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Abstract

This paper deals with the approximate solution of multi-pantograph equation with nonhomogenous term in terms of Taylor
polynomials. The technique we have used is based on a Taylor matrix method. In addition, some numerical examples are presented
to show the properties of the given method and the results are discussed.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Functional–differential equations with proportional delays are usually referred to as pantograph equations or gen-
eralized equations. The name pantograph originated from the work of Ockendon and Tayler [12] on the collection of
current by the pantograph head of an electric locomotive.

These equations arise in many applications such as number theory, electrodynamics, astrophysics, nonlinear dynam-
ical systems, probability theory on algebraic structures, quantum mechanics and cell growth, among others. Properties
of the analytic solution of these equations as well as numerical methods have been studied by several authors. For
example, equations with variable coefficients are treated in [2,9,4].

In recent years, the Taylor method has been used to find the approximate solutions of differential, difference, integral
and integro-differential-difference [5–7,11,13–15]. The basic motivation of this work is to apply the Taylor method to
the nonhomogenous multi-pantograph equation with variable coefficients, which is extended of the multi-pantograph
equation given in [8,1],

u′(t) = �u(t) +
l∑

i=1

�i (t)u(qi t) + f (t), t �0 (1)

under the condition u(0) = �, where �, � ∈ C; �i (t) and f (t) are analytical functions; 0 < qi < 1 .
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In this study, our purpose is to find an approximate solution of the given problem in the series form

u(t) =
N∑

n=0

unt
n (2)

so that the Taylor coefficients to be determined are

un = u
(n)
(0)

n! , n = 0, 1, 2, . . . , N, N ∈ N.

2. Fundamental matrix relations

Let us convert the expressions defined in (1) and (2) to the matrix forms. Now, let us assume that the functions u(t)

and u′(t), respectively, can be expanded to Taylor series about t = 0 in the forms

u(t) =
∞∑

n=0

unt
n, un = u

(n)
(0)

n! (3)

and

u′(t) =
∞∑

n=0

u′
nt

n, (4)

where u
(0)
n = un.

First, let us derive the expression (3) with respect to t and then put n → n + 1.

u′(t) =
∞∑

n=1

nunt
n−1 =

∞∑
n=0

(n + 1)un+1t
n. (5)

From (4) and (5), it is clear that

u′
n = (n + 1)un+1, n = 0, 1, 2, . . . . (6)

which is the recurrence relation between the coefficients u′
n and u

(0)
n of u′

n(t) and u(t), respectively. Now let us take

n = 0, 1, 2, . . . , N and assume u
(k)
n = 0, for n > N . Then system (6) can be transformed into the matrix form

U(1) = MU(0) ≡ MU, (7)

where

U(1) =

⎡
⎢⎢⎢⎢⎣

u
(1)
0

u
(1)
1

...

u
(1)
N

⎤
⎥⎥⎥⎥⎦ , M =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 2 · · · 0
...

...
...

...
...

0 0 0 · · · N

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, U =

⎡
⎢⎢⎢⎢⎣

u0

u1

...

uN

⎤
⎥⎥⎥⎥⎦ .

On the other hand, the solution expressed by (2) and its derivative (4) can be written in the matrix forms

[u(t)] = TU and [u′(t)] = TU(1) (8)
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or using relation (7)

[u′(t)] = TMU, (9)

where

T = [1 t t2 · · · tN ] .

We can write the expressions u(qi t) and �i (t), respectively, as

u(qi t) =
N∑

n=0

u(n)(0)

n! (qi)
ntn =

N∑
n=0

un(qi)
ntn (10)

and

�i (t) =
N∑

k=0

aikt
k, aik = �(k)

i (0)

k! . (11)

Hence from (10) and (11) we have

�i (t)u(qi t) =
N∑

k=0

N∑
n=0

aik(qi)
ntn+kun, tn+k = 0 for n + k > N

or the matrix form

[�i (t) u(qi t)] = TAiU (12)

so that

T = [1 t t2 · · · tN ],
U = [u0 u1 u2 · · · uN ]T,

Ai =

⎡
⎢⎢⎢⎢⎢⎢⎣

ai0(qi)
0 0 0 · · · 0

ai1(qi)
0 ai0(qi)

1 0 · · · 0

ai2(qi)
0 ai1(qi)

1 ai0(qi)
2 · · · 0

...
...

