show, we
should not neglect the upper o=-diagonal block of a matrix to compute its �-spectrum (see Fig. 5).
If we want to cancel this term, we have to increase the value of �.

As far as the stability radius of a partitioned matrix is concerned, we set up a lower bound. We
test this bound on the Orr–Sommerfeld operator. Our bound is twice as good as the one established
in [10].
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