...
...

...

ai,N (qi)
0 ai,N−1(qi)

1 ai,N−2(qi)
2 · · · ai,0(qi)

N

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Besides, we assume that the function f (x) can be expanded as

f (x) =
N∑

n=0

fnt
n, fn = f (n)(0)

n! .

Then the matrix representation of f (x)becomes

[f (x)] = TF, (13)

where

F = [f0 f1 · · · fN ]T.
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3. Method of solution

We now ready to construct the fundamental matrix equation corresponding to Eq. (1). For this purpose, we first
substitute the matrix relations (8), (9), (12) and (13) into Eq. (1) and then simplify. Thus we have the fundamental
matrix equation

{
M − �I −

l∑
i=1

Ai

}
U = F, (14)

where I is the identity matrix of order N + 1; another matrices are defined in Sections 2.
The fundamental matrix (14) corresponds to a system of (N + 1) algebraic equations for the (N + 1) unknown

coefficients u0, u1, . . . , uN . Briefly, we can write Eq. (14) in the form

WU = F or [W; F] (15)

so that

W = [wpq ] = M − �I −
l∑

i=1

Ai , p, q = 0, 1, . . . .

We can obtain the matrix form corresponding to the condition u(0) = � as, from the relation (8),

[1 0 · · · 0]U = [�] (16)

or

[1 0 · · · 0 ; �]

If the mixed condition

R∑
r=0

cru(�r ) = � (17)

is given, it can be written in the matrix form

R∑
r=0

crT(�r )U = [�], (18)

where cr , �r and � are appropriate constants; the matrix T(�r ) is

T(�r ) = [1 �r (�r )
2 · · · (�r )

N ].

Briefly, the matrix form for the condition (17) becomes

VU = [�] or [V; �], (19)

where

V =
R∑

r=0

crT(�r ) = [v0 v1 · · · vN ].



410 M. Sezer et al. / Journal of Computational and Applied Mathematics 214 (2008) 406–416

To obtain the solution of Eq. (1) under the condition u(0) = � or the mixed condition (17), by replacing the row matrix
(16) or (19) by the last row of matrix (15), we have the required augmented matrix [2,4]

[W̃; F̃] =

⎡
⎢⎢⎢⎢⎢⎢⎣

w00 w01 · · · w0N ; f0

w10 w11 · · · w1N ; f1

...
... · · · ... ; ...

wN−1,0 wN−1,1 · · · wN−1,N ; fN−1

v0 v1 · · · vN ; �

⎤
⎥⎥⎥⎥⎥⎥⎦

, (20)

where for condition u(0) = �, v0 = 1 ,v1 = v2 = · · · = vN = 0.

If rankW̃ = rank[W̃; F̃] = N + 1 defined in (20), then we can write

U = (W̃)−1F̃. (21)

Thus the coefficients un, n=0, 1, 2, . . . , N are uniquely determined by Eq. (21). If det(W̃)=0, then there is no solution
and the method cannot be used. Also, by means of systems we may obtain the particular solutions.

On the other hand, we can easily check the accuracy of the obtained solutions as follows [2]. Since the obtained
polynomial expansion is an approximate solution, when the functions u(t) and u′(t)are substituted in Eq. (1), the
resulting equation must be satisfied approximately; that is, for t = tj , j = 0, 1, 2, . . . .

E(tj ) =
∣∣∣∣∣u′(tj ) − �u(tj ) −

l∑
i=1

�i (tj )u(qi tj ) − f (tj )

∣∣∣∣∣�0

or

E(tj )�10kj (kj isanypositiveinteger).

If max 10kj =10−k(k is any positive integer) is prescribed, then the truncation limit N is increased until the difference
E(tj ) at each of the points tj becomes smaller than the prescribed 10−k .

4. Illustrations

The method of this study is useful in finding the solutions of multi-pantograph equation with variable coefficients in
terms of Taylor polynomials. We illustrate it by the following examples.

Example 1 (Liu and Li [8]). Let us first consider the equation

{
u′(t) = −u(t) + �1(t)u(0.5t) + �2(t)u(0.25t)

u(0) = 1
(0� t �1), (22)

where �1(t)=−e−0.5t sin(0.5t), �2(t)=−2e−0.75t cos(0.5t) sin(0.25t) and approximate the solution u(t) by the Taylor
polynomial

u(t) =
5∑

n=0

unt
n, un = u(n)(0)

n! (n = 0, 1, . . . , 5),

where � = −1, q1 = 0.5, , q2 = 0.25, f (t) = 0. Then, the matrix form of Eq. (14) defined by

[M − �I − A1 − A2]U = F,
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where A1, A2 are matrices defined by

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

−0.5 0 0 0 0 0

0.25 −0.25 0 0 0 0

− 5

12
0.125 −0.125 0 0 0

0 − 1

48

1

16
−0.0625 0 0

1

960
0 − 1

96

1

32
−0.03125 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

−0.5 0 0 0 0 0

0.375 −0.125 0 0 0 0

− 7

96
0.09375 −0.03125 0 0 0

−0.015625 − 7

384
0.0234375 −0.0078125 0 0

161

15 360
−0.00390625 − 7

1536
0.005859375 −0.001953125 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The augmented matrix forms of the conditions for N = 5 is

[1 0 0 0 0 0 ; 1].

Then, we obtain the augmented matrix (20) as

[W̃; F̃] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 ; 0

1 1 2 0 0 0 ; 0

−0.625 0.375 1 3 0 0 ; 0

0.114583333 −0.21875 0.15625 1 4 0 ; 0

0.015625 0.0390625 −0.0859375 0.0703125 1 5 ; 0

1 0 0 0 0 0 ; 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Taking N = 5, we obtain the approximate solution. The solution is

u(t) = 1 − t + 0.3333333t3 − 0.1666666t4 + 0.0333333t5.

Now let us find the solution of the problem (22) taking N = 5. The values of this solution are compared with the results
for N = 5, N = 7, N = 9 given the exact solution u(t) = e−t cos t in Table 1.

Example 2 (Evens and Raslan [3]). Let us now consider the problem

u′(t) = 1

2
et/2u

(
t

2

)
+ 1

2
u(t), u(0) = 1 (0� t �1), (23)

where � = 1
2 , q1 = 1

2 , f (t) = 0, �1(t) = 1
2 e0.5t .
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Table 1
Numeric results of Example 1

ti Present method

N = 5 E(ti ) N = 7 E(ti )

0 1 0 1 0
0.1 0.900316998 1.092 × 10−8 0.900316999 3.6 × 10−10

0.2 0.802410666 6.9082 × 10−7 0.802410646 4.06 × 10−8

0.3 0.707730999 7.754 × 10−6 0.707730653 6.935 × 10−7

0.4 0.617407999 4.2924 × 10−5 0.617405399 5.1907 × 10−6

0.5 0.532291666 1.6131 × 10−4 0.532279266 2.4724 × 10−5

0.6 0.452992000 4.7443 × 10−4 0.452947565 8.8481 × 10−5

0.7 0.379918999 1.1178 × 10−3 0.379788279 2.5991 × 10−4

0.8 0.313322666 2.5855 × 10−3 0.312989785 6.6079 × 10−4

0.9 0.253333333 5.1614 × 10−3 0.252573798 1.5043 × 10−3

1 0.199999999 9.5631 × 10−3 0.198412698 3.1389 × 10−3

ti Present method Exact solution

N = 9 E(ti ) u(t) = e−t cos t

0 1 0 1
0.1 0.900316999 3 × 10−11 0.900316999
0.2 0.802410647 1.3 × 10−9 0.802410647
0.3 0.707730678 2.05 × 10−8 0.707730678
0.4 0.617405654 1.434 × 10−7 0.617405648
0.5 0.532280769 6.305 × 10−7 0.532280730
0.6 0.452953943 2.058 × 10−6 0.452953789
0.7 0.379909867 5.428 × 10−6 0.379809389
0.8 0.313051744 1.212 × 10−5 0.313050504
0.9 0.252730539 2.353 × 10−5 0.252727753
1 0.198771632 4.003 × 10−5 0.198766110

To find a Taylor polynomial solution of the problem above, we first take N = 5, and then proceed as before. Then
we obtain the desired augmented matrix (20) as

[W̃; F̃] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0 ; 0

−0.25 −0.75 2 0 0 0 ; 0

−0.0625 −0.125 −0.625 3 0 0 ; 0

−0.010416666 −0.03125 −0.0625 −0.5625 4 0 ; 0

−0.013020833 −0.00520333 −0.015625 −0.03125 −0.53125 5 ; 0

1 0 0 0 0 0 ; 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where W̃ is the (6 × 6) matrix and F̃ is the (6 × 1) column matrix. From the solutions of this system the coefficients
un(n = 0, 1, 2, . . . , 5) are uniquely determined as

U = [1 1 0.5 0.16666666 0.04166666 0.00833333]T.

By the substituting the obtained coefficients in (2) the solution of (23) becomes

u(t) = 1 + t + 0.5 t2 + 0.16666666t3 + 0.04166666 t4 + 0.00833333t5.

The comparison of the solutions (for N = 5, 7, 9) with exact solution exp(t) is given Table 2.
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Table 2
Numeric results of Example 2

ti Present method

N = 5 E(ti ) N = 7 E(ti )

0 1 0 1 0
0.1 1.105170917 8.31 × 10−8 1.105170918 4 × 10−10

0.2 1.221402667 2.7119 × 10−6 1.221402759 2.5 × 10−9

0.3 1.349858775 2.0769 × 10−5 1.349858806 4.41 × 10−8

0.4 1.491818667 8.8292 × 10−5 1.491824681 3.337 × 10−7

0.5 1.648697917 2.7167 × 10−4 1.648721168 1.6011 × 10−6

0.6 1.822048000 6.8269 × 10−4 1.822118354 5.7764 × 10−6

0.7 2.013571417 1.4893 × 10−3 2.013751158 1.711 × 10−5

0.8 2.225130667 2.9313 × 10−3 2.225536366 4.3879 × 10−5

0.9 2.45875825 5.3335 × 10−3 2.459591263 1.0079 × 10−4

1 2.71666667 9.1216 × 10−3 2.718253969 2.1226 × 10−4

ti Present method Exact solution

N = 9 E(ti ) u(t) = et

0 1 0 1
0.1 1.105170918 4 × 10−10 1.105170918
0.2 1.221402759 5 × 10−10 1.221402758
0.3 1.349858808 1 × 10−10 1.349858808
0.4 1.491824698 1.2 × 10−9 1.491824698
0.5 1.648721270 5.1 × 10−9 1.648721271
0.6 1.822118799 2.93 × 10−8 1.822118800
0.7 2.013752699 1.16 × 10−7 2.013752707
0.8 2.225540897 3.87 × 10−7 2.225540928
0.9 2.459603007 1.12 × 10−6 2.459603111
1 2.718281527 2.91 × 10−6 2.718281828

Example 3 (Muroya et al. [10]). Let us now consider the problem

u′(t) = −u(t) + q

2
u(qt) − q

2
e−qt , u(0) = 1, (24)

where � = −1, q1 = q/2, f (t) = −(q/2)e−qt , �1(t) = 1
2 e0.5t .

Following the procedures in the previous examples, we get the approximate solution of problem (24) for q =
0.9, 0.8, 0.5, 0.2 and N = 5 as

u(t) = 1 − t + 0.5t2 − 0.166666t3 + 4.166666 × 10−2t4 − 8.333333 × 10−3t5.

Similarly, we have the approximate solution of problem (24) for q = 0.9, 0.8, 0.5, 0.2 and N = 9 as

u(t) = 1 − t + 0.5 t2 − 0.166666t3 + 4.166666 × 10−2t4 − 8.333333 × 10−3t5 + 1.388888 × 10−3t6

− 1.98412698 × 10−4t7 + 2.48015873 × 10−5t8 − 2.755731922 × 10−6t9.

The comparison of the solutions given above with the exact solution u(t) = e−t of the problem is given Table 3.

5. Error analysis

In this section, we will discuss the asymptotic behavior of error points E(ti) defined in Section 3 as the truncation
limit N is increased. Fig. 1(a) shows the plot of the error points E(ti) for N = 5, 7 and 9. This plot clearly indicates
that when we increase the truncation limit N, we have less error.
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Table 3
Numeric results of Example 3

ti Exact solution Present method
u(t) = e−t for q = 0.9, 0.8, 0.5, 0.2

N = 5 E(ti ) N = 9 E(ti )

−1 2.718281828 2.716666667 9.141 × 10−3 2.718281527 2.91 × 10−6

−0.9 2.459603111 2.458758250 5.343 × 10−3 2.459603007 1.12 × 10−6

−0.8 2.225540928 2.225130667 2.935 × 10−3 2.225540897 3.85 × 10−7

−0.7 2.013752707 2.013571417 1.491 × 10−3 2.013752699 1.15 × 10−7

−0.6 1.822118800 1.822048000 6.834 × 10−4 1.822118799 2.83 × 10−8

−0.5 1.648721271 1.648697917 2.721 × 10−4 1.648721271 5.9 × 10−9

−0.4 1.491824698 1.491818667 8.834 × 10−5 1.491824698 7 × 10−10

−0.3 1.349858808 1.349857750 2.077 × 10−5 1.349858808 1 × 10−10

−0.2 1.221402758 1.221402667 2.712 × 10−6 1.221402758 1 × 10−10

−0.1 1.105170918 1.105170917 8.38 × 10−8 1.105170918 0

0 1 1 0 1 0
0.1 0.904837418 0.904837416 8.27 × 10−8 0.904837418 0
0.2 0.818730753 0.818730667 2.6235 × 10−6 0.818730753 0
0.3 0.740818221 0.740817250 1.9746 × 10−5 0.740818221 1 × 10−10

0.4 0.670320046 0.670314667 8.2643 × 10−5 0.670320046 1 × 10−10

0.5 0.606530659 0.606510416 2.5029 × 10−4 0.606530659 5.2 × 10−9

0.6 0.548811636 0.548752000 6.1818 × 10−4 0.548811635 2.69 × 10−8

0.7 0.496585303 0.496436917 1.3263 × 10−3 0.496585297 1.076 × 10−7

0.8 0.449328964 0.449002667 2.5675 × 10−3 0.449328937 3.559 × 10−7

0.9 0.406569659 0.405916750 4.5942 × 10−3 0.406569571 1.023 × 10−6

1 0.367879441 0.366666667 7.7269 × 10−3 0.367879189 2.629 × 10−6

Fig. 1. (a) Error points E(ti ) and the truncation limits for N = 5, 7 and 9 in Example 1. (b) Increasing N does not effect the errors.

One question needs to be answered here is that how large we need to take N. To answer this question, we have
used methods of curve fitting to estimate N and compare it to the error points E(ti). Since the approximate solutions
u(t)of the given multi-pantograph equations are approximated polynomials depending on N, then the derivatives of
these solutions u′(t) are polynomials as well. Therefore, the first and second terms of E(ti) are polynomials. As a
consequence of Eqs. (10) and (11), the functions �i (tj )u(qi tj ) are polynomials. Since f (t) is analytical function,
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Fig. 2. (a) Error points E(ti ) and the truncation limits for N = 5, 7 and 9 in Example 2. (b) Oscillation near the end point t = 1 can be expected for
polynomials.

Fig. 3. (a) Error points E(ti ) and the truncation limits for N = 5 and 9 in Example 3. (b) Increasing the truncation limit N does not effect the errors
too much.

the remaining term in E(ti) can be curve fitted as polynomials. Using these ideas, we have found various degrees of
polynomial fitting of error points E(ti) and we have compared the behaviors of error points and their polynomial fits
as N increases in the interval 0� t �1 as shown in Fig. 1(b). Fig. 1(b) shows that increasing N does not effect the errors
very much.

Using similar ideas as in example 1 explained above, we can see from Fig. 2(b) that increasing N does not effect the
errors very much. However, after N = 45, the polynomial fits show a tendency to oscillate to the end boundary point
t = 1. This behavior can be expected in any polynomial numerical method.

Finally, we have similar results for Example 3. Fig. 3(a) shows the plot of the error points E(ti) for N = 5 and 9.
Even for N = 9, we have very small errors. When we increase the truncation limit N, say N = 25, the polynomial starts
oscillation near the end points as in Fig. 3(b).
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6. Conclusions

Nonhomogenous multi-pantograph equation with variable coefficients are usually difficult to solve analytically. Then
it is required to obtain the approximate solutions. For this reason, the present method has been proposed for approximate
solution and also analytical solution.

The method presented in this study is a method for computing the coefficients in the Taylor expansion of the solution
of a nonhomogenous multi-pantograph equation, and valid when the functions �i (t) and f (t) are analytical functions.

The Taylor matrix method is an effective method for cases that the known functions have the Taylor series expansions
at x = 0. In addition, an interesting feature of this method is to find the analytical solutions if the equation has an exact
solution that is a polynomial of degree N or less than N.
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